JPS6140030B2 - - Google Patents

Info

Publication number
JPS6140030B2
JPS6140030B2 JP11048681A JP11048681A JPS6140030B2 JP S6140030 B2 JPS6140030 B2 JP S6140030B2 JP 11048681 A JP11048681 A JP 11048681A JP 11048681 A JP11048681 A JP 11048681A JP S6140030 B2 JPS6140030 B2 JP S6140030B2
Authority
JP
Japan
Prior art keywords
content
less
sol
effect
steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP11048681A
Other languages
Japanese (ja)
Other versions
JPS5811764A (en
Inventor
Susumu Kanbara
Masashi Takahashi
Fukukazu Nakazato
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP11048681A priority Critical patent/JPS5811764A/en
Publication of JPS5811764A publication Critical patent/JPS5811764A/en
Publication of JPS6140030B2 publication Critical patent/JPS6140030B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

この発明は、浸炭時にオーステナイト粒が粗大
化しない、焼入歪の小さい肌焼ボロン鋼に関する
ものである。 従来、表面硬化用材として、JIS・G4052に規
定されているように種々の肌焼鋼が知られてお
り、特にその中でも、SCM系やSNCM系のもの
が諸特性に優れていることから、広範に使用され
てきた。しかしながら、これらの肌焼鋼は、高価
なNiやMoを含有しており、その価格が高くなる
ことから、これらに代えて安価なBを添加するこ
とによつて焼入性を確保させた肌焼ボロン鋼が、
経済的代替鋼として一部実用化をみるに至つてい
る。 このような肌焼ボロン鋼は、必須元素として
Tiが0.01〜0.05%含有されているのが特徴であ
り、これは鋼中TiNとして固定することにより、
BがBNを形成して焼入性向上効果を消失せしめ
るのを防止するためであつた。 しかし、従来の肌焼ボロン鋼には、浸炭時にオ
ーステナイト粒の粗粒化が生じ、焼入歪が大きく
なるという問題点が指摘されていた。 本発明者等は、上述のような観点から、浸炭時
の焼入歪が小さく、かつ経済的な機械構造用肌焼
鋼を見出すべく、特に価格の安い肌焼ボロン鋼に
着目して、その浸炭時のオーステナイト粒の粗大
化を防止して焼入歪を抑えるべく研究を行なつた
結果、以下(a)〜(c)に示す知見を得るに至つたので
ある。すなわち、 (a) 一般に、BはNと結合してBNになると焼入
性向上効果が消失するため、従来よりB添加鋼
にはNとの結合力がBよりも強いTiを添加し
て鋼中のNをTiNとして固定することにより、
焼入性の確保を果してきたが、TiNは極めて固
溶しにくい化合物であるため、圧延後ないしは
鍜造後にはすでに大型の析出物として存在して
おり、オーステナイト粒粗大化阻止に有効な微
細分散の形態になつていない。従つて、オース
テナイト粗粒化抑制という見地からすれば、
TiNはあまり寄与しないから、Ti含有量とN含
有量を化学当量的にバランスさせれば(すなわ
ち、Ti=3.42Nとすれば)、当然粗粒化しやす
くなり、その結果、焼入歪が大きくなること
(但し、TiNは高温でも固溶しにくいため、圧
延あるいは鍜造前の高温加熱時にも残存して圧
延後あるいは鍜造後の結晶粒の極端な粗大化を
防止する効果があり、その後の浸炭時のオース
テナイト粘粒粗大化に対して間接的な抑制効果
を有するが、このためにはN含有量が0.006%
を越えていることが望ましい)。 (b) 鋼中のN含有量がTi含有量より化学当量的
に多くなると、過剰NはAlと結合してAlNとな
るが、AlNは浸炭中あるいは浸炭前の熱処理中
に生成し、オーステナイトの粗粒化を抑制する
こと。ただし、この場合に過剰のNが存在し、
かつsol.Al含有量が過剰N量より化学当量的に
多くなければほとんど粗粒化抑制の効果がない
こと(この場合N含有量が0.006%を越えてい
ることが望ましい)。 (c) 肌焼ボロン鋼中に、NbおよびVの1種以上
を添加することによつて、オーステナイト粗粒
化温度がさらに上昇され、高温浸炭が可能とな
つて浸炭時間を短縮できること。 したがつて、この発明は上記知見にもとづいて
なされたものであつて、肌焼ボロン鋼を、重量%
で(以下%は重量%を示す)、 C:0.10〜0.27%未満 Si:0.35%以下、 Mn:0.30〜0.90%, Cr:0.90〜1.80%, B:0.0005〜0.0050%, sol.Al:0.08%以下、 Ti:0.1%以下、 N:0.006%超〜0.020%, を含有し、さらに必要に応じて、 Nb:0.06%超〜0.10%, V:0.02〜0.20%, の1種以上を含有し、 Feおよび不可避不純物:残り、 からなる組成で構成するとともに、Ti含有量と
sol.Al含有量とN含有量との間に{Ti,sol,
Al,Nの含有量は重量%表示とする)、 0.004<N―Ti/3.42<sol.Al/1
.93 なる不等式が成り立つ如くすることによつて、熱
処理歪を極力抑えたことに特徴を有するものであ
る。 ついで、この発明の肌焼ボロン鋼において、そ
の成分組成を上記のように限定した理由を説明す
る。 (a) C C成分には、機械構造用肌焼鋼としての強度
を確保する作用があり、その含有量が0.10%未
満では前記作用に所望の効果が得られず、一方
0.27%以上含有されると冷間加工性が劣化する
とともに浸炭後の芯部の靭性が急激に劣化する
ようになることから、その含有量を0.10〜0.27
%未満と限定した。 (b) Si Si成分には、焼入性向上を無効にするBの酸
化を抑える作用があり、鋼の脱酸剤として添加
されることにより前記作用も伴われるものであ
るが、その含有量が0.35%を越えると、浸炭性
を悪くするともに、浸炭異常層を拡大して疲労
強度・耐ピツチング性を低下させるので、その
含有量を0.35%以下と限定した。 (c) Mn Mn成分は、Bの酸化を抑えるのに有効な脱
酸剤であるとともに、焼入性向上作用を有して
おり、かつ、MnSを形成してSによる熱間脆
性を防止するものであるが、その含有量が0.30
%未満では前記作用に所望の効果が得られず、
一方、0.90%以上含有せしめると冷間加工性や
被削性が急激に劣化するようになるとともに、
浸炭異常層が深くなることから、その含有量を
0.30〜0.90%と限定した。 (d) Cr Cr成分は、焼入性、強度、靭性、耐摩耗性
等の向上に有効な元素であるとともに、浸炭性
を改善し、浸炭異常層の抑制にも有効な成分で
あるが、その含有量が0.90%未満では前記作用
に所望の効果が得られず、一方、1.80%を越え
て含有すると冷間加工性や被削性が低下すると
ともに、浸炭時に表面部が過剰浸炭されるよう
になることから、その含有量を0.90〜1.80%と
限定した。 (e) B B成分には、極く微量で焼入性を著しく向上
させ、かつ低廉な元素であるが、その含有量が
酸可溶量で0.0005%未満では前記作用に所望の
効果が得られず、一方0.0050%を越えて含有せ
しめると逆に焼入性が低下するようになること
から、その含有量を0.0005〜0,0050%と限定
した。 (f) sol.Al sol.Al成分は、Bの酸化を抑えるのに有効な
脱酸剤であるが、その含有量が0.08%を越える
とアルミナ系介在物が急激に増加して、被削性
を劣化させるようになることから、その含有量
を0.08%以下と限定した。 (g) Ti Ti成分はNとの結合力がBより大きく、し
たがつてBがNと結合して焼入性向上効果を消
失せしめるのを防止する作用があるが、0.1%
を越えて含有するとTi窒化物が多量に生成し
て被削性および靭性を劣化させるようになるこ
とから、その含有量を0.1%以下と限定した。 (h) N Nについては、既に述べたように、その含有
量が0.006%以下になると、圧延あるいは鍜造
後の結晶粒が極端に粗大化するのを防止して後
工程の浸炭時のオーステナイト粒の微細化に寄
与すると言うTiNの間接的効果が目立たなくな
るとともに、AlNによるオーステナイト粒粗大
化防止効果も低下する傾向がでてくる。また、
N含有量を0.006%以下にするためには製鋼上
非常なコストアツプを余儀なくされる。従つ
て、好ましくはN含有量は0.006%を越える量
に調整するのが良い。一方、N含有量が0.020
%を越えるとBとの結合がはなはだしくなつて
Bの焼入性向上効果に悪影響を及ぼす懸念が増
すことから、出来ればN含有量を0.020%以下
に調整するのが好ましい。 (i) Nb Nb成分には、炭窒化物を生成してオーステ
ナイト粗粒化温度をさらに上昇する作用がある
が、その含有量が0.06%以下では前記作用に所
望の効果が得られず、一方0.10%を越えて含有
させてもその効果の向上が望めず、コストも上
昇するのでその含有量を0.06%超〜0.10%と限
定した。 (j) V V成分には、炭窒化物を生成してオーステナ
イト粗粒化温度をさらに上昇する作用がある
が、その含有量が0.02%未満では前記作用に所
望の効果が得られず、一方0.20%を越えて含有
せしめてもその効果の向上が望めないとともに
コストも上昇することから、その含有量を0.02
〜0.20%と限定した。 さらに、Ti含有量と、sol.Al含有量、N含有量
との間に、 0.004<N−Ti/3.42<sol.Al/1.9
3 なる不等式を規定したのは、N含有量がTi含有
量より化学当量的に多くなると、過剰のNはAl
と結合してAlNとなり、これもTiCと同様に、浸
炭中あるいは浸炭前の熱処理中に生成してオース
テナイトの粗粒化を抑制するが、この場合、過剰
N量(N−Ti/3.42の正の値)が、0.004%以上
存在 し、かつ、sol.Al含有量が過剰N量より化学当量
的に多くなければほとんど前記の効果がないこと
によるものである。なお、前記過剰Nは望ましく
は0.0055%以上の割合で存在させるのが良い。 ついで、この発明の鋼を実施例により比較例と
対比しながら説明する。 まず、第1表に示す通りの化学成分組成の本発
明鋼1〜13と、比較鋼1〜13を常法にて溶製
し、第1図に示す通りの形状(寸法:外径55mm×
内径35mm×厚さ10mm×偏心量8mm×開口部6mm)
のCリングを製造した。そして、本発明鋼および
比較鋼の焼ならし後のオーステナイト粗粒化温度
(粒度がJISNo.7以上になる温度)と、
The present invention relates to a case hardening boron steel that does not coarsen austenite grains during carburizing and has small quenching distortion. Conventionally, various case hardening steels have been known as surface hardening materials as specified in JIS/G4052, and among these, SCM and SNCM types have excellent properties and are widely used. has been used for. However, these case hardening steels contain expensive Ni and Mo, which increases their price. Hardened boron steel
It has even been put into practical use as an economical alternative steel. This type of case-hardened boron steel is made of
It is characterized by a Ti content of 0.01 to 0.05%, which is achieved by fixing it as TiN in the steel.
This was to prevent B from forming BN and eliminating the hardenability improvement effect. However, it has been pointed out that conventional case-hardening boron steels have a problem in that austenite grains become coarser during carburizing, resulting in increased quenching strain. From the above-mentioned viewpoint, the present inventors focused on particularly low-priced case-hardened boron steel in order to find an economical case-hardened steel for mechanical structures that has small quenching distortion during carburizing. As a result of conducting research to suppress the quenching distortion by preventing the coarsening of austenite grains during carburization, the following findings (a) to (c) were obtained. In other words, (a) In general, when B combines with N to form BN, the hardenability improvement effect disappears, so conventionally, B-added steel is made by adding Ti, which has a stronger bonding force with N than B. By fixing the N inside as TiN,
However, since TiN is a compound that is extremely difficult to dissolve in solid solution, it already exists as large precipitates after rolling or forging, and fine dispersion is effective in preventing austenite grain coarsening. It has not become the form of Therefore, from the viewpoint of suppressing austenite coarsening,
Since TiN does not contribute much, if the Ti content and N content are balanced chemically (i.e., Ti = 3.42N), the grains will naturally become coarser, and as a result, the quenching strain will increase. (However, since TiN is difficult to form a solid solution even at high temperatures, it remains even when heated at high temperatures before rolling or forging, and has the effect of preventing extreme coarsening of crystal grains after rolling or forging. It has an indirect suppressive effect on the coarsening of austenite viscous grains during carburization, but for this purpose, the N content is 0.006%.
). (b) When the N content in the steel is chemically equivalently greater than the Ti content, the excess N combines with Al to form AlN, but AlN is generated during carburizing or during heat treatment before carburizing, and is a substitute for austenite. To suppress coarsening. However, in this case, there is an excess of N,
In addition, unless the sol.Al content is chemically equivalently larger than the excess N content, there is almost no effect of suppressing grain coarsening (in this case, it is desirable that the N content exceeds 0.006%). (c) By adding one or more of Nb and V to the case-hardened boron steel, the austenite coarsening temperature can be further increased, making high-temperature carburizing possible and shortening the carburizing time. Therefore, the present invention has been made based on the above knowledge, and is based on the above-mentioned findings.
(The following % indicates weight %), C: 0.10 to less than 0.27%, Si: 0.35% or less, Mn: 0.30 to 0.90%, Cr: 0.90 to 1.80%, B: 0.0005 to 0.0050%, sol.Al: 0.08 % or less, Ti: 0.1% or less, N: more than 0.006% to 0.020%, and further contains one or more of the following, if necessary, Nb: more than 0.06% to 0.10%, V: 0.02 to 0.20%. , Fe and unavoidable impurities: the remainder, and the Ti content and
sol.Between Al content and N content {Ti, sol,
The content of Al and N is expressed in weight%), 0.004<N-Ti/3.42<sol. Al/1
.. This is characterized in that heat treatment distortion is suppressed as much as possible by making the inequality 93 hold true. Next, the reason why the component composition of the case-hardened boron steel of the present invention is limited as described above will be explained. (a) C The C component has the effect of ensuring the strength of case hardening steel for machine structures, and if its content is less than 0.10%, the desired effect cannot be obtained;
If the content exceeds 0.27%, cold workability deteriorates and the toughness of the core after carburization rapidly deteriorates.
It was limited to less than %. (b) Si The Si component has the effect of suppressing the oxidation of B, which invalidates the improvement of hardenability, and when added as a deoxidizer to steel, the above effect is also accompanied, but its content If it exceeds 0.35%, carburizing properties will deteriorate and the abnormal carburized layer will expand, reducing fatigue strength and pitting resistance, so the content was limited to 0.35% or less. (c) Mn The Mn component is an effective deoxidizing agent to suppress the oxidation of B, and also has the effect of improving hardenability, and forms MnS to prevent hot embrittlement caused by S. However, its content is 0.30
If it is less than %, the desired effect cannot be obtained,
On the other hand, if the content exceeds 0.90%, cold workability and machinability will rapidly deteriorate, and
Since the carburized abnormal layer becomes deeper, its content should be reduced.
It was limited to 0.30-0.90%. (d) Cr The Cr component is an effective element for improving hardenability, strength, toughness, wear resistance, etc., as well as improving carburizability and suppressing abnormal carburized layers. If the content is less than 0.90%, the desired effect cannot be obtained, while if the content exceeds 1.80%, cold workability and machinability will decrease, and the surface portion will be excessively carburized during carburization. Therefore, its content was limited to 0.90 to 1.80%. (e) B Component B is an inexpensive element that significantly improves hardenability in extremely small amounts, but if its content is less than 0.0005% in acid-soluble amount, the desired effect cannot be obtained. On the other hand, if the content exceeds 0.0050%, the hardenability will deteriorate, so the content was limited to 0.0005 to 0.0050%. (f) sol.Al The sol.Al component is an effective deoxidizing agent for suppressing the oxidation of B, but if its content exceeds 0.08%, alumina inclusions will rapidly increase, causing damage to the workpiece. The content was limited to 0.08% or less because it deteriorates properties. (g) Ti The Ti component has a stronger bonding force with N than B, so it has the effect of preventing B from bonding with N and eliminating the hardenability improvement effect, but 0.1%
If the content exceeds 0.1%, a large amount of Ti nitride will be generated, deteriorating machinability and toughness, so the content was limited to 0.1% or less. (h) N As mentioned above, when the content of N is 0.006% or less, it prevents the crystal grains after rolling or forging from becoming extremely coarse and forms austenite during carburizing in the subsequent process. The indirect effect of TiN that contributes to grain refinement becomes less noticeable, and the effect of AlN on preventing austenite grain coarsening also tends to decrease. Also,
In order to reduce the N content to 0.006% or less, it is necessary to significantly increase the cost of steel manufacturing. Therefore, it is preferable to adjust the N content to more than 0.006%. On the other hand, the N content is 0.020
If the N content exceeds 0.020%, the bond with B becomes excessive and there is a growing concern that the effect of B on improving hardenability will be adversely affected. Therefore, it is preferable to adjust the N content to 0.020% or less if possible. (i) Nb The Nb component has the effect of generating carbonitrides and further increasing the austenite coarsening temperature, but if its content is less than 0.06%, the desired effect cannot be obtained; If the content exceeds 0.10%, no improvement in the effect can be expected and the cost will also increase, so the content was limited to more than 0.06% to 0.10%. (j) V The V component has the effect of generating carbonitrides and further increasing the austenite coarsening temperature, but if its content is less than 0.02%, the desired effect cannot be obtained; If the content exceeds 0.20%, the effect cannot be expected to improve and the cost will increase, so the content should be reduced to 0.02%.
It was limited to ~0.20%. Furthermore, between the Ti content, sol.Al content, and N content, 0.004<N-Ti/3.42<sol. Al/1.9
3 The reason for stipulating the inequality is that when the N content is chemically equivalent to more than the Ti content, the excess N becomes Al
Similar to TiC, AlN is formed during carburizing or during heat treatment before carburizing, and suppresses the coarsening of austenite. This is because the above-mentioned effect will hardly be produced unless 0.004% or more of sol.Al (a positive value of ) is present and the sol.Al content is chemically equivalently greater than the amount of excess N. Note that the excess N is desirably present in a proportion of 0.0055% or more. Next, the steel of the present invention will be explained through examples and in comparison with comparative examples. First, inventive steels 1 to 13 having chemical compositions as shown in Table 1 and comparative steels 1 to 13 were melted by a conventional method, and the shapes were as shown in Fig. 1 (dimensions: outer diameter 55 mm x
(Inner diameter 35mm x Thickness 10mm x Eccentricity 8mm x Opening 6mm)
A C ring was manufactured. Then, the austenite coarsening temperature (temperature at which the grain size becomes JIS No. 7 or higher) after normalization of the present invention steel and comparative steel,

【表】【table】

【表】 第1図に示したCリングを浸炭焼入(930℃×4hr
→860℃×30mm→60℃のOQ,カーボンポテンシ
ヤル=0.8%)した時の開口部の変位量をあわせ
て第1表に示した。 また第2図は、第1表に示した鋼について、粗
粒化温度が950℃未満のものを×、950℃以上のも
のを〇、さらに1010℃以上のものを◎として、そ
れぞれTi―N量に相当する位置に示したグラフ
である。 第2図から明らかなように、本発明鋼の領域で
ある、 0.004<N―Ti/3.42(<sol.Al/1.
93) 領域では、すべて粗粒化温度は950℃以上で、Nb
あるいはVを含有する本発明鋼9〜11はさらに
高い1010℃以上となつており、また、それにとも
なつて、第1表から明らかなように、Cリング開
口部の変位量は比較鋼に比べて本発明鋼の方が著
しく小さくなつていて、本発明鋼の熱処理歪の小
さいことを証明している。 上述のように、この発明の肌焼ボロン鋼は、安
価で、かつ熱処理歪の発生がきわめて小さいの
で、高温浸炭が可能となり、浸炭時間を著しく短
縮できるなど、工業上有用な効果をもたらすので
ある。
[Table] The C-ring shown in Fig. 1 was carburized and quenched (930°C x 4 hours).
→860℃×30mm→60℃ OQ, carbon potential = 0.8%) The amount of displacement of the opening is also shown in Table 1. Figure 2 also shows Ti-N steels shown in Table 1, with coarse graining temperatures of less than 950°C marked as ×, those of 950°C or higher as ○, and those of 1010°C or higher as ◎. It is a graph shown at a position corresponding to the amount. As is clear from FIG. 2, the range of 0.004<N-Ti/3.42 (<sol.Al/1.
93) In all regions, the coarsening temperature is 950℃ or higher, and
Alternatively, steels 9 to 11 of the present invention containing V have an even higher temperature of 1010°C or higher, and as a result, as is clear from Table 1, the amount of displacement of the C-ring opening is greater than that of the comparative steels. The strain of the steel of the present invention is significantly smaller, which proves that the strain of the steel of the present invention is smaller due to heat treatment. As mentioned above, the case-hardened boron steel of the present invention is inexpensive and generates very little heat treatment distortion, so it can be carburized at high temperatures and has industrially useful effects such as significantly shortening carburizing time. .

【図面の簡単な説明】[Brief explanation of the drawing]

第1図aおよびbは熱処理歪を測定するために
Cリングを示す正面図および側面図、第2図は
TiおよびN量に関して鋼の粗粒化温度域を示し
たグラフである。
Figures 1a and b are front and side views showing a C-ring for measuring heat treatment strain, Figure 2 is a
2 is a graph showing the coarse graining temperature range of steel with respect to Ti and N amounts.

Claims (1)

【特許請求の範囲】 1 C′:0.10〜0.27%未満、 Si:0.35%以下、 Mn:0.30〜0.90%, Cr:0.90〜1.80%, B:0.0005〜0.0050%, sol.Al:0.08%以下、 Ti:0.1%以下、 N:0.006%超〜0.020%, を含有し、 Feおよび不可避不純物:残り、 (以上重量%)からなる組成を有し、かつ、Ti含
有量(重量%)およびsol.Al含有量(重量%)な
らびに不可避不純物としてのN含有量(重量%) との間に、 0.004<N−Ti/3.42<sol.Al
/1.93 なる不等式が成り立つことを特徴とする熱処理歪
の小さい肌焼ボロン鋼。 2 C′:0.10〜0.27%未満、 Si:0.35%以下、 Mn:0.30〜0.90%, Cr:0.90〜1.80%, B:0.0005〜0.0050%, sol.Al:0.08%以下、 Ti:0.1%以下、 N:0.006%超〜0.020%, を含有し、さらに、 Nb:0.06%超〜0.10%, V:0.02〜0.20%, のうちの1種以上を含有し、 Feおよび不可避不純物:残り、 (以上重量%)からなる組成を有し、かつ、Ti含
有量(重量%)およびsol.Al含有量(重量%)な
らびに不可避不純物としてのN含有量(重量%) との間に、 0.004<N−Ti/3.42<sol.Al
/1.93 なる不等式が成り立つことを特徴とする熱処理歪
の小さい肌焼ボロン鋼。
[Claims] 1 C': 0.10 to less than 0.27%, Si: 0.35% or less, Mn: 0.30 to 0.90%, Cr: 0.90 to 1.80%, B: 0.0005 to 0.0050%, sol.Al: 0.08% or less , Ti: 0.1% or less, N: more than 0.006% to 0.020%, Fe and unavoidable impurities: the remainder, (more than weight %), and the Ti content (weight %) and sol 0.004<N-Ti/3.42<sol. Al
/1.93 A case-hardened boron steel with low heat treatment distortion, characterized by the following inequality: 2 C': 0.10 to less than 0.27%, Si: 0.35% or less, Mn: 0.30 to 0.90%, Cr: 0.90 to 1.80%, B: 0.0005 to 0.0050%, sol.Al: 0.08% or less, Ti: 0.1% or less , N: more than 0.006% to 0.020%, and further contains one or more of the following: Nb: more than 0.06% to 0.10%, V: 0.02 to 0.20%, Fe and unavoidable impurities: the remainder, ( 0.004<N between Ti content (wt%), sol.Al content (wt%), and N content (wt%) as inevitable impurities -Ti/3.42<sol. Al
/1.93 A case-hardened boron steel with low heat treatment distortion, characterized by the following inequality:
JP11048681A 1981-07-15 1981-07-15 Case hardening boron steel or small heat treatment strain Granted JPS5811764A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11048681A JPS5811764A (en) 1981-07-15 1981-07-15 Case hardening boron steel or small heat treatment strain

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11048681A JPS5811764A (en) 1981-07-15 1981-07-15 Case hardening boron steel or small heat treatment strain

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP6935486A Division JPS61217553A (en) 1986-03-27 1986-03-27 Case hardening boron steel producing small strain by heat treatment

Publications (2)

Publication Number Publication Date
JPS5811764A JPS5811764A (en) 1983-01-22
JPS6140030B2 true JPS6140030B2 (en) 1986-09-06

Family

ID=14536950

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11048681A Granted JPS5811764A (en) 1981-07-15 1981-07-15 Case hardening boron steel or small heat treatment strain

Country Status (1)

Country Link
JP (1) JPS5811764A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0765140B2 (en) * 1986-10-20 1995-07-12 大同特殊鋼株式会社 Case hardening steel for cold forging
JP3915710B2 (en) * 2003-02-07 2007-05-16 住友金属工業株式会社 Carburized differential gear with excellent low cycle impact fatigue resistance
JP4956146B2 (en) * 2005-11-15 2012-06-20 株式会社神戸製鋼所 Case-hardened steel excellent in forgeability and prevention of grain coarsening, its manufacturing method, and carburized parts
JP6034632B2 (en) 2012-03-26 2016-11-30 株式会社神戸製鋼所 Boron-added steel for high strength bolts and high strength bolts with excellent delayed fracture resistance
US11149832B2 (en) 2019-12-13 2021-10-19 Aichi Steel Corporation Differential hypoid gear, pinion gear, and paired hypoid gears formed by combination thereof

Also Published As

Publication number Publication date
JPS5811764A (en) 1983-01-22

Similar Documents

Publication Publication Date Title
JP4464864B2 (en) Case-hardening steel with excellent grain coarsening resistance and cold workability that can be omitted for soft annealing.
JP3315974B2 (en) Stainless steel for disc brakes with high tempering softening resistance
JP3094856B2 (en) High strength, high toughness case hardening steel
JP3033349B2 (en) Carburized steel parts with excellent pitting resistance
JPS6311423B2 (en)
JP4737601B2 (en) High temperature nitriding steel
JPH0421757A (en) High surface pressure gear
JP4847681B2 (en) Ti-containing case-hardened steel
WO2004059023A1 (en) Cold die steel excellent in characteristic of suppressing dimensional change
JPH0555585B2 (en)
JPS6140030B2 (en)
JPS622023B2 (en)
JPH0617224A (en) Carburized bearing parts excellent in high temperature rolling fatigue property
JPS5916949A (en) Soft-nitriding steel
JPH07188895A (en) Manufacture of parts for machine structure use
JPH0617225A (en) Carburized bearing parts excellent in rolling fatigue property
JP3468126B2 (en) Martensitic heat-resistant steel with excellent cold workability
JP2623124B2 (en) Steel material for nitriding
JP7310723B2 (en) Steel part and its manufacturing method
JP3375221B2 (en) Steel for carburized gear
JPH04297550A (en) Delayed fracture resistant carburizing steel and its manufacture
JPH07207412A (en) Steel for grain stabilizing carburization
JP2824058B2 (en) Low alloy steel for soft nitriding
JPH0559432A (en) Production of carburized gear excellent in fatigue strength
JP5526689B2 (en) Carburizing steel