JP2623124B2 - Steel material for nitriding - Google Patents

Steel material for nitriding

Info

Publication number
JP2623124B2
JP2623124B2 JP63231524A JP23152488A JP2623124B2 JP 2623124 B2 JP2623124 B2 JP 2623124B2 JP 63231524 A JP63231524 A JP 63231524A JP 23152488 A JP23152488 A JP 23152488A JP 2623124 B2 JP2623124 B2 JP 2623124B2
Authority
JP
Japan
Prior art keywords
nitriding
steel
present
hardness
added
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP63231524A
Other languages
Japanese (ja)
Other versions
JPH0280539A (en
Inventor
煕久 大浜
知義 岩尾
光次 藤本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Original Assignee
Nisshin Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshin Steel Co Ltd filed Critical Nisshin Steel Co Ltd
Priority to JP63231524A priority Critical patent/JP2623124B2/en
Publication of JPH0280539A publication Critical patent/JPH0280539A/en
Application granted granted Critical
Publication of JP2623124B2 publication Critical patent/JP2623124B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は窒化用鋼素材に係り,詳しくは,素材の再結
晶軟化温度を窒化処理温度より高くし,窒化処理後に高
い中心部硬さと厚い化合物層が得られるように改善した
窒化用鋼素材に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a steel material for nitriding, and more particularly, to a material having a recrystallization softening temperature higher than a nitriding temperature and having a high center hardness and a high thickness after nitriding. The present invention relates to a nitriding steel material improved so as to obtain a compound layer.

〔発明の背景〕[Background of the Invention]

自動車部品や事務機械部品などの製造分野において,
耐摩耗性や耐疲労特性を付与するために低炭素鋼板に浸
炭焼入れ処理を行なう方法が多用されている。これらの
方法では,浸炭処理温度が鋼のA3変態点より高いこと,
そして焼入れの時の急冷によって,特に板圧が薄い製品
では熱処理歪の発生が避けられない。
In the field of manufacturing automotive parts and office machine parts,
A method of performing carburizing and quenching treatment on a low carbon steel sheet in order to impart wear resistance and fatigue resistance characteristics is often used. In these methods, it carburizing temperature is higher than the A 3 transformation point of the steel,
Due to rapid cooling during quenching, heat treatment distortion is unavoidable, especially in products with low plate pressure.

このため,とくに熱処理歪が問題となる製品について
は,処理温度が鋼のA1変態点よりも低いガス軟窒化やタ
フトライドなどの窒化処理が適用され,これによって耐
摩耗性や耐疲労性を付与することが行われている。この
窒化処理に用いる材料は一般には普通鋼や低合金鋼が対
象となる。
Therefore, for products, especially heat treatment distortion is a problem, the process temperature is applied nitriding processing such as low gas nitrocarburizing or Tufftride than the A 1 transformation point of the steel, thereby imparting abrasion resistance and fatigue resistance That is being done. In general, the material used for the nitriding treatment is ordinary steel or low alloy steel.

このうち,高い表面硬さと高い芯部硬さを得るには,C
r,Al,Tiなどの窒化物を生成する元素を含む中炭素系の
低合金鋼が使用されており,このような低合金鋼は一般
に窒化特性が非常に良好である。したがって,特に製品
の板厚が0.8mmより薄い場合に窒化処理を施すと,その
板厚が薄けれは薄いほど板厚中心部まで表層と同じ高い
硬さになり,非常にもろくなって小さい応力で破断しや
すくなるという問題がある。これを回避すべく処理時間
を短くして中心部硬さを低めて靭性を確保しようとする
と,表面に生成する鉄窒化物の化合物層(Fe3NやFe4N)
が非常に薄くなり,意図する耐摩耗性が発現できない。
そして,従来の低合金系窒化用鋼は,一般に合金添加量
が多く合金元素添加による材料コストが高くなってい
る。
In order to obtain high surface hardness and high core hardness, C
Medium-carbon low-alloy steels containing nitride-forming elements such as r, Al, and Ti are used, and such low-alloy steels generally have very good nitriding properties. Therefore, especially when the product thickness is thinner than 0.8 mm, when the nitriding treatment is applied, the thinner the thickness, the higher the hardness as the surface layer up to the center of the thickness, and it becomes very brittle and low stress. There is a problem that it is easily broken. In order to avoid this, if the processing time is shortened to reduce the center hardness and secure toughness, the compound layer of iron nitride (Fe 3 N or Fe 4 N) formed on the surface
Is very thin, and the intended wear resistance cannot be exhibited.
In addition, the conventional low alloying steel for nitriding generally has a large alloy addition amount and a high material cost due to alloy element addition.

これに対し,普通鋼(熱間圧延軟鋼板および冷間圧延
鋼板など)は安価であり,表面に厚い化合物層ができや
すいという特徴がある。この反面,微細な鉄窒化物の生
成が困難で化合物層直下に高い硬さが得られないという
基本的な問題がある。また材質が軟質なため中心部の硬
さも低く,高い疲労強度が得られないという問題もあ
る。
On the other hand, ordinary steel (such as hot-rolled mild steel sheet and cold-rolled steel sheet) is inexpensive and has a feature that a thick compound layer is easily formed on the surface. On the other hand, there is a fundamental problem that it is difficult to generate fine iron nitride and high hardness cannot be obtained directly below the compound layer. In addition, since the material is soft, the hardness of the central portion is low, and there is a problem that high fatigue strength cannot be obtained.

〔発明の目的〕[Object of the invention]

本発明は,前記のような従来の窒化処理の問題の解決
を目的としたものであり,特に板厚0.8mm以下の薄板部
品を対象に窒化処理しても,靭性を損なわずに耐摩耗
性,耐疲労特性を発現できる窒化用鋼素材の開発を意図
し,普通鋼を用いた場合の欠点である窒化処理後の表面
硬さと中心部硬さが十分でないという問題を克服できる
新たな材料を提供しようとするものである。
The present invention is intended to solve the above-mentioned problems of the conventional nitriding treatment. Even when the nitriding treatment is applied to a thin plate having a thickness of 0.8 mm or less, the wear resistance is maintained without deteriorating the toughness. In order to develop a steel material for nitriding that can exhibit fatigue resistance characteristics, a new material that can overcome the problems of insufficient surface hardness and central part hardness after nitriding, which are the drawbacks of using ordinary steel, is considered. It is something to offer.

〔発明の要旨〕[Summary of the Invention]

本発明によれば、再結晶軟化温度が窒化処理温度より
高い580℃以上を有し且つ窒化特性が良好である窒化用
鋼素材を提供するものであり、その要旨とするところ
は、 C:0.002〜0.08%, Mn:0.10〜0.60%, N:50ppm以下, を含有したうえ、さらに、 Ti:4(%C+%N)〜〔4(%C+%N)+0.2〕%, Nb:7.8(%C+%N)〜〔7.8(%C+%N)+0.2〕
%, Zr:7.6(%C+%N)〜〔7.6(%C+%N)+0.2〕
%, V:5.7(%C+%N)〜〔5.7(%C+%N)+0.2〕% の一種または二種以上を含有し、 残部が鉄および不可避的不純物からなり、20%以上の
冷間加工が施された、窒化処理に供する窒化用鋼素材に
あり、 さらには、この鋼に対し、さらに合金元素としてCr:
0.10〜0.80%および/またはAl:0.05〜0.50%を添加し
た窒化用鋼素材、更には、このCr,Al添加鋼に対し、Ti,
Nb,Zr,Vに代えてPを0.03〜0.20%添加した窒化用鋼素
材を提供するものである。
According to the present invention, there is provided a steel material for nitriding having a recrystallization softening temperature of 580 ° C. or higher, which is higher than the nitriding temperature, and having good nitriding characteristics. 0.08%, Mn: 0.10 to 0.60%, N: 50 ppm or less, and Ti: 4 (% C +% N) to [4 (% C +% N) +0.2]%, Nb: 7.8 (% C +% N)-[7.8 (% C +% N) +0.2]
%, Zr: 7.6 (% C +% N) to [7.6 (% C +% N) +0.2]
%, V: 5.7 (% C +% N) to [5.7 (% C +% N) +0.2]%, and the balance consists of iron and unavoidable impurities. In the steel material for nitriding subjected to the nitriding treatment, which has been subjected to cold working, furthermore, Cr:
Nitriding steel material added with 0.10 to 0.80% and / or Al: 0.05 to 0.50%, and further, with respect to the Cr and Al added steel, Ti,
An object of the present invention is to provide a steel material for nitriding in which P is added in an amount of 0.03 to 0.20% instead of Nb, Zr, and V.

〔発明の詳述〕[Detailed Description of the Invention]

本発明に係る窒化用鋼素材の効果については後記の実
施例に具体的に示すが,本鋼に含有させる各成分元素の
含有量範囲を前記のように規定した理由並びに各元素の
作用を個別に概説すると以下のとおりである。
The effects of the steel material for nitriding according to the present invention will be specifically described in Examples described later. The reasons for defining the content ranges of the respective component elements contained in the steel as described above and the effects of the respective elements will be described individually. The outline is as follows.

C:本発明はC含有量を低くし且つ微量のTi,Nb,Zr,V等を
添加して再結晶軟化温度を高めるようにした点に基本的
な特徴がある。C含有量が0.08%を越えると,再結晶軟
化温度を高めるTi,Nb,Zr,Vなどを多量に必要とする。他
方,C含有量を0.002%未満にまで脱炭するには溶製時の
脱ガス時間に長時間を要して要製コストが高くなる。本
発明は低炭素,低合金成分で安価にして既述の目的を達
成しようとするものであり,このためにC量は0.002〜
0.08%とする。
C: A fundamental feature of the present invention is that the C content is reduced and a small amount of Ti, Nb, Zr, V or the like is added to increase the recrystallization softening temperature. If the C content exceeds 0.08%, large amounts of Ti, Nb, Zr, V, etc., which increase the recrystallization softening temperature, are required. On the other hand, in order to decarbonize the C content to less than 0.002%, the degassing time during melting takes a long time, and the production cost increases. The present invention is intended to achieve the above-mentioned object by reducing the cost with low carbon and low alloy components, and therefore, the C content is 0.002 to 0.002.
0.08%.

Mn:Mnは素材強度を確保するために本発明鋼では必須の
元素である。Mn含有量が0.1%未満では窒化用鋼として
の素材強度が不足し,0.6%を越えて添加しても,鉄窒化
物等の表面化合物層直下の表層硬さ並びに中心部硬さの
増加に寄与しない。この理由からMn量は0.1〜0.6%の範
囲とする。
Mn: Mn is an essential element in the steel of the present invention in order to secure material strength. If the Mn content is less than 0.1%, the material strength of the steel for nitriding is insufficient, and even if added over 0.6%, the hardness of the surface layer just below the surface compound layer such as iron nitride and the hardness at the center increases. Does not contribute. For this reason, the Mn content is in the range of 0.1 to 0.6%.

N:N含有量は再結晶軟化温度を高めるために添加するTi,
Nb,Zr,Vの添加量に影響する。N量が高いとこれら元素
の添加量が増加し製造コストが高くなる。そして,N量が
50ppmを越えるとTi,Nb,Zr,Vの炭窒化物の析出が肥大化
し,素材の靭性を低下させる。このためN量は50ppm以
下に限定することが必要である。
N: N content is Ti, added to increase the recrystallization softening temperature,
It affects the amount of Nb, Zr, V added. When the amount of N is high, the amount of these elements added increases, and the production cost increases. And the amount of N
If it exceeds 50 ppm, the precipitation of carbonitrides of Ti, Nb, Zr, and V enlarges, and the toughness of the material decreases. For this reason, it is necessary to limit the amount of N to 50 ppm or less.

Ti,Nb,Zr,V:これら各元素は炭窒化物形成元素であり,
また,マトリックス中に固溶させることにより冷間加工
後の再結晶軟化温度を550℃以上に高めることができ
る。
Ti, Nb, Zr, V: These elements are carbonitride forming elements,
Further, by forming a solid solution in the matrix, the recrystallization softening temperature after cold working can be increased to 550 ° C or higher.

Tiが(%C+%N)の4倍未満,Nbが(%C+%N)
の7.8倍未満,Zrが(%C+%N)の7.6倍未満,Vが(%
C+%N)の5.7倍未満では,いずれも各元素の炭窒化
物の生成にしか寄与せず,再結晶軟化温度を高めること
ができない。
Ti is less than 4 times (% C +% N), Nb is (% C +% N)
Less than 7.8 times, Zr is less than 7.6 times (% C +% N), V is (%
If it is less than 5.7 times (C +% N), all contribute only to the formation of carbonitride of each element, and the recrystallization softening temperature cannot be increased.

他方,Tiが〔4(%C+%N)+0.2〕%を越えて,Nb
が〔7.8(%C+%N)+0.2〕%を越えて,Zrが〔7.6
(%C+%N)+0.2〕%を越えて,Vが〔5.7(%C+%
N)+0.2〕%を越えて,添加しても再結晶軟化温度を
高める効果は飽和する。
On the other hand, when Ti exceeds [4 (% C +% N) +0.2]% and Nb
Exceeds [7.8 (% C +% N) +0.2]% and Zr becomes [7.6
(% C +% N) +0.2]%, V is [5.7 (% C +%
N) +0.2]%, the effect of increasing the recrystallization softening temperature is saturated even if added.

したがって,これら各元素の添加範囲は Ti:4(%C+%N)〜〔4(%C+%N)+0.2〕%, Nb:7.8(%C+%N)〜〔7.8(%C+%N)+0.2〕
%, Zr:7.6(%C+%N)〜〔7.6(%C+%N)+0.2〕
%, V:5.7(%C+%N)〜〔5.7(%C+%N)+0.2〕% とする。これにより冷間加工後の再結晶軟化温度が通常
の窒化処理温度(580℃以下)よりも高くなり,窒化処
理後においても未再結晶状態の高硬度が維持されるの
で,高い中心部硬さが得られる。
Therefore, the addition ranges of these elements are Ti: 4 (% C +% N) to [4 (% C +% N) +0.2]%, Nb: 7.8 (% C +% N) to [7.8 (% C +% N). ) +0.2]
%, Zr: 7.6 (% C +% N) to [7.6 (% C +% N) +0.2]
%, V: 5.7 (% C +% N) to [5.7 (% C +% N) +0.2]%. As a result, the recrystallization softening temperature after cold working becomes higher than the normal nitriding treatment temperature (580 ° C or less), and the high hardness in the non-recrystallized state is maintained even after the nitriding treatment. Is obtained.

P:Pもマトリックス中に固溶することにより再結晶軟化
温度が上昇するが,0.03%未満ではその効果はなく,ま
た0.20%を越えて添加してもその効果は飽和するので,P
量は0.03〜0.20%の範囲で添加する。
P: P also increases the recrystallization softening temperature by forming a solid solution in the matrix, but its effect is less than 0.03%, and its effect is saturated even if it exceeds 0.20%.
The amount is added in the range of 0.03 to 0.20%.

Cr:Crは鉄窒化物等の表面化合物層直下の表面硬さを高
めるために添加するが,0.10%未満ではその効果はな
く,また0.8%を越えて添加すると窒化処理時の表面に
生成する化合物層厚さが薄くなり(表面での鉄窒化物の
生成が抑制され),この結果,耐摩耗性が低下するので
Cr量は0.10〜0.08%の範囲で含有させる。
Cr: Cr is added to increase the surface hardness immediately below the surface compound layer such as iron nitride. However, if it is less than 0.10%, it has no effect, and if it exceeds 0.8%, it is formed on the surface during nitriding. The thickness of the compound layer is reduced (the formation of iron nitride on the surface is suppressed), and as a result, the wear resistance is reduced.
The Cr content is in the range of 0.10 to 0.08%.

Al:Alも該化合物層直下の表面硬さを高めるために添加
するが,0.05%未満ではその効果はなく,また0.50%を
越えて添加すると窒化処理時の表面に生成する化合物層
の厚さが薄くなり(表面での鉄窒化物の生成が抑制され
る)耐摩耗性が低下するので,Al量は0.05〜0.50%の範
囲で含有させる。
Al: Al is also added to increase the surface hardness immediately below the compound layer. However, if it is less than 0.05%, it has no effect. If it exceeds 0.50%, the thickness of the compound layer formed on the surface during nitriding treatment is reduced. Is reduced (the formation of iron nitride on the surface is suppressed) and the wear resistance is reduced. Therefore, the Al content is in the range of 0.05 to 0.50%.

以上のように,本発明は固溶した場合に再結晶温度を
高める作用をもつTi,Nb,Zr,V更にはPを低炭素鋼中のマ
トリックス中に適量固溶させ,窒化処理温度においても
再結晶を抑制させると共に,低炭素であっても十分な素
材強度を確保するような成分バランスを図ったものであ
り,このような作用効果は窒化処理前における素材が冷
間加工材であり場合に始めて真価を発揮する。すなわ
ち,冷間加工によって素材自身の硬さを確保しておき,
窒化処理によってもこの硬さ(中心部までに及ぶ硬さ)
が再結晶によって軟化しないようにしたものであり,こ
のためには,窒化処理に供する製品が十分に冷間加工さ
れている必要がある。素材が板材であればこの冷間加工
は一般に冷間圧延であることができ,この場合には,鋼
帯または鋼板の製造最終工程が冷間圧延工程であればよ
いことになる(最終仕上焼鈍を施さない鋼帯または鋼
板)。本発明で対象とする鋼の場合,冷間加工率(冷間
圧延率)が20%未満では冷間加工後の硬さが低く,これ
を窒化処理した場合に,意図する中心部硬さを十分に維
持することができない。このため,冷間加工率(冷間圧
延率)が20%以上の冷間加工が施された状態で窒化処理
に供するのがよい。そのさい,必要な成品形状に成形加
工してから窒化処理する場合には,その成形加工前の素
材が20%以上の冷間加工が施されていることが一般に必
要である。
As described above, according to the present invention, an appropriate amount of Ti, Nb, Zr, V, and P, which have the effect of increasing the recrystallization temperature when dissolved, are dissolved in a matrix of low carbon steel, and even at the nitriding temperature. In addition to suppressing recrystallization, the balance of components is assured to ensure sufficient material strength even with low carbon. Such an effect is obtained when the material before nitriding is a cold-worked material. Demonstrates its true value for the first time. In other words, the hardness of the material itself is secured by cold working,
This hardness (hardness reaching the center) even by nitriding
Is not softened by recrystallization. For this purpose, it is necessary that the product to be subjected to the nitriding treatment is sufficiently cold-worked. If the material is a sheet material, this cold working can generally be cold rolling, in which case the final step of manufacturing the steel strip or steel sheet only needs to be the cold rolling step (final finish annealing). Without steel strip or steel sheet). In the case of the steels targeted in the present invention, if the cold working ratio (cold rolling ratio) is less than 20%, the hardness after cold working is low. It cannot be maintained sufficiently. For this reason, it is preferable that the steel sheet is subjected to the nitriding treatment in a state where the cold working rate (cold rolling rate) is 20% or more. In that case, when forming to the required product shape and then nitriding, it is generally necessary that the material before the forming process has been subjected to cold working of at least 20%.

このようにして本発明によれば,0.08%以下のCおよ
び50ppm以下のNとしたうえで,Ti,Nb,Zr,V更にはマトリ
ックス中に適量固溶させるがその量は窒化処理後の最表
面部には鉄窒化物の化合物層(Fe3NやFe4N)の生成を阻
害しないような微量とすることによって,(1)窒化処
理後の最表面部に鉄窒化物の化合物層を十分に形成させ
て耐摩耗性を付与し,(2)中心部硬さは該合金元素の
固溶による窒化処理時の再結晶の抑制によって冷間加工
時の硬さを維持させ,そして(3)最表面の化合物層直
下における硬さはCrやAlの適量の添加による窒化処理時
の化合物の生成によって確保する,という多量手段の複
合効果で既述の目的を達成したものであり,加えて,従
来の合金鋼からなる窒化用鋼よりも安価に市場に提供で
きるものである。
As described above, according to the present invention, after making C of 0.08% or less and N of 50 ppm or less, an appropriate amount of solid solution is formed in Ti, Nb, Zr, V and a matrix. (1) The iron nitride compound layer is formed on the outermost surface after nitriding by using a trace amount so as not to inhibit the formation of the iron nitride compound layer (Fe 3 N or Fe 4 N). (2) The hardness at the center is maintained at the time of cold working by suppressing recrystallization at the time of nitriding due to solid solution of the alloy element, and (3) ) The hardness just below the outermost compound layer is achieved by the combined effect of a large amount of means that the hardness is secured by the formation of compounds during the nitriding treatment by adding an appropriate amount of Cr or Al. It can be provided to the market at a lower cost than nitriding steel made of conventional alloy steel.

以下に代表的な実施例を挙げて本発明の効果を具体的
に示す。
Hereinafter, the effects of the present invention will be specifically described with reference to typical examples.

〔実施例〕 第1表に示す化学成分の鋼を転炉または転炉−脱ガス
設備を使用して溶製し,連続鋳造によって約11トンのス
ラブとし,これを通常の圧延条件で熱間圧延を行い,板
厚2.0mmの熱圧延を製造し,引き続き酸洗浄後,冷間圧
延により板厚0.5mmに仕上げた。
[Example] Steel having the chemical composition shown in Table 1 was melted using a converter or a converter and degassing equipment, and was continuously cast into an approximately 11-ton slab, which was then hot-rolled under normal rolling conditions. Rolling was performed to produce a hot-rolled sheet with a thickness of 2.0 mm, followed by acid washing and then cold-rolling to a thickness of 0.5 mm.

以下、本発明で規定する化学組成範囲の鋼を「本発明
鋼」と、またそれ以外の鋼を「比較鋼」と称する。
Hereinafter, steel having a chemical composition range defined by the present invention is referred to as “the present invention steel”, and other steels are referred to as “comparative steel”.

第1表において,Aは通常の冷間圧延鋼板である比較
鋼,BはTiの添加量が本発明範囲より多く添加された比較
鋼,CはCrの添加量が本発明の範囲より多く添加された比
較鋼である。これに対しDはTiを本発明範囲で添加した
本発明鋼, EはCr,Tiを本発明範囲で添加した本発明鋼, FはCr,Ti,Nbを本発明範囲で添加した本発明鋼, GはNbを本発明範囲で添加した本発明鋼, HはCr,Nbを本発明範囲で添加した本発明鋼, IはNbとAlを本発明範囲で添加した本発明鋼, JはPとAlを本発明範囲で添加した本発明鋼, である。
In Table 1, A is a comparative steel that is a normal cold-rolled steel sheet, B is a comparative steel in which the amount of Ti added is greater than the range of the present invention, and C is a comparative steel in which the amount of Cr is greater than the range of the present invention. This is a comparative steel. On the other hand, D is the steel of the present invention in which Ti is added in the range of the present invention, E is the steel of the present invention in which Cr and Ti are added in the range of the present invention, and F is the steel of the present invention in which Cr, Ti, and Nb are added in the range of the present invention. , G is the steel of the present invention in which Nb is added in the range of the present invention, H is the steel of the present invention in which Cr and Nb are added in the range of the present invention, I is the steel of the present invention in which Nb and Al are added in the range of the present invention, and J is P And the steel of the present invention wherein Al and Al were added within the scope of the present invention.

これらの冷延材のうち,比較鋼A,本発明鋼EおよびH
の試料について,400℃から800℃までの各温度60分間加
熱し,硬さの変化を調べた。その結果を第1図に示し
た。第1図の焼きなまし軟化曲線に見られるように,比
較鋼Aは550℃で完全に軟化するが,本発明鋼Eおよび
Hはこれより100℃高温の650℃で軟化している。したが
って,本発明鋼は普通の窒化処理温度580℃では未再結
晶状態にあり,比較鋼のように窒化処理温度で軟化する
ことはない。
Of these cold-rolled materials, comparative steel A, inventive steel E and H
Each sample was heated from 400 ° C to 800 ° C for 60 minutes, and the change in hardness was examined. The results are shown in FIG. As can be seen from the annealing softening curve in FIG. 1, Comparative Steel A completely softens at 550 ° C., while Steels E and H of the present invention soften at 650 ° C., which is 100 ° C. higher. Therefore, the steel of the present invention is in an unrecrystallized state at the ordinary nitriding temperature of 580 ° C., and does not soften at the nitriding temperature unlike the comparative steel.

次に各鋼の試料に対して,570℃で60分間,RXガス:NH3
のガス比を1:1に調整した雰囲気下で,ガス軟窒化処理
を施した。得られた窒化処理材の表面からの断面硬さ分
布を測定した。得られた結果を第2図および第3図に示
した。また表面の化合物層の厚さを測定し,その結果を
第2表に示した。いずれの鋼の化合物層もその組成はε
−Fe3Nが主成分である。また,第2表には中心部硬さも
合わせて示した。
Next, for each steel sample, RX gas: NH 3
Gas nitrocarburizing was performed in an atmosphere in which the gas ratio was adjusted to 1: 1. The cross-sectional hardness distribution from the surface of the obtained nitrided material was measured. The obtained results are shown in FIG. 2 and FIG. The thickness of the compound layer on the surface was measured, and the results are shown in Table 2. The composition of any steel compound layer is ε
-Fe 3 N is the main component. Table 2 also shows the hardness at the center.

第2表並びに第2〜3図の結果から次のことが明らか
である。
The following is clear from the results in Table 2 and FIGS.

比較鋼のAは化合物層厚さは8.0μmと厚いが中心部
の硬さはHV272と低い。
A compound layer thickness of the comparative steel hardness of 8.0μm and thick but the center is low and H V 272.

TiもしくはCrが本発明範囲より多く添加された比較鋼
BとCは,窒化特性が非常に良好で中心部硬さがHV600
以上を示し,非常に硬質となっている。しかし,耐摩耗
性に関与する化合物層厚さ3.3〜3.5μmと非常に薄い。
したがって,この合金鋼は薄い板厚では窒化処理によっ
て脆くなる共に,普通鋼のように表面での鉄窒化物生成
による耐摩耗性効果を享受できない。
Comparative Steel B and C of Ti or Cr is added more than the present invention range, H V 600 nitriding characteristic is very good center hardness
As shown above, it is very hard. However, the thickness of the compound layer involved in abrasion resistance is extremely thin, 3.3 to 3.5 μm.
Therefore, this alloy steel becomes brittle due to nitriding at a thin plate thickness, and cannot enjoy the wear resistance effect due to the formation of iron nitride on the surface unlike ordinary steel.

これに対し,本発明に従うD,E,F,G,H,I,Jの各網は,
化合物層厚さは7.5〜9.0μmと厚く且つ化合物層直下の
中心部硬さもHV400〜500を示し,窒化処理による充分な
表面化合物層の生成と再結晶軟化抑制による充分な中心
部硬さの維持という本発明の特徴が良好に現れている。
In contrast, the D, E, F, G, H, I, and J networks according to the present invention are:
Compound layer thickness center hardness just below thick and compound layer and 7.5~9.0μm also shows the H V 400 to 500, sufficient center hardness due to the production of sufficient surface compound layer by nitridation treatment and recrystallization softening suppression Characteristic of the present invention, namely, the maintenance of

また,第2〜3図に見られるように,化合物層直下25
μmの位置での硬さは,Cr,Alを添加したE,F,H,I,J鋼で
は,Cr,Alを添加しなかったDとG鋼に比べて,高くなっ
ている。したがって適量のCrとAlは化合物層直下の硬さ
を高める効果が明らかである。しかし,再結晶軟化温度
を高めるTi,Nbだけを添加したDとGの鋼でも比較鋼A
に比べれば中心部硬さの増加は著しく本発明の効果は充
分に発揮されている。
Also, as can be seen in FIGS.
The hardness at the position of μm is higher in the E, F, H, I, and J steels to which Cr and Al are added than in the D and G steels to which Cr and Al are not added. Therefore, an appropriate amount of Cr and Al clearly has an effect of increasing the hardness immediately below the compound layer. However, D and G steels containing only Ti and Nb, which increase the recrystallization softening temperature, are comparative steels A
The hardness of the central part is remarkably increased as compared with that of the first embodiment, and the effect of the present invention is sufficiently exhibited.

この本発明による中心部硬さの向上による強度と靭性
の影響をみるため,第4図に示すV型ブロックを用い,
0.4mmt×15mmw×40mmLのサンプルにポンチ先端が接して
から4.0mm押し込み,除荷後,第5図に示す変形量H(m
m)を測定した。その結果を第3表に示した。
In order to examine the influence of strength and toughness due to the improvement of the center hardness according to the present invention, a V-shaped block shown in FIG. 4 was used.
0.4mm t × 15mm w × 40mm L was pressed 4.0mm after the tip of the punch came in contact with the sample, and after unloading, the deformation H (m
m) was measured. The results are shown in Table 3.

第3表に見られるように,Ti,Crを本発明範囲より多く
含む比較鋼B,Cは,前述のとおり窒化特性が非常に良好
で中心部まで非常に高硬度であるが,変形途中で破断し
材質的には非常にもろくなっていることがわかる。
As can be seen from Table 3, comparative steels B and C, which contain more Ti and Cr than the scope of the present invention, have very good nitriding properties and very high hardness up to the center as described above, It can be seen that the material breaks and is very brittle in material.

また中心部硬さが低い比較鋼Aは変形量が6.2mmと大
きく,強度的に弱いため変形しやすく,強度や疲労特性
が要求されるような用途には適さない。
Comparative steel A, which has a low center hardness, has a large deformation of 6.2 mm and is easily deformed because of its low strength, and is not suitable for applications requiring strength and fatigue characteristics.

これに対し,本発明鋼はいずれも比較鋼に比べ変形量
は小さく,強度的に優れた特性を示している。特に化合
物層直下の硬さを高めるCrやAlを添加したE,F,H,I,Jの
各網の変形量は非常に小さく,強度的に優れた特性を示
している。
On the other hand, the steels of the present invention all show a smaller amount of deformation than the comparative steels and have excellent properties in terms of strength. In particular, the amount of deformation of each of the E, F, H, I, and J networks added with Cr and Al, which increase the hardness just below the compound layer, is extremely small, and exhibits excellent strength characteristics.

以上の実施例に示されるとおり,本発明によれば,窒
化処理で厚い方面化合物層が生成し,また再結晶軟化温
度が高い窒化用鋼が提供される。これにより特に板厚0.
8mm以下の薄板を対象にした窒化処理では従来材に見ら
れない耐摩耗性,耐疲労特性ならびに靭性を同時に示す
ことができるものである。
As shown in the above examples, according to the present invention, a nitriding steel is provided, in which a thick directional compound layer is formed by nitriding and the recrystallization softening temperature is high. As a result, the thickness is especially low.
Nitriding of thin sheets of 8 mm or less can simultaneously exhibit wear resistance, fatigue resistance and toughness not found in conventional materials.

【図面の簡単な説明】[Brief description of the drawings]

第1図は比較鋼Aと本発明鋼E,Hの再結晶軟化曲線を示
す図,第2図および第3図は実施例での各鋼のガス軟窒
化処理後の断面硬さ分布を示す図,第4図はガス軟窒化
処理材の加工による変形量を測定する試験冶具を示した
略断面図,第5図は第4図の試験での変形量を測定する
試験片形状を示す側面図である。
FIG. 1 is a diagram showing recrystallization softening curves of comparative steel A and inventive steels E and H, and FIGS. 2 and 3 show cross-sectional hardness distributions after gas nitrocarburizing treatment of each steel in Examples. Fig. 4 is a schematic cross-sectional view showing a test jig for measuring the amount of deformation due to processing of the gas nitrocarburized material. Fig. 5 is a side view showing the shape of a test piece for measuring the amount of deformation in the test of Fig. 4. FIG.

Claims (6)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】C:0.002〜0.08%, Mn:0.10〜0.60%, N:50ppm以下, を含有したうえ、さらに、 Ti:4(%C+%N)〜〔4(%C+%N)+0.2〕%, Nb:7.8(%C+%N)〜〔7.8(%C+%N)+0.2〕
%, Zr:7.6(%C+%N)〜〔7.6(%C+%N)+0.2〕
%, V:5.7(%C+%N)〜〔5.7(%C+%N)+0.2〕% の一種または二種以上を含有し、 残部が鉄および不可避的不純物からなり、20%以上の冷
間加工が施された、窒化処理に供する窒化用鋼素材。
C: 0.002 to 0.08%, Mn: 0.10 to 0.60%, N: 50 ppm or less, and Ti: 4 (% C +% N) to [4 (% C +% N) +0 .2]%, Nb: 7.8 (% C +% N) to [7.8 (% C +% N) +0.2]
%, Zr: 7.6 (% C +% N) to [7.6 (% C +% N) +0.2]
%, V: 5.7 (% C +% N) to [5.7 (% C +% N) +0.2]%, and the balance consists of iron and unavoidable impurities. Steel material for nitriding that has been subjected to cold working and is subjected to nitriding.
【請求項2】C:0.002〜0.08%, Mn:0.10〜0.60%, Cr:0.10〜0.80%, N:50ppm以下, を含有したうえ、さらに、 Ti:4(%C+%N)〜〔4(%C+%N)+0.2〕%, Nb:7.8(%C+%N)〜〔7.8(%C+%N)+0.2〕
%, Zr:7.6(%C+%N)〜〔7.6(%C+%N)+0.2〕
%, V:5.7(%C+%N)〜〔5.7(%C+%N)+0.2〕% の一種または二種以上を含有し、 残部が鉄および不可避的不純物からなり、20%以上の冷
間加工が施された、窒化処理に供する窒化用鋼素材。
2. C: 0.002 to 0.08%, Mn: 0.10 to 0.60%, Cr: 0.10 to 0.80%, N: 50 ppm or less, and Ti: 4 (% C +% N) to [4 (% C +% N) +0.2]%, Nb: 7.8 (% C +% N) to [7.8 (% C +% N) +0.2]
%, Zr: 7.6 (% C +% N) to [7.6 (% C +% N) +0.2]
%, V: 5.7 (% C +% N) to [5.7 (% C +% N) +0.2]%, and the balance consists of iron and unavoidable impurities. Steel material for nitriding that has been subjected to cold working and is subjected to nitriding.
【請求項3】C:0.002〜0.08%, Mn:0.10〜0.60%, Al:0.05〜0.50%, N:50ppm以下, を含有したうえ、さらに、 Ti:4(%C+%N)〜〔4(%C+%N)+0.2〕%, Nb:7.8(%C+%N)〜〔7.8(%C+%N)+0.2〕
%, Zr:7.6(%C+%N)〜〔7.6(%C+%N)+0.2〕
%, V:5.7(%C+%N)〜〔5.7(%C+%N)+0.2〕% の一種または二種以上を含有し、 残部が鉄および不可避的不純物からなり、20%以上の冷
間加工が施された、窒化処理に供する窒化用鋼素材。
C: 0.002 to 0.08%, Mn: 0.10 to 0.60%, Al: 0.05 to 0.50%, N: 50 ppm or less, and Ti: 4 (% C +% N) to [4 (% C +% N) +0.2]%, Nb: 7.8 (% C +% N) to [7.8 (% C +% N) +0.2]
%, Zr: 7.6 (% C +% N) to [7.6 (% C +% N) +0.2]
%, V: 5.7 (% C +% N) to [5.7 (% C +% N) +0.2]%, and the balance consists of iron and unavoidable impurities. Steel material for nitriding that has been subjected to cold working and is subjected to nitriding.
【請求項4】C:0.002〜0.08%, Mn:0.10〜0.60%, Cr:0.10〜0.80%, Al:0.05〜0.50%, N:50ppm以下, を含有したうえ、さらに、 Ti:4(%C+%N)〜〔4(%C+%N)+0.2〕%, Nb:7.8(%C+%N)〜〔7.8(%C+%N)+0.2〕
%, Zr:7.6(%C+%N)〜〔7.6(%C+%N)+0.2〕
%, V:5.7(%C+%N)〜〔5.7(%C+%N)+0.2〕% の一種または二種以上を含有し、 残部が鉄および不可避的不純物からなり、20%以上の冷
間加工が施された、窒化処理に供する窒化用鋼素材。
4. C: 0.002 to 0.08%, Mn: 0.10 to 0.60%, Cr: 0.10 to 0.80%, Al: 0.05 to 0.50%, N: 50 ppm or less, and Ti: 4 (% C +% N)-[4 (% C +% N) +0.2]%, Nb: 7.8 (% C +% N)-[7.8 (% C +% N) +0.2]
%, Zr: 7.6 (% C +% N) to [7.6 (% C +% N) +0.2]
%, V: 5.7 (% C +% N) to [5.7 (% C +% N) +0.2]%, and the balance consists of iron and unavoidable impurities. Steel material for nitriding that has been subjected to cold working and is subjected to nitriding.
【請求項5】C:0.002〜0.08%, Mn:0.10〜0.60%, N:50ppm以下, を含有し、さらに、 P:0.03〜0.20%を添加したうえ、 Cr:0.10〜0.80%, Al:0.05〜0.50%, の一種または二種以上を含有し、 残部が鉄および不可避的不純物からなり、20%以上の冷
間加工が施された、窒化処理に供する窒化用鋼素材。
5. C: 0.002 to 0.08%, Mn: 0.10 to 0.60%, N: 50 ppm or less, P: 0.03 to 0.20%, Cr: 0.10 to 0.80%, Al: Nitriding steel material for nitriding, containing one or two or more of 0.05 to 0.50%, with the balance being iron and unavoidable impurities and cold worked to 20% or more.
【請求項6】冷間加工は冷間圧延である請求項1,2,3,4
または5に記載の窒化用鋼素材。
6. The method according to claim 1, wherein the cold working is cold rolling.
Or the steel material for nitriding according to 5.
JP63231524A 1988-09-16 1988-09-16 Steel material for nitriding Expired - Fee Related JP2623124B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63231524A JP2623124B2 (en) 1988-09-16 1988-09-16 Steel material for nitriding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63231524A JP2623124B2 (en) 1988-09-16 1988-09-16 Steel material for nitriding

Publications (2)

Publication Number Publication Date
JPH0280539A JPH0280539A (en) 1990-03-20
JP2623124B2 true JP2623124B2 (en) 1997-06-25

Family

ID=16924841

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63231524A Expired - Fee Related JP2623124B2 (en) 1988-09-16 1988-09-16 Steel material for nitriding

Country Status (1)

Country Link
JP (1) JP2623124B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2199032A1 (en) * 1995-07-12 1997-01-30 Kenji Shimoda Nitriding steel excellent in formability and susceptibility to nitriding and press formed article thereof
JP4507851B2 (en) * 2003-12-05 2010-07-21 Jfeスチール株式会社 High-strength cold-rolled steel sheet and manufacturing method thereof
JP4998659B2 (en) * 2005-03-31 2012-08-15 Jfeスチール株式会社 Cold rolled steel sheet manufacturing method with excellent nitriding properties
JP2011032536A (en) * 2009-07-31 2011-02-17 Neturen Co Ltd Method of combined heat treatment of quench-hardened steel member, and quench-hardened steel member
CZ308546B6 (en) * 2016-07-07 2020-11-18 Bonatrans Group A.S. Axle for rail vehicles

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60262942A (en) * 1984-06-11 1985-12-26 Nissan Motor Co Ltd Carburizing steel

Also Published As

Publication number Publication date
JPH0280539A (en) 1990-03-20

Similar Documents

Publication Publication Date Title
US7014719B2 (en) Austenitic stainless steel excellent in fine blankability
KR20080009236A (en) High strength steel plate having improved workability and plating adhesion and process for producing the same
US4046601A (en) Method of nitride-strengthening low carbon steel articles
US5372654A (en) Steel sheet for press working that exhibits excellent stiffness and satisfactory press workability
JP2623124B2 (en) Steel material for nitriding
JP2011001564A (en) Ferritic stainless steel sheet having excellent roughening resistance and method for producing the same
JP3928454B2 (en) Thin steel sheet for nitriding
JPS5916949A (en) Soft-nitriding steel
JPS58104160A (en) Steel plate for precision blanking work with superior carburizing characteristic and hardenability and its manufacture
JPH108189A (en) Steel for induction hardening excellent in bendability and induction hardened part excellent in bendability using the same steel
JP3629851B2 (en) Cold tool steel for plasma carburizing
KR20200066237A (en) STEEL SHEET PLATED WITH Al FOR HOT PRESS FORMING HAVING IMPROVED RESISTANCE AGAINST HYDROGEN DELAYED FRACTURE AND SPOT WELDABILITY, AND MANUFACTURING METHOD THEREOF
JPH10265841A (en) Production of high strength cold forging parts
JPH073429A (en) Production of cold rolled steel sheet for deep drawing, excellent in dent resistance and surface strain resistance
JPH11310829A (en) Manufacture of bh cold rolled steel sheet for deep drawing excellent in denting resistance and surface strain resistance
JPH02240242A (en) Stainless steel wire having excellent high strength characteristics and its manufacture
JP3608636B2 (en) Ferritic stainless steel with excellent workability
GB2069001A (en) Aluminium-plated steel sheets
JPH0261033A (en) Cold rolled steel sheet for deep drawing
JPH0770705A (en) Austenitic stainless steel excellent in thermal expansion property
JP3461641B2 (en) Cold drawn steel sheet for deep drawing with excellent dent resistance and secondary workability
JP2518795B2 (en) Soft austenitic stainless steel with excellent hot workability
JP2940235B2 (en) High strength composite structure cold rolled steel sheet having uniform and high n-value over a wide strain range and method for producing the same
JPH108199A (en) Case hardening steel excellent in carburizing hardenability
JP2925616B2 (en) Cold rolled steel sheet for processing with excellent punchability and its surface-treated steel sheet

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees