JPS622023B2 - - Google Patents

Info

Publication number
JPS622023B2
JPS622023B2 JP6935486A JP6935486A JPS622023B2 JP S622023 B2 JPS622023 B2 JP S622023B2 JP 6935486 A JP6935486 A JP 6935486A JP 6935486 A JP6935486 A JP 6935486A JP S622023 B2 JPS622023 B2 JP S622023B2
Authority
JP
Japan
Prior art keywords
content
less
effect
steel
case
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP6935486A
Other languages
Japanese (ja)
Other versions
JPS61217553A (en
Inventor
Susumu Kanbara
Masashi Takahashi
Fukukazu Nakazato
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP6935486A priority Critical patent/JPS61217553A/en
Publication of JPS61217553A publication Critical patent/JPS61217553A/en
Publication of JPS622023B2 publication Critical patent/JPS622023B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 この発明は、浸炭時にオーステナイト粒が粗大
化しない、焼入歪の小さい肌焼ボロン鋼に関する
ものである。 〔従来の技術〕 従来、表面硬化用材として、JIS・G4052に規
定されているような種々の肌焼鋼が知られてお
り、特にその中でも、SCM系やSNCM系のもの
が諸特性に優れていることから、広範に使用され
てきた。しかしながら、これらの肌焼鋼は、高価
なNiやMoを含有しており、その価格が高くなる
ことから、これらに代えて安価なBを添加するこ
とによつて焼入性を確保させた肌焼ボロン鋼が、
経済的代替鋼として一部実用化をみるに至つてい
る。 このような肌焼ボロン鋼は、必須元素として
Tiが0.01〜0.05%含有されているのが特徴であ
り、これは鋼中NをTiNとして固定することによ
り、BがBNを形成して焼入性向上効果を消失せ
しめるのを防止するためであつた。 〔発明が解決しようとする問題点〕 しかし、従来の肌焼ボロン鋼には、浸炭時にオ
ーステナイト粒の粗粒化が生じ、焼入歪が大きく
なるという問題点が指摘されていた。 〔問題点を解決するための手段〕 本発明者等は、上述のような観点から、浸炭時
の焼入歪が小さく、かつ経済的な機械構造用肌焼
鋼を見出すべく、特に価格の安い肌焼ボロン鋼に
着目して、その浸炭時のオーステナイト粒の粗大
化を防止して焼入歪を抑えるべく研究を行なつた
結果、以下(a)〜(d)に示す知見を得るに至つたので
ある。すなわち、 (a) 一般に、BはNと結合してBNになると焼入
性向上効果が消失するため、従来よりB添加鋼
にはNとの結合力がBよりも強いTiを添加し
て鋼中のNをTiNとして固定することにより、
焼入性の確保を果してきたが、TiNは極めて固
溶しにくい化合物であるため、圧延後ないしは
鍛造後にはすでに大型の析出物として存在して
おり、オーステナイト粒粗大化阻止に有効な微
細分散の形態にはなつていない。従つて、オー
ステナイト粗粒化抑制という見地からすれば、
TiNはあまり寄与しないから、Ti含有量とN含
有量を化学当量的にバランスさせれば(すなわ
ち、Ti=3.42Nとすれば)、当然粗粒化しやす
くなり、その結果、焼入歪が大きくなること
(但し、TiNは高温でも固溶しにくいため、圧
延あるいは鍛造前の高温加熱時にも残存して圧
延後あるいは鍛造後の結晶粒の極端な粗大化を
防止する効果があり、その後の浸炭時のオース
テナイト粒粗大化に対して間接的な抑制効果を
有するが、このためにはN含有量が0.006%を
越えていることが望ましい)。 (b) そこで、Ti含有量をN含有量より化学当量
的に多くすれば、過剰TiはCと結合し、TiCを
生成することとなり、このTiCはTiNと異なつ
てそれほど固溶しにくい化合物ではないため、
圧延後、あるいは鍛造後の段階では生成してお
らず、浸炭中、あるいは浸炭前の熱処理、たと
えば焼ならし中等に生成する。そして、その形
態は、微細分散型であるため、浸炭加熱時のオ
ーステナイト粗粒化抑制に対しては極めて有効
であること。 (c) しかも、この場合、過剰Ti量が0.02%以上存
在しなければ、ほとんど効果がないこと。 (d) 肌焼ボロン鋼中に、NbおよびVの1種以上
を添加することによつて、オーステナイト粗粒
化温度がさらに上昇され、高温浸炭が可能とな
つて浸炭時間を短縮できること。 したがつて、この発明は上記知見にもとづいて
なされたものであつて、肌焼ボロン鋼を、重量%
で(以下%は重量%を示す)、 C:0.10〜0.27%未満、 Si:0.35%以下、 Mn:0.30〜0.90%、 Cr:0.90〜1.80%、 B:0.0005〜0.0050%、 sol.Al:0.08%以下、 Ti:0.03%超〜0.1%、 を含有し、さらに必要に応じて、 Nb:0.06%超〜0.10%、 V:0.02〜0.20%、 の1種以上を含有し、 Feおよび不可避不純物:残り、 からなる組成で構成するとともに、Ti含有量と
N含有量との間に(Ti、Nの含有量は重量%表
示とする)、 0.02<Ti―3.42N なる不等式が成り立つ如くすることによつて、熱
処理歪を極力抑えたことに特徴を有するものであ
る。 ついで、この発明の肌焼ボロン鋼において、そ
の成分組成を上記のように限定した理由を説明す
る。 (a) C C成分には、機械構造用肌焼鋼としての強度
を確保する作用があり、その含有量が0.10%未
満では前記作用に所望の効果が得られず、一方
0.27%以上含有されると冷間加工性が劣化する
とともに浸炭後の芯部の靭性が急激に劣化する
ようになることから、その含有量を0.10〜0.27
%未満と限定した。 (b) Si Si成分には、焼入性向上を無効にするBの酸
化を抑える作用があり、鋼の脱酸剤として添加
されることにより前記作用も伴われるものであ
るが、その含有量が0.35%を越えると、浸炭性
を悪くするとともに、浸炭異常層を拡大して疲
労強度・耐ピツチング性を低下させるので、そ
の含有量を0.35%以下と限定した。 (c) Mn Mn成分は、Bの酸化を抑えるのに有効な脱
酸剤であるとともに、焼入性向上作用を有して
おり、かつ、MnSを形成してSによる熱間脆
性を防止するものであるが、その含有量が0.30
%未満では前記作用に所望の効果が得られず、
一方、0.90%以上含有せしめると冷間加工性や
被削性が急激に劣化するようになるとともに、
浸炭異常層が深くなることから、その含有量を
0.30〜0.90%と限定した。 (d) Cr Cr成分は、焼入性、強度、靭性、耐摩耗性
等の向上に有効な元素であるとともに、浸炭性
を改善し、浸炭異常層の抑制にも有効な成分で
あるが、その含有量が0.90%未満では前記作用
に所望の効果が得られず、一方、1.80%を越え
て含有すると冷間加工性や被削性が低下すると
ともに、浸炭時に表面部が過剰浸炭されるよう
になることから、その含有量を0.90〜1.80%と
限定した。 (e) B B成分には、極く微量で焼入性を著しく向上
させ、かつ低廉な元素であるが、その含有量が
酸可溶量で0.0005%未満では前記作用に所望の
効果が得られず、一方0.0050%を越えて含有せ
しめると逆に焼入性が低下するようになること
から、その含有量を0.0005〜0.0050%と限定し
た。 (f) sol.Al sol.Al成分は、Bの酸化を抑えるのに有効な
脱酸剤であるが、その含有量が0.08%を越える
とアルミナ系介在物が急激に増加して、被削性
を劣化させるようになることから、その含有量
を0.08%以下と限定した。 (g) Ti Ti成分はNとの結合力がBより大きく、し
たがつてBがNと結合して焼入性向上効果を消
失せしめるのを防止する作用があるが、その含
有量が0.03%以下では前記作用に所望の効果が
得られず、一方0.1%を越えて含有するとTi窒
化物が多量に生成して被削性および靭性を劣化
させるようになることから、その含有量を0.1
%以下と限定した。 (h) Nb Nb成分には、炭窒化物を生成してオーステ
ナイト粗粒化温度をさらに上昇する作用がある
が、その含有量が0.06%以下では前記作用に所
望の効果が得られず、一方0.10%を越えて含有
させてもその効果の向上が望めず、コストも上
昇するのでその含有量を0.06%超〜0.10%と限
定した。 (i) V V成分には、炭窒化物を生成してオーステナ
イト粗粒化温度をさらに上昇する作用がある
が、その含有量が0.02%未満では前記作用に所
望の効果が得られず、一方0.20%を越えて含有
せしめてもその効果の向上が望めないとともに
コストも上昇することから、その含有量を0.02
〜0.20%と限定した。 なお、Nについては、既に述べたように、その
含有量が0.006%以下になると、圧延あるいは鍛
造後の結晶粒が極端に粗大化するのを防止して後
工程の浸炭時のオーステナイト粒の微細化に寄与
すると言うTiNの間接的効果が目立たなくなると
ともに、AlNによるオーステナイト粒粗大化防止
効果も低下する傾向がでてくる。また、N含有量
を0.006%以下にするためには製鋼上非常なコス
トアツプを余儀なくされる。従つて、好ましくは
N含有量は0.006%を越える量に調整するのが良
い。一方、N含有量が0.020%を越えるとBとの
結合がはなはだしくなつてBの焼入性向上効果に
悪影響を及ぼす懸念が増すことから、出来ればN
含有量を0.020%以下に調整するのが好ましい。 さらに、Ti含有量とN含有量との間に、 0.02<Ti―3.42N なる不等式を規定した理由は、Ti含有量をN含
有量より化学当量的に多くして、すなわち、 O<Ti―3.42N として、過剰のTiによりTiCを形成せしめ、これ
の微細分散により浸炭加熱時のオーステナイト時
の粗粒化抑制を図るためである。この場合に、過
剰Ti量が0.02%以上存在しなければ、ほとんどそ
の効果が見出せないことから、 0.02<Ti―3.42N と規定した。 なお、前記過剰Tiは、望ましくは0.022%以上
の割合で存在させるのが良い。 〔実施例〕 ついで、この発明の鋼を実施例により比較例と
対比しながら説明する。 まず、第1表に示す通りの化学成分組成の本発
明鋼1〜15と、比較鋼1〜13を常法にて溶製し、
第1図に示す通りの形状(寸法:外径55mm×内径
35mm×厚さ10mm×偏心量8mm×開口部6mm)のC
リングを製造した。そして、本発明鋼および比較
鋼の焼ならし後のオーステナイト粗粒化温度(粒
度がJISNo.7以上になる温度)と、第1図に示し
たCリングを浸炭焼入(930℃×4hr→860℃×
30min→60℃の0Q、カーボ
[Industrial Field of Application] The present invention relates to a case-hardened boron steel that does not coarsen austenite grains during carburizing and has small quenching distortion. [Prior art] Various case hardening steels as specified in JIS/G4052 have been known as surface hardening materials, and among these, SCM and SNCM steels have particularly excellent properties. Because of this, it has been widely used. However, these case hardening steels contain expensive Ni and Mo, which increases their price. Hardened boron steel
It has even been put into practical use as an economical alternative steel. This type of case-hardened boron steel is made of
It is characterized by containing 0.01 to 0.05% Ti, and this is to prevent B from forming BN and eliminating the hardenability improvement effect by fixing N in the steel as TiN. It was hot. [Problems to be Solved by the Invention] However, it has been pointed out that conventional case-hardened boron steels have a problem in that austenite grains become coarser during carburizing, resulting in increased quenching strain. [Means for Solving the Problems] From the above-mentioned viewpoint, the present inventors aimed to find an economical case hardening steel for machine structures that has small quenching distortion during carburizing and is particularly inexpensive. Focusing on case-hardening boron steel, we conducted research to prevent coarsening of austenite grains during carburization and suppress quenching distortion, and as a result, we obtained the findings shown in (a) to (d) below. It's ivy. In other words, (a) In general, when B combines with N to form BN, the hardenability improvement effect disappears, so conventionally, B-added steel is made by adding Ti, which has a stronger bonding force with N than B. By fixing the N inside as TiN,
However, since TiN is a compound that is extremely difficult to dissolve in solid solution, it already exists as large precipitates after rolling or forging. It has not taken shape. Therefore, from the viewpoint of suppressing austenite coarsening,
Since TiN does not contribute much, if the Ti content and N content are balanced chemically (i.e., Ti = 3.42N), the grains will naturally become coarser, and as a result, the quenching strain will increase. (However, since TiN is difficult to form a solid solution even at high temperatures, it remains even when heated at high temperatures before rolling or forging, and has the effect of preventing extreme coarsening of crystal grains after rolling or forging. (This has an indirect effect of suppressing the coarsening of austenite grains at the time of use, but for this purpose, it is desirable that the N content exceeds 0.006%). (b) Therefore, if the Ti content is chemically equivalently larger than the N content, the excess Ti will combine with C and form TiC, which, unlike TiN, is a compound that does not easily form a solid solution. Because there is no
It is not formed after rolling or forging, but is formed during carburizing or during heat treatment before carburizing, such as normalizing. Furthermore, since it is in a finely dispersed form, it is extremely effective in suppressing austenite coarsening during carburizing heating. (c) Moreover, in this case, there is almost no effect unless the excess Ti amount is 0.02% or more. (d) By adding one or more of Nb and V to the case-hardened boron steel, the austenite coarsening temperature can be further increased, making high-temperature carburizing possible and shortening the carburizing time. Therefore, the present invention has been made based on the above knowledge, and is based on the above-mentioned findings.
(The following % indicates weight %), C: 0.10 to less than 0.27%, Si: 0.35% or less, Mn: 0.30 to 0.90%, Cr: 0.90 to 1.80%, B: 0.0005 to 0.0050%, sol.Al: Contains 0.08% or less, Ti: more than 0.03% to 0.1%, and further contains one or more of the following, if necessary, Nb: more than 0.06% to 0.10%, V: 0.02 to 0.20%, Fe and unavoidable Impurities: Remaining: The composition should be made up of the following, and the inequality 0.02<Ti-3.42N should hold between the Ti content and the N content (the contents of Ti and N are expressed in weight%). In particular, it is characterized by suppressing heat treatment distortion as much as possible. Next, the reason why the component composition of the case-hardened boron steel of the present invention is limited as described above will be explained. (a) C The C component has the effect of ensuring the strength of case hardening steel for machine structures, and if its content is less than 0.10%, the desired effect cannot be obtained;
If the content exceeds 0.27%, cold workability deteriorates and the toughness of the core after carburization rapidly deteriorates.
It was limited to less than %. (b) Si The Si component has the effect of suppressing the oxidation of B, which invalidates the improvement of hardenability, and when added as a deoxidizer to steel, the above effect is also accompanied, but its content If it exceeds 0.35%, the carburizing properties will deteriorate and the abnormal carburized layer will expand, reducing fatigue strength and pitting resistance, so the content was limited to 0.35% or less. (c) Mn The Mn component is an effective deoxidizing agent to suppress the oxidation of B, and also has the effect of improving hardenability, and forms MnS to prevent hot embrittlement caused by S. However, its content is 0.30
If it is less than %, the desired effect cannot be obtained,
On the other hand, if the content exceeds 0.90%, cold workability and machinability will rapidly deteriorate, and
Since the carburized abnormal layer becomes deeper, its content should be reduced.
It was limited to 0.30-0.90%. (d) Cr The Cr component is an effective element for improving hardenability, strength, toughness, wear resistance, etc., as well as improving carburizability and suppressing abnormal carburized layers. If the content is less than 0.90%, the desired effect cannot be obtained, while if the content exceeds 1.80%, cold workability and machinability will decrease, and the surface portion will be excessively carburized during carburization. Therefore, its content was limited to 0.90 to 1.80%. (e) B Component B is an inexpensive element that significantly improves hardenability in extremely small amounts, but if its content is less than 0.0005% in acid-soluble amount, the desired effect cannot be obtained. On the other hand, if the content exceeds 0.0050%, the hardenability will decrease, so the content was limited to 0.0005 to 0.0050%. (f) sol.Al The sol.Al component is an effective deoxidizing agent for suppressing the oxidation of B, but if its content exceeds 0.08%, alumina inclusions will rapidly increase, causing damage to the workpiece. The content was limited to 0.08% or less because it deteriorates properties. (g) Ti The Ti component has a stronger binding force with N than B, and therefore has the effect of preventing B from combining with N and eliminating the hardenability improvement effect, but its content is 0.03%. If the content is less than 0.1%, the desired effect will not be obtained, and if the content exceeds 0.1%, a large amount of Ti nitride will be generated, deteriorating machinability and toughness. Therefore, the content should be reduced to 0.1%.
% or less. (h) Nb The Nb component has the effect of generating carbonitrides and further increasing the austenite coarsening temperature, but if its content is less than 0.06%, the desired effect cannot be obtained; If the content exceeds 0.10%, no improvement in the effect can be expected and the cost will also increase, so the content was limited to more than 0.06% to 0.10%. (i) V The V component has the effect of generating carbonitrides and further increasing the austenite coarsening temperature, but if its content is less than 0.02%, the desired effect cannot be obtained; If the content exceeds 0.20%, the effect cannot be expected to improve and the cost will increase, so the content should be reduced to 0.02%.
It was limited to ~0.20%. Regarding N, as mentioned above, when the content is 0.006% or less, it prevents the crystal grains after rolling or forging from becoming extremely coarse, and improves the fineness of the austenite grains during carburizing in the subsequent process. At the same time, the indirect effect of TiN that contributes to the formation of austenite grains becomes less noticeable, and the effect of AlN on preventing austenite grain coarsening also tends to decrease. Further, in order to reduce the N content to 0.006% or less, it is necessary to significantly increase the cost in steel manufacturing. Therefore, it is preferable to adjust the N content to more than 0.006%. On the other hand, if the N content exceeds 0.020%, the bond with B becomes excessively large, increasing the concern that it will have a negative effect on the hardenability improvement effect of B.
It is preferable to adjust the content to 0.020% or less. Furthermore, the reason for specifying the inequality 0.02<Ti-3.42N between Ti content and N content is that the Ti content is chemically equivalently larger than the N content, that is, O<Ti- 3.42N, the excess Ti forms TiC, and its fine dispersion suppresses the coarsening of austenite during carburizing heating. In this case, unless the excess Ti content is 0.02% or more, almost no effect can be seen, so 0.02<Ti-3.42N is specified. Note that the excess Ti is desirably present in a proportion of 0.022% or more. [Example] Next, the steel of the present invention will be explained through examples and in comparison with comparative examples. First, inventive steels 1 to 15 and comparative steels 1 to 13 having the chemical compositions shown in Table 1 were melted by a conventional method.
Shape as shown in Figure 1 (Dimensions: outer diameter 55mm x inner diameter
35mm x thickness 10mm x eccentricity 8mm x opening 6mm) C
manufactured a ring. Then, the austenite coarsening temperature (temperature at which the grain size becomes JIS No. 7 or higher) after normalization of the inventive steel and comparative steel, and the carburizing and quenching of the C ring shown in Fig. 1 (930°C x 4 hr → 860℃×
30min→60℃ 0Q, carb

【表】【table】

〔発明の効果〕〔Effect of the invention〕

第2図から明らかなように、本発明鋼の領域で
ある、 0.02<Ti―3.42N 領域では、すべて粗粒化温度は950℃以上で、Nb
あるいはVを含有する本発明鋼9〜12はさらに高
い1010℃以上となつており、また、それにともな
つて、第1表から明らかなように、Cリング開口
部の変位量は比較鋼に比べて本発明鋼の方が著し
く小さくなつていて、本発明鋼の熱処理歪の小さ
いことを証明している。 上述のように、この発明の肌焼ボロン鋼は、安
価で、かつ熱処理歪の発生がきわめて小さいの
で、高温浸炭が可能となり、浸炭時間を著しく短
縮できるなど、工業上有用な効果をもたらすので
ある。
As is clear from Fig. 2, in the 0.02<Ti-3.42N region, which is the region of the steel of the present invention, the grain coarsening temperature is all 950°C or higher, and the Nb
Alternatively, the steels 9 to 12 of the present invention containing V have an even higher temperature of 1010°C or higher, and as a result, as is clear from Table 1, the displacement of the C-ring opening is greater than that of the comparative steels. The strain of the steel of the present invention is significantly smaller, which proves that the strain of the steel of the present invention is smaller due to heat treatment. As mentioned above, the case-hardened boron steel of the present invention is inexpensive and generates very little heat treatment distortion, so it can be carburized at high temperatures and has industrially useful effects such as significantly shortening carburizing time. .

【図面の簡単な説明】[Brief explanation of the drawing]

第1図aおよびbは熱処理歪を測定するための
Cリングを示す正面図および側面図、第2図は
TiおよびN量に関して鋼の粗粒化温度域を示し
たグラフである。
Figures 1a and b are front and side views of a C-ring for measuring heat treatment strain, and Figure 2 is a
2 is a graph showing the coarse graining temperature range of steel with respect to Ti and N amounts.

Claims (1)

【特許請求の範囲】 1 C:0.10〜0.27%未満、 Si:0.35%以下、 Mn:0.30〜0.90%、 Cr:0.90〜1.80%、 B:0.0005〜0.0050%、 sol.Al:0.08%以下、 Ti:0.03%超〜0.1%、 を含有し、 Feおよび不可避不純物:残り、 (以上重量%)からなる組成を有し、かつ、Ti含
有量(重量%)と不可避不純物としてのN含有量
(重量%)との間に、 0.02<Ti―3.42N なる不等式が成り立つことを特徴とする熱処理歪
の小さい肌焼ボロン鋼。 2 C:0.10〜0.27%未満、 Si:0.35%以下、 Mn:0.30〜0.90%、 Cr:0.90〜1.80%、 B:0.0005〜0.0050%、 sol.Al:0.08%以下、 Ti:0.03%超〜0.1%、 を含有し、さらに、 Nb:0.06%超〜0.10%、 V:0.02〜0.20%、 のうちの1種以上を含有し、 Feおよび不可避不純物:残り、 (以上重量%)からなる組成を有し、かつ、Ti含
有量(重量%)と不可避不純物としてのN含有量
(重量%)との間に、 0.02<Ti―3.42N なる不等式が成り立つことを特徴とする熱処理歪
の小さい肌焼ボロン鋼。
[Claims] 1 C: 0.10 to less than 0.27%, Si: 0.35% or less, Mn: 0.30 to 0.90%, Cr: 0.90 to 1.80%, B: 0.0005 to 0.0050%, sol.Al: 0.08% or less, Contains Ti: more than 0.03% to 0.1%, Fe and unavoidable impurities: the remainder (more than % by weight), and contains Ti content (wt%) and N content as unavoidable impurities ( A case-hardened boron steel with low heat treatment distortion, characterized by the inequality 0.02<Ti-3.42N (weight%). 2 C: 0.10~0.27% or less, Si: 0.35% or less, Mn: 0.30~0.90%, Cr: 0.90~1.80%, B: 0.0005~0.0050%, sol.Al: 0.08% or less, Ti: More than 0.03%~ 0.1%, and further contains one or more of the following: Nb: more than 0.06% to 0.10%, V: 0.02 to 0.20%, Fe and unavoidable impurities: the remainder (more than % by weight) A skin with small heat treatment distortion, characterized by having the following: Ti content (wt%) and N content (wt%) as an unavoidable impurity, the inequality 0.02<Ti-3.42N holds true. Hardened boron steel.
JP6935486A 1986-03-27 1986-03-27 Case hardening boron steel producing small strain by heat treatment Granted JPS61217553A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6935486A JPS61217553A (en) 1986-03-27 1986-03-27 Case hardening boron steel producing small strain by heat treatment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6935486A JPS61217553A (en) 1986-03-27 1986-03-27 Case hardening boron steel producing small strain by heat treatment

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP11048681A Division JPS5811764A (en) 1981-07-15 1981-07-15 Case hardening boron steel or small heat treatment strain

Publications (2)

Publication Number Publication Date
JPS61217553A JPS61217553A (en) 1986-09-27
JPS622023B2 true JPS622023B2 (en) 1987-01-17

Family

ID=13400135

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6935486A Granted JPS61217553A (en) 1986-03-27 1986-03-27 Case hardening boron steel producing small strain by heat treatment

Country Status (1)

Country Link
JP (1) JPS61217553A (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2937332B2 (en) * 1988-11-28 1999-08-23 大同特殊鋼株式会社 Cold forging steel
JP3477030B2 (en) * 1997-06-12 2003-12-10 ダイハツ工業株式会社 Carburized members
US6261388B1 (en) 1998-05-20 2001-07-17 Nippon Steel Corporation Cold forging steel having improved resistance to grain coarsening and delayed fracture and process for producing same
JP2007056296A (en) * 2005-08-23 2007-03-08 Ntn Corp Method for producing carburized parts for constant velocity joint
JP6034632B2 (en) 2012-03-26 2016-11-30 株式会社神戸製鋼所 Boron-added steel for high strength bolts and high strength bolts with excellent delayed fracture resistance
US11149832B2 (en) 2019-12-13 2021-10-19 Aichi Steel Corporation Differential hypoid gear, pinion gear, and paired hypoid gears formed by combination thereof

Also Published As

Publication number Publication date
JPS61217553A (en) 1986-09-27

Similar Documents

Publication Publication Date Title
JP3524229B2 (en) High toughness case hardened steel machine parts and their manufacturing method
JP4047499B2 (en) Carbonitriding parts with excellent pitting resistance
JP3094856B2 (en) High strength, high toughness case hardening steel
JPS6311423B2 (en)
JP3033349B2 (en) Carburized steel parts with excellent pitting resistance
JP4847681B2 (en) Ti-containing case-hardened steel
WO2004059023A1 (en) Cold die steel excellent in characteristic of suppressing dimensional change
JPS622023B2 (en)
JPS6263653A (en) High strength case hardening steel
JPS6140030B2 (en)
JPS5916949A (en) Soft-nitriding steel
JPH07188895A (en) Manufacture of parts for machine structure use
JPH0254416B2 (en)
JPS5916948A (en) Soft-nitriding steel
JP3629851B2 (en) Cold tool steel for plasma carburizing
EP3252182B1 (en) Case hardening steel
JPH04297550A (en) Delayed fracture resistant carburizing steel and its manufacture
WO2002044435A1 (en) Steel for carburization and carburized gear
JPH0559432A (en) Production of carburized gear excellent in fatigue strength
JPH0347948A (en) Machine structural steel excellent in fatigue characteristic
JP2546045B2 (en) Case hardening steel
JPH07207412A (en) Steel for grain stabilizing carburization
JP3491548B2 (en) Steel plate and high-strength press-formed body for machine structural parts
JPH0593244A (en) Carburized and case-hardened steel having delayed fracture resistance
JPH108199A (en) Case hardening steel excellent in carburizing hardenability