JPS6140029B2 - - Google Patents

Info

Publication number
JPS6140029B2
JPS6140029B2 JP11180A JP11180A JPS6140029B2 JP S6140029 B2 JPS6140029 B2 JP S6140029B2 JP 11180 A JP11180 A JP 11180A JP 11180 A JP11180 A JP 11180A JP S6140029 B2 JPS6140029 B2 JP S6140029B2
Authority
JP
Japan
Prior art keywords
weight
age
alloy
aging
deformation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP11180A
Other languages
Japanese (ja)
Other versions
JPS5698450A (en
Inventor
Shoichi Nagai
Noboru Ishihara
Tateo Tamamura
Takuzo Ogawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP11180A priority Critical patent/JPS5698450A/en
Publication of JPS5698450A publication Critical patent/JPS5698450A/en
Publication of JPS6140029B2 publication Critical patent/JPS6140029B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)
  • Soft Magnetic Materials (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は時効硬化性合金に係り、特に精密耐摩
耗部品、工具鋼などとして用いるに好適な時効硬
化性合金に関する。 一般に、各種精密部品等に用いられ、硬く、耐
摩耗性に優れた鋼材として焼入れにより硬化した
焼入硬化鋼が知られている。この焼入れ硬化鋼は
その焼入れに伴う変形が大であるため、部品形状
に予め荒加工した部材を焼入れ硬化し、その後所
定の寸法に仕上げ加工を施している。勿論焼入硬
化後は、高硬度であるため、通常の切削加工を行
うことは出来ず、研摩加工などの加工速度の極め
て遅い加工によらなくてはならないので、仕上加
工に多くの時間を要するという欠点を有する。 一方、前記従来の焼入硬化鋼の欠点を解消する
ものとして、硬化処理時における変形の少ない、
時効硬化性合金が既に提案されている。この時効
硬化性合金は、液体化処理状態において硬さが低
いが、時効処理を施せば高硬度となる。この時効
硬化時の変形は、焼入硬化鋼の焼入れに伴う変形
に比べると著しく少ない。従つて高硬度を要求さ
れる耐摩耗部品などを製造する場合に、この時効
硬化性合金を使用すれば、液体化処理後の柔か
く、加工の容易な状態で切削加工等により仕上加
工を行うことができる。その後時効硬化処理を施
せば、従来の焼入硬化鋼を使用した場合に比べ
て、加工費を大幅に低減出来る利点がある。しか
し、従来の時効硬化性合金は、硬化時の変形が少
なくない。 例えば、ニツケルを18重量%含有したマルエー
ジング鋼が時効硬化変形の少ないものとして知ら
ているが、このマルエージング鋼においても、時
効硬化時に0.06〜0.1%の収縮変形が生じてい
る。従つて、従来の時効硬化性合金を精密な耐摩
耗部材として使用する場合には、部品の加工精度
が時効硬化性合金の変形率以内であるような場合
に限られており、高い加工精度が要求されるよう
な部品、例えば精密歯車あるいは各種圧力弁など
には、時効処理後の寸法変形を調整するのが困難
なことから、使用できないと云う問題があつた。 特に部品が大物である場合には、従来の時効硬
化性合金では、寸法精度があまり要求されない部
品以外にはほとんど使用されていないのが現状で
ある。 本発明は、前記従来の欠点を解消すべくなされ
たもので、時効硬化変形の極めて少ない時効硬化
性合金を提供することを目的とする。 本発明は重量で、ニツケル11〜16%,マンガン
2〜4.5%,パナジウム0.5〜7.5%,コバルト5〜
12%,炭素0.2%以下、モリブデン8%以下、残
部が実質的に鉄で、マルテンサイト組織を主体と
する時効硬化性合金に係る。上記合金中に残留オ
ーステナイトの量が多くなると、時効硬化性が悪
くなるので、残留オーステナイトの量は10%以下
がよい。 また前記時効硬化性合金に含有させるモリブデ
ン重量%を{6−0.65V(%)Mo(%)8−
0.65V(%)}なる関係式を満足するようにパナ
ジウム含有量に対応させて添加することにより時
効硬さ及び時効強度または延性を著しく向上させ
たものである。 本発明者等は、時効変形の少ない時効硬化性合
金を得るために、種々実験した結果、鉄―ニツケ
ル―マンガン―パナジウム―コバルト―モリブデ
ン合金における前述のような組成の合金が、著し
く時効変形が小さく、然も高強度を有することを
発見した。 鉄―ニツケル―マンガン合金が時効硬化性を有
することは、従来から知られている。しかし、こ
の合金は時効硬化が進むにつれて脆化が著しく進
展するので、高硬度は得られるが、脆性に起因す
る強度不足のため各種部品材として適用できなか
つた。 本発明者はこの鉄―ニツケル―マンガン合金系
にバナジウム及び用途に応じてモリブデンを添加
することにより、著しく靭性が改善され、高強度
部材となるばかりでなく、時効時の変形が極めて
小さいことを見い出した。この合金は特開昭53−
149809号で公知である。これはニツケル13〜15.5
重量%,マンガン2.6〜3.5重量%,バナジウム8
〜12重量%,モリブデン0.5〜3.5重量%含有させ
た鉄合金であり、かつバナジウムとモリブデンの
含有量の和が14.5重量%以下であることを特徴と
する合金である。この合金は高バナジウム―低モ
リブデン組成域に高強度、高延性を有する範囲で
ある。しかし、この合金は高バナジウム量である
ため、酸化が著しいので、真空溶解などの特別の
溶解方法によらなければならないという欠点があ
つた。真空溶解法は大気溶解法に比べて真空吸引
装置を必要とするとともに作業性が悪く、しかも
大気溶解法に比べると溶解量が少いという欠点が
ある。一方、この合金系はバナジウム含有量を
7.5%以下とすれば大気溶解が可能であることを
見い出した。 また、本発明者等は大気溶解可能なバナジウム
含有量とし、高強度、高延性で時効硬さが高く、
しかも変形の少ない時効硬化性合金を得るため
に、種々実験した結果、この合金系にコバルトを
含有させると著しく時効変形が少なく、然も高強
度、高延性を有することを発見した。 以下、各元素の組成限定理由を説明する。 炭素は合金原料より不純物として混入されるも
ので、少ない方が好ましいが、含有される場合で
も0.2重量%以下である。0.2%を越えると、溶体
化処理のままの硬度が高くなり、溶体化処理時に
おける切削加工性が悪化するので、0.1重量%以
下とすべきである。脱酸剤として添加されるシリ
コンも不純物として混入するが、含有される場合
でもこのシリコン量が1重量%を越えると、合金
の靭性を損うので、1重量%以下とすべきであ
る。ニツケルは溶体化処理によりマルテンサイト
組織を得るためと、マンガンと一緒に固溶させる
ことによる時効硬化性を付与するために必要であ
り、11重量%未満では効果がなく、16重量%を越
えるとオーステナイト組織を生成して時効硬化性
を損うので11〜16重量%の範囲にすべきである。
マンガンは、ニツケルと一緒に固溶させて変形の
少い時効硬化性を与えるのに必要であり、2重量
%未満では効果がなく、4.5重量%を越えると合
金の靭性を損うので、2〜4.5重量%の範囲にす
べきである。バナジウムは、鉄―ニツケル―マン
ガン合金の時効硬化性を促進し強度を高めるため
と、時効硬化変形を防止するのに必要であり、
0.5重量%未満では時効強度が低くその効果がな
く、7.5重量%を越えると大気溶解ができないた
め0.5〜7.5重量%範囲とすべきである。しかし時
効後高い強度を得るにはバナジウムは2重量%以
上であることが望ましく、また6重量%以上では
時効時の収縮変形を促進させる傾向がある。ま
た、合金の溶解の容易さ及び時効後の強度または
時効変形を加味すると2〜6重量%の範囲が好ま
しい。 モリブデンは時効処理によつて金属間化合物を
析出して時効硬化に寄与し、さらにバナジウムと
の複合作用により時効強度を高める。しかも、モ
リブデンは8重量%を越えるとフエライト組織が
生成し、時効硬化性を損うので8重量%以下にす
べきである。特に、モリブデンはバナジウムの含
有量に左右されるので、次式を満足する含有量と
することが好ましい。 6―0.65V(%)Mo(%)8―0.65V
(%) 上述の関係式に従つて、バナジウムとモリブデ
ンとを含有させると高い時効硬度及び強度が得ら
れる。すなわち変形が小さく高強度を得るにはバ
ナジウムを多く含有させる場合はモリブデン含有
量を減じることが必要であり、バナジウム含有量
が少ない場合はモリブデンを多く含有させる必要
がある。コバルトは鉄―ニツケル―マンガン時効
合金系の時効硬化性を促進し、強度を高めるため
と変形を防止するのに必要であり、特にバナジウ
ム含有量の少にい場合にコバルトによる時効硬化
性の促進効果が大きい。コバルトは5重量%未満
ではその効果がなく12重量%を越えると延性を損
うことと、溶体化処理の際フエライト組織を生成
し易くするので高範囲の組成域としては12重量%
以下にすべきである。時効強度を加味した場合、
8〜11重量%が好ましい。 溶体化処理は900〜1000℃,時効処理は400〜
500℃が好ましい。 以下、本願発明について実験結果によつて詳細
に説明する。第1表は実験に用いた供試材の化学
組成(重量%)を示す。試番A〜Xは、本発明に
係る組成を有する時効硬化性合金で、ニツケル
15.0重量%,マンガン3.0重量%,コバルト9.0重
量%を基本組成としている。試番Yは公知のマル
エージング鋼である。 各合金は大気中で溶解し、鍜造を行つたもので
ある。
The present invention relates to age hardenable alloys, and particularly to age hardenable alloys suitable for use as precision wear-resistant parts, tool steels, and the like. In general, quench-hardened steel, which is hardened by quenching, is known as a steel material that is hard and has excellent wear resistance and is used in various precision parts. Since this quench-hardened steel undergoes significant deformation during quenching, a member that has been rough-machined in advance into the shape of a part is quench-hardened, and then finished to predetermined dimensions. Of course, after quenching and hardening, due to its high hardness, normal cutting processing cannot be performed, and it is necessary to use extremely slow processing such as polishing, so finishing processing takes a lot of time. It has the following drawback. On the other hand, as a solution to the drawbacks of the conventional quench-hardened steel, a steel with less deformation during hardening treatment is proposed.
Age hardenable alloys have already been proposed. This age hardenable alloy has low hardness in the liquefied state, but becomes highly hard when subjected to aging treatment. This deformation during age hardening is significantly smaller than the deformation accompanying quenching of hardened steel. Therefore, when manufacturing wear-resistant parts that require high hardness, if this age-hardenable alloy is used, finishing processing can be performed by cutting etc. in a soft and easy-to-process state after liquefaction treatment. I can do it. If the steel is then subjected to age hardening treatment, there is an advantage that processing costs can be significantly reduced compared to when conventional quench-hardened steel is used. However, conventional age hardenable alloys undergo considerable deformation during hardening. For example, maraging steel containing 18% by weight of nickel is known to have minimal age hardening deformation, but even in this maraging steel, shrinkage deformation of 0.06 to 0.1% occurs during age hardening. Therefore, when conventional age hardenable alloys are used as precision wear-resistant parts, the machining accuracy of the part is limited to within the deformation rate of the age hardenable alloy, and high machining accuracy is required. There has been a problem in that it cannot be used in required parts, such as precision gears or various pressure valves, because it is difficult to adjust dimensional deformation after aging treatment. Particularly when the parts are large, conventional age hardenable alloys are currently hardly used for parts other than parts that do not require much dimensional accuracy. The present invention was made in order to eliminate the above-mentioned conventional drawbacks, and an object of the present invention is to provide an age-hardenable alloy with extremely low age-hardening deformation. The present invention is made by weight of 11-16% nickel, 2-4.5% manganese, 0.5-7.5% panadium, and 5-5% cobalt.
12% carbon, 0.2% or less carbon, 8% molybdenum or less, the balance being substantially iron, and relates to an age hardenable alloy mainly having a martensitic structure. If the amount of retained austenite in the above alloy increases, age hardenability deteriorates, so the amount of retained austenite is preferably 10% or less. In addition, the weight percent of molybdenum contained in the age hardenable alloy is {6-0.65V (%) Mo (%) 8-
0.65V (%)} The aging hardness, aging strength, or ductility is significantly improved by adding in proportion to the panadium content so as to satisfy the following relational expression. The present inventors conducted various experiments in order to obtain an age-hardenable alloy with less deformation due to aging, and found that an alloy with the above-mentioned composition among iron-nickel-manganese-panadium-cobalt-molybdenum alloys exhibits remarkable deformation with age. It was discovered that it is small and yet has high strength. It has been known for a long time that iron-nickel-manganese alloys have age hardening properties. However, as age hardening progresses, this alloy becomes significantly more brittle, so although it can achieve high hardness, it cannot be used as a material for various parts due to lack of strength due to brittleness. The present inventor has found that by adding vanadium and molybdenum depending on the application to this iron-nickel-manganese alloy system, not only the toughness is significantly improved and a high-strength member is obtained, but also the deformation during aging is extremely small. I found it. This alloy was published in Japanese Patent Application Publication No. 53-
It is known from No. 149809. This is Nickel 13-15.5
wt%, manganese 2.6-3.5 wt%, vanadium 8
It is an iron alloy containing ~12% by weight and 0.5~3.5% by weight of molybdenum, and the sum of the contents of vanadium and molybdenum is 14.5% by weight or less. This alloy has high strength and high ductility in the high vanadium-low molybdenum composition range. However, due to the high vanadium content of this alloy, oxidation is significant, so a special melting method such as vacuum melting must be used. The vacuum melting method requires a vacuum suction device and is less workable than the atmospheric melting method, and has the disadvantage that the amount of dissolved material is smaller than the atmospheric melting method. On the other hand, this alloy system has a low vanadium content.
It was found that atmospheric dissolution is possible if the concentration is 7.5% or less. In addition, the present inventors set the vanadium content to be dissolvable in the atmosphere, and have high strength, high ductility, and high aging hardness.
Moreover, in order to obtain an age hardenable alloy with little deformation, as a result of various experiments, it was discovered that by incorporating cobalt into this alloy system, the age deformation is significantly reduced, and it also has high strength and high ductility. The reasons for limiting the composition of each element will be explained below. Carbon is mixed in as an impurity from the alloy raw material, and it is preferable to have less carbon, but even if it is contained, it is 0.2% by weight or less. If it exceeds 0.2%, the hardness of the solution treatment will increase and the machinability during solution treatment will deteriorate, so the content should be 0.1% by weight or less. Silicon added as a deoxidizing agent is also mixed in as an impurity, but even if silicon is included, if it exceeds 1% by weight, it will impair the toughness of the alloy, so it should be kept at 1% by weight or less. Nickel is necessary to obtain a martensitic structure through solution treatment and to impart age hardening properties by solid solution with manganese; less than 11% by weight is ineffective, and more than 16% by weight Since it produces an austenite structure and impairs age hardenability, the content should be in the range of 11 to 16% by weight.
Manganese is necessary to provide age hardenability with little deformation by solid solution with nickel, and if it is less than 2% by weight it is ineffective, and if it exceeds 4.5% by weight it will impair the toughness of the alloy, so it is necessary to It should be in the range of ~4.5% by weight. Vanadium is necessary to promote age hardenability and increase strength of iron-nickel-manganese alloys and to prevent age-hardening deformation.
If it is less than 0.5% by weight, the aging strength is low and there is no effect, and if it exceeds 7.5% by weight, it cannot be dissolved in the atmosphere, so it should be in the range of 0.5 to 7.5% by weight. However, in order to obtain high strength after aging, it is desirable that the vanadium content be 2% by weight or more, and if it is 6% by weight or more, shrinkage deformation during aging tends to be accelerated. Further, when considering ease of melting the alloy, strength after aging, or deformation due to aging, a range of 2 to 6% by weight is preferable. Molybdenum contributes to age hardening by precipitating intermetallic compounds through aging treatment, and further increases aging strength through a combined action with vanadium. Furthermore, if molybdenum exceeds 8% by weight, a ferrite structure will be formed and age hardenability will be impaired, so the content should be 8% by weight or less. In particular, since molybdenum depends on the vanadium content, it is preferable that the molybdenum content satisfies the following formula. 6-0.65V (%) Mo (%) 8-0.65V
(%) According to the above relational expression, high aging hardness and strength can be obtained by containing vanadium and molybdenum. That is, in order to obtain high strength with small deformation, it is necessary to reduce the molybdenum content when a large amount of vanadium is contained, and it is necessary to reduce the molybdenum content when the vanadium content is low. Cobalt promotes age hardening of iron-nickel-manganese aged alloy systems, and is necessary to increase strength and prevent deformation, especially when the vanadium content is low. Great effect. Cobalt has no effect if it is less than 5% by weight, and if it exceeds 12% by weight, it impairs ductility and tends to form a ferrite structure during solution treatment, so 12% by weight is a high composition range.
Should be: When considering aging strength,
8-11% by weight is preferred. Solution treatment at 900~1000℃, aging treatment at 400~
500°C is preferred. Hereinafter, the present invention will be explained in detail using experimental results. Table 1 shows the chemical composition (% by weight) of the test materials used in the experiment. Trial numbers A to X are age hardenable alloys having compositions according to the present invention, and are
The basic composition is 15.0% by weight, 3.0% by weight of manganese, and 9.0% by weight of cobalt. Trial number Y is a known maraging steel. Each alloy was melted and forged in the atmosphere.

【表】【table】

【表】 第1図は、各試料について、30×15×60mmのブ
ロツクを用いて、アルゴンガス中で時効を行つた
場合の時効による変形率と時効時間との関係を示
すものであり、試番C,K及びQは450℃,試番
Yのマルエージング鋼は480℃でそれぞれ時効処
理を施したものである。 図から明らかなように、従来の試番Yのマルエ
ージング鋼は、時効処理時に収縮変形のみを示
し、その収縮変形は時効時間が長くなるにつれて
増大している。従つて、時効硬化の大きい長時間
時効の場合は変形率が特に大きくなる。これに対
し本発明合金の場合は時効初期で僅かに膨張変形
を示すが、時効が進むに従つて収縮変形に転ずる
ため、最終的な時効変形が極めて小さい。特に試
番Qは10時間の時効処理で、変形率が、ほぼゼロ
である。このように、本発明合金は、時効初期に
一度膨張変形を生じ、その後時効硬化が進むにつ
れてゆるやかに収縮変形が生ずるので、適切な時
効時間を選定すれば必ず変形率をゼロにすること
が可能である。 第2表及び第3表に、前記各試料について、溶
体化処理のままの硬度、次いで時効処理した時の
硬度及び10時間時効処理した場合の変形率を示
す。試番A〜Xまでの試料についての、溶体化処
理温度は900〜1000℃であり、試番Yの溶体化処
理温度は830℃である。また試番A〜Xの時効温
度は450℃であり、試番Yの時効温度は480℃であ
る。第2表から明らかなとおり、本発明合金にお
ける溶体化処理したままの硬度は、ビツカース硬
度350以下であり、これは機械加工が容易に実施
できる硬さである。また、時効後もビツカース硬
度500〜650であり、これは耐摩耗性部材として、
十分な硬度である。また、時効硬化に伴う寸法変
化率は、何れも試料Yに比べて、十分小さな値で
ある。このように、本発明合金は、従来公知の時
効硬化性合金に比べて、著しく小さい変形率を示
す。
[Table] Figure 1 shows the relationship between the deformation rate due to aging and the aging time when each sample was aged in argon gas using a block of 30 x 15 x 60 mm. Numbers C, K, and Q were aged at 450°C, and sample Y maraging steel was aged at 480°C. As is clear from the figure, the conventional maraging steel of trial number Y shows only shrinkage deformation during aging treatment, and the shrinkage deformation increases as the aging time increases. Therefore, in the case of long-term aging with large age hardening, the deformation rate becomes particularly large. On the other hand, the alloy of the present invention exhibits slight expansion deformation at the initial stage of aging, but changes to contraction deformation as aging progresses, so the final aging deformation is extremely small. In particular, trial number Q was aged for 10 hours and the deformation rate was almost zero. In this way, the alloy of the present invention undergoes expansion deformation once in the early stage of aging, and then slowly undergoes contraction deformation as age hardening progresses, so if an appropriate aging time is selected, the deformation rate can always be reduced to zero. It is. Tables 2 and 3 show the hardness of each sample as it was solution treated, the hardness when it was then aged, and the deformation rate when it was aged for 10 hours. The solution treatment temperature for samples A to X is 900 to 1000°C, and the solution treatment temperature for sample Y is 830°C. Further, the aging temperature of trial numbers A to X is 450°C, and the aging temperature of trial number Y is 480°C. As is clear from Table 2, the hardness of the alloy of the present invention after solution treatment is 350 or less on the Vickers hardness, which is a hardness that allows easy machining. In addition, even after aging, the Bitkers hardness is 500 to 650, which means that it can be used as a wear-resistant member.
Sufficient hardness. Moreover, the dimensional change rates due to age hardening are all sufficiently small values compared to Sample Y. Thus, the alloy of the present invention exhibits a significantly smaller deformation rate than conventionally known age hardenable alloys.

【表】【table】

【表】【table】

【表】 第2図に、前記各試料についての450℃時効後
の引張り強さ(Kgf/mm2)を示す。図において横
軸はモリブデン含有量、縦軸はバナジウム含有
量、図中の数字は引張り強さである。図から明ら
かなように、すべての試料の引張り強さは130Kg
f/mm2以上である。特に斜線で示した組成範囲で
は、引張り強さが200Kg/mm2以上であり、この組
成範囲で最も時効後の強度が高く、然も時効変形
の少な時効硬化性合金が得られた。図において実
線5は6.0―(0.65×バナジウム重量%)、実線6
は8.0―(0.65×バナジウム重量%)、実線7はバ
ナジウム含有量の上限6重量%,及び実線8はバ
ナジウム含有量の下限2重量%を示すものであ
る。 また、本発明の時効硬化性合金は水成系の弁材
で問題となる潰食に対し、耐潰食性がすぐれてい
た。 以上説明したとおり、本発明の時効硬化性合金
は重量で、ニツケル11〜16%,マンガン2〜4.5
%,コバルト5〜12%,バナジウム0.5〜7.5%,
モリブデン8%以下含有し、不純物として混入す
る場合でも炭素0.1%以下、シリコン1%以下含
有してもよく、残部が実質的に鉄としたもので、
マルテンサイト組織を主体とした時効硬化による
寸法変形が、従来公知の時効硬化性合金に比べて
著しく小さいという優れた効果を有する。 従つて、本発明の時効硬化性合金は、従来時効
硬化性合金を用いることの出来なかつたサーボ弁
などの精密耐摩耗部品に好適である。
[Table] Figure 2 shows the tensile strength (Kgf/mm 2 ) of each of the above samples after aging at 450°C. In the figure, the horizontal axis is molybdenum content, the vertical axis is vanadium content, and the numbers in the figure are tensile strength. As is clear from the figure, the tensile strength of all samples is 130Kg
f/ mm2 or more. In particular, in the composition range indicated by diagonal lines, the tensile strength was 200 Kg/mm 2 or more, and an age-hardenable alloy with the highest strength after aging in this composition range and little deformation due to aging was obtained. In the figure, solid line 5 is 6.0 - (0.65 x vanadium weight%), solid line 6
is 8.0-(0.65×vanadium weight %), solid line 7 shows the upper limit of vanadium content of 6 weight %, and solid line 8 shows the lower limit of vanadium content of 2 weight %. Furthermore, the age hardenable alloy of the present invention had excellent corrosion resistance against the corrosion that is a problem with aqueous valve materials. As explained above, the age hardenable alloy of the present invention has a weight of 11 to 16% nickel and 2 to 4.5% manganese.
%, cobalt 5-12%, vanadium 0.5-7.5%,
It contains 8% or less of molybdenum, and even if mixed as impurities, it may contain 0.1% or less of carbon, 1% or less of silicon, and the balance is substantially iron.
It has an excellent effect in that the dimensional deformation due to age hardening, which is mainly composed of a martensitic structure, is significantly smaller than that of conventionally known age hardenable alloys. Therefore, the age hardenable alloy of the present invention is suitable for precision wear-resistant parts such as servo valves, for which conventional age hardenable alloys could not be used.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来及び本発明の時効硬化性合金の時
効時間と変形率との関係を示す線図及び第2図
は、本発明に係る時効硬化性合金の引張り強さと
モリブデン及びバナジウム量との関係を示す線図
である。
FIG. 1 is a diagram showing the relationship between aging time and deformation rate of the conventional and present age hardenable alloys, and FIG. 2 is a diagram showing the relationship between the tensile strength and the amounts of molybdenum and vanadium of the age hardenable alloy according to the present invention. It is a line diagram showing a relationship.

Claims (1)

【特許請求の範囲】 1 重量で、ニツケル11〜16%,マンガン2〜
4.5%,パナジウム0.5〜7.5%,モリブデン8%以
下、コバルト5〜12%,炭素0.2%以下、残部が
実質的に鉄で、マルテンサイト組織を主体とする
合金組織を有することを特徴とする時効硬化性合
金。 2 重量で、ニツケル13〜15.5%,マンガン2.6
〜3.5%,パナジウム2〜6%,パナジウム2〜
6%、コバルト8〜11%,炭素0.2%以下であつ
て、かつモリブデン量とパナジウム量とが次式 6−0.65VMo8−0.65V を満足する特許請求の範囲第1項記載の時効硬化
性合金。
[Claims] 1. Nickel 11-16%, manganese 2-2% by weight
4.5%, panadium 0.5-7.5%, molybdenum 8% or less, cobalt 5-12%, carbon 0.2% or less, the balance being essentially iron, and having an alloy structure mainly consisting of martensitic structure. Hardenable alloy. 2. Nickel 13-15.5%, manganese 2.6% by weight
~3.5%, Panadium 2~6%, Panadium 2~
6%, cobalt 8-11%, carbon 0.2% or less, and the amount of molybdenum and the amount of panadium satisfy the following formula: 6-0.65VMo8-0.65V. .
JP11180A 1980-01-07 1980-01-07 Age hardening alloy Granted JPS5698450A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11180A JPS5698450A (en) 1980-01-07 1980-01-07 Age hardening alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11180A JPS5698450A (en) 1980-01-07 1980-01-07 Age hardening alloy

Publications (2)

Publication Number Publication Date
JPS5698450A JPS5698450A (en) 1981-08-07
JPS6140029B2 true JPS6140029B2 (en) 1986-09-06

Family

ID=11464952

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11180A Granted JPS5698450A (en) 1980-01-07 1980-01-07 Age hardening alloy

Country Status (1)

Country Link
JP (1) JPS5698450A (en)

Also Published As

Publication number Publication date
JPS5698450A (en) 1981-08-07

Similar Documents

Publication Publication Date Title
JP5328785B2 (en) Hardened martensitic steel with low or no cobalt content, method for producing parts from the steel, and parts thus obtained
US3926622A (en) Pitting resisting alloy steels
JP5307729B2 (en) Lead free free cutting steel
US4798634A (en) Corrosion resistant wrought stainless steel alloys having intermediate strength and good machinability
JP3301439B2 (en) Precipitation hardening tool steel
GB2073249A (en) Ferrite Free Precipitation Hardenable Stainless Steel
JPH0693375A (en) Boron treated steel for use in manufacture of carburized gear
US3834897A (en) Low-carbon,high-strength structural steel with good weldability
JPH06271975A (en) High strength steel excellent in hydrogen embrittlement resistance and its production
EP0498105B1 (en) High strength and high toughness stainless steel and method of manufacturing the same
US3392065A (en) Age hardenable nickel-molybdenum ferrous alloys
US4853049A (en) Nitriding grade alloy steel article
CN111961991B (en) TRIP type duplex stainless steel with ultrahigh strength-elongation product and preparation method thereof
JP2002038241A (en) Free cutting stainless steel
JPH0425344B2 (en)
JPS6140029B2 (en)
JP3201081B2 (en) Stainless steel for oil well and production method thereof
JPH01191764A (en) Free cutting steel for carburization quenching
JPH01246343A (en) Stainless steel
US3677744A (en) Age hardening stainless steel
JPS5916948A (en) Soft-nitriding steel
JP3075139B2 (en) Coarse-grained case hardened steel, surface-hardened parts excellent in strength and toughness, and method for producing the same
JP2813917B2 (en) High fatigue strength structural steel
JPS5916950A (en) Soft-nitriding steel
JP3204080B2 (en) Method for producing precipitation-hardened martensitic stainless steel with excellent cold forgeability