JPS6139603B2 - - Google Patents

Info

Publication number
JPS6139603B2
JPS6139603B2 JP50013126A JP1312675A JPS6139603B2 JP S6139603 B2 JPS6139603 B2 JP S6139603B2 JP 50013126 A JP50013126 A JP 50013126A JP 1312675 A JP1312675 A JP 1312675A JP S6139603 B2 JPS6139603 B2 JP S6139603B2
Authority
JP
Japan
Prior art keywords
water level
strain
water
diaphragm
base
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP50013126A
Other languages
Japanese (ja)
Other versions
JPS5188059A (en
Inventor
Hideki Uejima
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP50013126A priority Critical patent/JPS6139603B2/ja
Publication of JPS5188059A publication Critical patent/JPS5188059A/ja
Publication of JPS6139603B2 publication Critical patent/JPS6139603B2/ja
Expired legal-status Critical Current

Links

Description

【発明の詳細な説明】 水理模型実験等における波動現象及び水位変化
をより正確にとらえるため、これまでいろいろの
形式の水位計(波高計)が使用されてきた。それ
らは、実験の目的、種類、測定精度によつて使い
分けられているが、水圧式水位計が使用されてい
る例は多い。
[Detailed Description of the Invention] Various types of water level meters (wave height meters) have been used to more accurately capture wave phenomena and water level changes in hydraulic model experiments and the like. They are used differently depending on the purpose, type, and measurement accuracy of the experiment, but there are many examples in which hydraulic water level gauges are used.

縮尺の大きい水理模型等においては、水位変化
が小さいため、より高精度で測定する必要があ
る。最近では、水面上で測定する水位計が多く使
われているが、この形式の水位計の場合、受台が
障害となつて設置不可能なときには、水底に直接
検出器を置く水圧式水位計が必要となる。この場
合、水面で測定する方式の触針型水位計、抵抗線
水位計等の水位計と同等の精度を有するものでな
ければならない。また、長時間測定を行う上で、
ドリフトの少い、防水にすぐれたものが必要とな
る。水圧式の場合、受圧面積によつて測定範囲が
変つてくるため、極力小さい面積で高感度を持
つ、全体として小型で薄い円盤型のものが良い。
また、水理模型の底面に設置するため、起伏のあ
るところでも容易に設置が可能なものが必要であ
る。
In large-scale hydraulic models, water level changes are small, so it is necessary to measure with higher precision. Recently, water level gauges that measure water level on the water surface are often used.In the case of this type of water level gauge, if the pedestal becomes an obstacle and cannot be installed, a water pressure type water level gauge that places the detector directly on the bottom of the water can be used. Is required. In this case, it must have the same accuracy as a water level meter that measures at the water surface, such as a stylus type water level meter or a resistance line water level meter. In addition, when performing long-term measurements,
You will need something that has low drift and is highly waterproof. In the case of a water pressure type, the measurement range changes depending on the pressure-receiving area, so it is best to use a small and thin disc-shaped type that has high sensitivity in a small area as possible.
Additionally, since it will be installed on the bottom of the hydraulic model, it must be able to be installed easily even on uneven surfaces.

従来の水圧式水位計には、現地調査用も含めて
次の三つのタイプがある。
There are three types of conventional hydraulic water level gauges, including those for field surveys:

(1) 圧力変動を直接受圧面に受けてその歪を電気
量に変換して測る方法、 (2) 水圧の変化を空気圧の変化に変換し、その空
気圧による温度変化を測定する方法、 (3) 水圧変化を空気圧に変化し、この空気圧を直
接測る方法、 がある。
(1) A method of directly receiving pressure fluctuations on a pressure receiving surface and converting the strain into an electrical quantity to measure it. (2) A method of converting changes in water pressure into changes in air pressure and measuring temperature changes due to that air pressure. (3) ) There is a method of converting changes in water pressure into air pressure and directly measuring this air pressure.

この中で、水理模型用として特に高精度を必要
とする微圧測定に向いているのは、上記(1)のタイ
プであり、水深の浅い変動の少い場所における水
圧式水位計としてはこの方式しかない。(2),(3)の
場合、空気圧変動をベローズ変化におきかえ、ポ
テンシヨメーターによつて変化量を取り出してい
るため、高精度を望むのは原理的に困難である。
Among these, type (1) above is suitable for micro-pressure measurements that require particularly high accuracy for hydraulic models, and is suitable for use as a hydraulic water level gauge in shallow water depth locations with little fluctuation. This is the only method. In cases (2) and (3), it is theoretically difficult to achieve high accuracy because air pressure fluctuations are replaced by bellows changes and the amount of change is extracted using a potentiometer.

以上に鑑み、本発明の水位検出器は水位変化量
を水圧変化量としてとらえ、これを抵抗線歪ゲー
ジを利用して直接電気量に変換測定しようとする
ものである。
In view of the above, the water level detector of the present invention captures the amount of water level change as the amount of water pressure change, and uses a resistance wire strain gauge to directly convert and measure this into an electrical quantity.

以下、図面に基づき本発明の実施例について詳
細に説明すると、第1図および第2図に示すよう
に検出器本体1は円環状をなす基体2に上面にダ
イヤフラム3を、下面に防水カバー4を水密に固
定することにより、その内部に防水室5が形成さ
れ、この防水室5内において、上記ダイヤフラム
3の内側面に接着固定したバランスリング6と、
基体2の内側面に円周等割に固定して内方に突出
させた4枚の極めて薄い起歪板7が、伝達ピン8
により連結されている。
Hereinafter, embodiments of the present invention will be described in detail based on the drawings. As shown in FIGS. 1 and 2, the detector main body 1 includes a ring-shaped base 2, a diaphragm 3 on the top surface, and a waterproof cover 4 on the bottom surface. By fixing the diaphragm 3 in a watertight manner, a waterproof chamber 5 is formed therein, and within this waterproof chamber 5, a balance ring 6 adhesively fixed to the inner surface of the diaphragm 3,
Four extremely thin strain plates 7 fixed to the inner surface of the base body 2 at equal intervals on the circumference and protruding inward are connected to the transmission pin 8.
are connected by.

上記起歪板7のそれぞれには、第1図及び第2
図からわかるように、交互に表と裏にストレイン
ゲージ9a,9b,9c及び9d(抵抗線歪ゲー
ジ)が接着され、これらのストレインゲージ9a
〜9dは、第5図に示すように、ホイストンブリ
ツジを形成するように結線されており、その導線
は検出器本体を薄くするため基体2の側面から水
密に導出するキヤツプタイヤコード10に接続さ
れている。
Each of the strain plates 7 has a structure shown in FIGS.
As can be seen from the figure, strain gauges 9a, 9b, 9c and 9d (resistance wire strain gauges) are glued alternately on the front and back sides, and these strain gauges 9a
~9d are connected to form a Whiston bridge, as shown in FIG. has been done.

また、上記防水室5の内部は、その室内の圧力
によつて測定に誤差が生じるのを避けるため、パ
イプ接続口11に水面上に達する導パイプ12を
接続することにより大気に開放されている。
In addition, the inside of the waterproof chamber 5 is opened to the atmosphere by connecting a conduit pipe 12 that reaches above the water surface to a pipe connection port 11 in order to avoid measurement errors due to the pressure inside the chamber. .

上記構成を有する微少水位検出器は、第4図に
示すように水理模型等の水底に配置すると、受感
部のダイヤフラム3が微少水位に比例した微少水
圧を受けて第3図に示すように変位し、バランス
リング6から伝達ピン8を介して起歪板7に曲げ
変位が与えられる。起歪板7に発生する曲げ応力
は水位に比例し、起歪板のそれぞれに接着された
ストレインゲージ9a〜9dの抵抗変化ΔRに基
づく出力電圧の変化ΔEによつて知ることができ
る。即ち、4組のストレインゲージ9a〜9dに
より生じる抵抗変化ΔRが、第5図のホイストン
ブリツジによつて得られ、それに対応した出力電
圧変化ΔEが発生する。したがつて、第4図に示
すように、検出器本体1において得られる出力を
増幅器13を介して記録計14に導くことによ
り、ダイヤフラムで微少水圧として受感した微少
水位を電気的な出力によつて記録することができ
る。
When the minute water level detector having the above configuration is placed at the bottom of a hydraulic model, etc. as shown in FIG. , and a bending displacement is applied from the balance ring 6 to the strain plate 7 via the transmission pin 8 . The bending stress generated in the strain plate 7 is proportional to the water level, and can be determined by the change ΔE in the output voltage based on the resistance change ΔR of the strain gauges 9a to 9d bonded to each strain plate. That is, the resistance change ΔR produced by the four sets of strain gauges 9a to 9d is obtained by the Whiston bridge shown in FIG. 5, and a corresponding output voltage change ΔE is generated. Therefore, as shown in FIG. 4, by guiding the output obtained from the detector body 1 to the recorder 14 via the amplifier 13, the minute water level sensed as a minute water pressure by the diaphragm can be converted into an electrical output. It can then be recorded.

上記バランスリング6は、受圧面で受けた水圧
変動を集め、効果的にストレインゲージへ均等に
伝達するためのものでありバランスを保つために
必要なものである。
The balance ring 6 is used to collect water pressure fluctuations received on the pressure receiving surface and effectively and evenly transmit them to the strain gauge, and is necessary to maintain balance.

また、ストレインゲージは引張りや曲げにより
各々特性を持つており、その4枚を起歪板の同一
面に取付けることは誤差を生じやすいため、スト
レインゲージをあらかじめ起歪板の表と裏に交互
に取付けることによつて正確な値を検出できるよ
うにしている。
In addition, each strain gauge has its own characteristics depending on tension and bending, and installing four strain gauges on the same side of the strain plate is likely to cause errors, so strain gauges are placed alternately on the front and back of the strain plate in advance. By installing it, it is possible to detect accurate values.

さらに、防水室5はパイプ接続口11に接続し
た導パイプ12により大気に開放させるため、ダ
イヤフラムは純粋に水位変化のみにより変位し、
内部の空気の温度膨張等による圧力誤差をなくす
ことができる。
Furthermore, since the waterproof chamber 5 is opened to the atmosphere through the conduit pipe 12 connected to the pipe connection port 11, the diaphragm is displaced purely due to changes in the water level.
Pressure errors caused by temperature expansion of internal air can be eliminated.

前述した従来の水圧式では、検出部にベローズ
を使用し、空気圧の変化により水位変化量をとら
えていたため、温度変化の影響が大きく、微少水
位を検出するには不向きであり、また一定の空気
量を必要とするため検出器が大きくなり、縮尺の
大きい水理模型では水深が浅く設置が不可能であ
つた。それに対して、以上に詳述した本発明の微
少水位検出器の大きな特長としては、下記のもの
が挙げられる。
The conventional water pressure type mentioned above uses a bellows in the detection part and detects the amount of water level change from changes in air pressure, which is affected by temperature changes and is not suitable for detecting minute water levels. The amount of water required required a large detector, and it was impossible to install a large-scale hydraulic model due to the shallow depth of the water. On the other hand, the major features of the minute water level detector of the present invention detailed above include the following.

(1) 水圧式水位計として微少水位を高精度で測定
できる。
(1) As a hydraulic water level meter, it can measure minute water levels with high accuracy.

(2) 設置が極めて簡単で、どの様な場所にてもセ
ツトできる。
(2) It is extremely easy to install and can be set up in any location.

(3) 水質、水温の変化を受けずドリフトが少い。(3) Little drift due to changes in water quality and temperature.

(4) 水圧式であるためノイズ成分等の短周期波を
除去できる。
(4) Since it is a hydraulic type, short period waves such as noise components can be removed.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の水位検出器本体の一部破断平
面図、第2図はその側断面図、第3図はダイヤフ
ラムが変位した状態を示す要部側断面図、第4図
は使用状態の概要図、第5図はホイストンブリツ
ジの回路図である。 1……検出器本体、2……基体、3……ダイヤ
フラム、4……防水カバー、5……防水室、6…
…バランスリング、7……起歪板、8……伝達ピ
ン、9a〜9d……ストレインゲージ、10……
キヤプタイヤコード、11……パイプ接続口、1
2……導パイプ。
Fig. 1 is a partially cutaway plan view of the water level detector main body of the present invention, Fig. 2 is a side sectional view thereof, Fig. 3 is a side sectional view of the main part showing the state in which the diaphragm is displaced, and Fig. 4 is the state in use. Figure 5 is a circuit diagram of the Whiston bridge. 1...Detector body, 2...Base, 3...Diaphragm, 4...Waterproof cover, 5...Waterproof chamber, 6...
...Balance ring, 7...Strain plate, 8...Transmission pin, 9a-9d...Strain gauge, 10...
Captire cord, 11...Pipe connection port, 1
2... Conduit pipe.

Claims (1)

【特許請求の範囲】[Claims] 1 基体上面にダイヤフラムを固定して基体内に
防水室を形成し、この防水室内において、上記ダ
イヤフラムの内側面に固定したバランスリングと
基体の内側面に円周等割に固定して内方に突出さ
せた4枚の起歪板を伝達ピンにより連結し、起歪
板のそれぞれに交互に表と裏に抵抗線歪ゲージを
接着して、それらをホイストンブリツジを形成す
るように結線し、上記防水室をパイプ接続口に接
続した導入パイプにより大気に開放したことを特
徴とする微少水位検出器。
1. A diaphragm is fixed to the top surface of the base to form a waterproof chamber within the base, and within this waterproof chamber, a balance ring fixed to the inner surface of the diaphragm and a balance ring fixed to the inner surface of the base at equal circumferential intervals are placed inward. The four protruding strain plates are connected by a transmission pin, resistance wire strain gauges are alternately glued to the front and back sides of each strain plate, and the wires are connected to form a Whiston bridge. A minute water level detector characterized in that the waterproof chamber is opened to the atmosphere through an introduction pipe connected to a pipe connection port.
JP50013126A 1975-01-30 1975-01-30 Expired JPS6139603B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP50013126A JPS6139603B2 (en) 1975-01-30 1975-01-30

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP50013126A JPS6139603B2 (en) 1975-01-30 1975-01-30

Publications (2)

Publication Number Publication Date
JPS5188059A JPS5188059A (en) 1976-08-02
JPS6139603B2 true JPS6139603B2 (en) 1986-09-04

Family

ID=11824457

Family Applications (1)

Application Number Title Priority Date Filing Date
JP50013126A Expired JPS6139603B2 (en) 1975-01-30 1975-01-30

Country Status (1)

Country Link
JP (1) JPS6139603B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02135823U (en) * 1989-04-19 1990-11-13
JPH02146326U (en) * 1989-05-15 1990-12-12
US10288632B2 (en) 2009-09-21 2019-05-14 Pocared Diagnostics Ltd. System for conducting the identification of bacteria in biological samples

Also Published As

Publication number Publication date
JPS5188059A (en) 1976-08-02

Similar Documents

Publication Publication Date Title
CN108956083A (en) A kind of test method for fast implementing wind-tunnel and surveying pressure on a small scale
JP3940970B2 (en) Strain measurement module
CN202066629U (en) Strain beam type earth pressure sensor
US3645136A (en) Fluid pressure measuring device
CN103542962A (en) Pressure testing device
JPS6139603B2 (en)
CN110220623B (en) Integrated three-dimensional stress sensor based on fiber Bragg grating
US2597005A (en) Method of calibrating microphones
CN208458972U (en) A kind of manometric module for fast implementing wind-tunnel and surveying pressure on a small scale
CN201096843Y (en) Detection device for measuring metal conductivity instrument based on backset phase
CN206002194U (en) A kind of hydrophone sensitivity temperature response measuring device and system
CN104197992B (en) A kind of concentration of emulsion used, liquid level and temperature integrated measurer
CN101545819B (en) Method of calibrating PVDF voltage coefficient when measuring gauge pressure of rotary body
CN208621227U (en) A kind of jacking membrane structure film surface tension tester based on frequency
JPS60190828A (en) Detector for measuring two-component earth pressure and pore water pressure
CN219084038U (en) Bridge structure deformation detector
CN110988401A (en) Photoelectric accelerometer calibration method and system
SU960559A2 (en) Pressure pickup
SU746183A1 (en) Hydrostatic level
JPS58117433A (en) Pressure measuring device
SU561887A1 (en) Pressure sensor
CN218331086U (en) Drilling fluid density automatic measuring instrument
SU82401A1 (en) Mass doze for measuring tangential stresses in soils
JPS6217694Y2 (en)
JPS61133865A (en) Handy flow direction meter