JPS58117433A - Pressure measuring device - Google Patents

Pressure measuring device

Info

Publication number
JPS58117433A
JPS58117433A JP21590481A JP21590481A JPS58117433A JP S58117433 A JPS58117433 A JP S58117433A JP 21590481 A JP21590481 A JP 21590481A JP 21590481 A JP21590481 A JP 21590481A JP S58117433 A JPS58117433 A JP S58117433A
Authority
JP
Japan
Prior art keywords
pressure
displacement
diaphragm
connecting rod
measured
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21590481A
Other languages
Japanese (ja)
Inventor
Kazuma Miyamoto
一真 宮本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP21590481A priority Critical patent/JPS58117433A/en
Publication of JPS58117433A publication Critical patent/JPS58117433A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L11/00Measuring steady or quasi-steady pressure of a fluid or a fluent solid material by means not provided for in group G01L7/00 or G01L9/00
    • G01L11/004Measuring steady or quasi-steady pressure of a fluid or a fluent solid material by means not provided for in group G01L7/00 or G01L9/00 by the use of counterbalancing forces
    • G01L11/008Measuring steady or quasi-steady pressure of a fluid or a fluent solid material by means not provided for in group G01L7/00 or G01L9/00 by the use of counterbalancing forces electrostatic or electromagnetic counterbalancing forces

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Fluid Pressure (AREA)

Abstract

PURPOSE:To secure high accuracy without compensation or calibration and to simplify the structure, by connecting two diaphragm having different effective areas, simultaneously applying the pressure, detecting the displacement, generating a repelling force in the direction for offsetting the displacement by an electromagnetic force generating part, and measuring the pressure based on an exciting current at the time. CONSTITUTION:When the pressure of fluid to be measured is simultaneously applied to the diaphragm 11 and 12 through a connecting port 26, the diaphragm 12 having a large area is forcibly pushed owing to the difference in the effective areas, and a connecting rod 13 is tend to move to the side of the diaphragm 11. Therefore, the displacement is detected by a displacement detecting part 18, and the detected signal is sent to an amplifier 22. The output of the amplifier 22 is given to an electromagnetic coil 21b. The repelling force to the diaphragm 12 is generated in a permanent magnet 21a so as to offset the displacement of the connecting rod 13. The exciting current at this time is read by an ammeter in a reading part 24, and the pressure of the fluid to be measured is determined.

Description

【発明の詳細な説明】 本発明はフォースバランス式の圧力測定装置の改良に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an improvement in a force balance type pressure measuring device.

気体や液体の圧力を測定する装置としては、第1図及び
第2図にその一例を示すように、ダイヤフラムとばねの
組合わせにより受圧力とばね力を平衡させ、その際のば
ねの変位量を電気的に読み取るものや、半導体式のもの
が一般的である。すなわち、第1図に′おいて、(1)
はダイヤフラム、(2)はばね、(3)はダイヤフラム
(1)に連結された鉄心、(4)は鉄心(3)の外周に
設けられた固定コイル、(5)は鉄心(3)と固定コイ
ル(4)で構成された差動トランスであり、ダイヤフラ
ム(1)の両面に低圧入口(6a)及び高圧入口(6b
)を通じて流体の圧力を印加し、鉄心(3)の変位量を
差動トランス(51で検出し、これを変換回路(7)で
電気的に処理して読み取るものである。また第2図にお
いて、(8)はダイヤプラム、(9)はシリコン基板に
ピエゾ抵抗効果を示す拡散層からなる感圧抵抗素子を設
けた半導体圧力センサであり、感圧抵抗素子を用いてブ
リッジ回路を構成しておき、プロセス接続口α〔に加え
られる圧力によるダイヤプラム(8)の変位を半導体圧
力センサ(9)に伝達し、感圧抵抗素子の抵抗値変化を
電気的に処理して読み取るものである。しかしながら、
第1図に示したものでは、ばねとダイヤフラムの弾性系
数の温度変化による誤差を原理的に含むものであり、ま
た第2図のものでは、感圧部を構成するシリコンの特性
が温度依存性の高いものであり、且つ圧力と電気出力の
関係が非直線的なため、これらの補償や較正に高度の技
術を要するという難点があり、これらの従来例において
は、いずれも0〜30℃で約±0.5%フルスケールの
精度が実用精度とされ、高精度の測定装置を得ることが
困難であった。
As an example of a device for measuring the pressure of gas or liquid, as shown in Figures 1 and 2, a combination of a diaphragm and a spring is used to balance the received pressure and spring force, and the amount of displacement of the spring at that time is measured. The most common types are those that read the information electrically or those that are semiconductor type. That is, in Figure 1', (1)
is a diaphragm, (2) is a spring, (3) is an iron core connected to diaphragm (1), (4) is a fixed coil provided on the outer periphery of iron core (3), and (5) is fixed to iron core (3). It is a differential transformer consisting of a coil (4), and has a low pressure inlet (6a) and a high pressure inlet (6b) on both sides of the diaphragm (1).
), the amount of displacement of the iron core (3) is detected by a differential transformer (51), and this is electrically processed and read by a conversion circuit (7). , (8) is a diaphragm, and (9) is a semiconductor pressure sensor in which a pressure-sensitive resistance element consisting of a diffusion layer exhibiting a piezoresistance effect is provided on a silicon substrate, and a bridge circuit is constructed using the pressure-sensitive resistance element. Then, the displacement of the diaphragm (8) due to the pressure applied to the process connection port [alpha] is transmitted to the semiconductor pressure sensor (9), and the change in resistance value of the pressure-sensitive resistance element is electrically processed and read. however,
The one shown in Figure 1 basically includes errors due to temperature changes in the elastic coefficients of the spring and diaphragm, and the one shown in Figure 2 shows that the characteristics of the silicon that constitutes the pressure sensitive part are temperature dependent. In addition, the relationship between pressure and electrical output is non-linear, so compensation and calibration require sophisticated technology. Practical accuracy is considered to be approximately ±0.5% full scale, and it has been difficult to obtain a highly accurate measuring device.

本発明は、これらの問題点に着目してなされたものであ
り、有効面積の異なる二つのダイヤフラムを互いに対向
させて配置して相互に連結し、二つのダイヤプラムに同
時に圧力を加えた時の変位を検出し、変位をなくす方向
の反撥力を発生する゛電磁力発生部の励磁電流を圧力値
として読み取るようにしたものである。すなわち、従来
多用されているものは偏位性方式によるものがほとんど
であり、補償や較正の技術により精度を保っている点を
改善し、原理的にはフォースバランス式の零位法と見な
される方式を採用して、補償や較正を必要としないかあ
るいは少くてすみ、精度の出しやすい圧力測定装置を提
供したものであり、±0.1〜±0.05%フルスケー
ルの精度を比較的簡単な構成の装置によって得ることが
できるのである。
The present invention was made by focusing on these problems, and it is possible to connect two diaphragms with different effective areas by arranging them facing each other and applying pressure to the two diaphragms at the same time. Displacement is detected and the excitation current of the electromagnetic force generating section that generates a repulsive force in the direction of eliminating the displacement is read as a pressure value. In other words, most of the methods that have been widely used in the past have been based on the deviation method, but this method has been improved in terms of maintaining accuracy through compensation and calibration techniques, and in principle can be considered as a force balance method. By adopting this method, we have provided a pressure measuring device that does not require compensation or calibration, or requires little compensation, and is easy to achieve accuracy. This can be obtained using a device with a simple configuration.

次に、本発明の一実施例を第3図について説明する。図
は装置の構成を示した模式図であり、O1)O2は互い
に対向させて配置された有効面積の異なるダイヤフラム
、OJはダイヤフラムα2側z間を連結する連結棒、O
4)(151はダイヤフラム(Ill O2のベローズ
、06)はケースであり、ダイヤフラム11υ(12,
ベローズ(141+15)、ケースQ61によって密閉
された感圧ユニット面が構成されている。印は連結棒日
に設けられた可動部(18a)と、゛これに対応して設
けられる固定部(18b)からなる変位検出部であり、
例えば差動トランスが用いられる。圓は連結棒(13に
設けられた永久磁石(21りと、これに対応して設けら
れる電磁コイル(21b)からなる電磁力発生部、@は
変位検出部OgJの出力を増幅する増幅器、(2)は電
源、(財)は電流計からなる読み取り部、器はダイヤフ
ラム(111117Jとベローズα4)(151を覆う
圧力ケース、(4)は接続口、鰭はリード線である。今
、被測定流体の圧力が接続口(至)を経て各ダイヤフラ
ムα1J02に同時に加えられると、有効面積の差によ
って面積の大きいダイヤプラム(12側が強く押されて
連結棒αJがダイヤフラムα2側へ移動しようとするの
で、この変位が変位検出部叫で検出され、検出信号は増
幅器のに送られる。増幅器■の出力は電磁コイル(21
b)に与えられて永久磁石(21@)にダイヤフラムα
2側への反撥力を発生し、連結棒αeの変位をなくすよ
うに作動するので、この時の励磁電流を読み取り部(財
)の電流計によって読み取ることにより、被測定流体の
圧力を知ることができる。
Next, one embodiment of the present invention will be described with reference to FIG. The figure is a schematic diagram showing the configuration of the device, in which O1) O2 are diaphragms with different effective areas arranged to face each other, OJ is a connecting rod connecting the diaphragms α2 side z, and O
4) (151 is the diaphragm (Ill O2 bellows, 06) is the case, and the diaphragm 11υ (12,
The pressure sensitive unit surface is sealed by the bellows (141+15) and the case Q61. The mark is a displacement detection part consisting of a movable part (18a) provided on the connecting rod and a fixed part (18b) provided correspondingly.
For example, a differential transformer is used. Circle is an electromagnetic force generating section consisting of a permanent magnet (21) provided on a connecting rod (13) and an electromagnetic coil (21b) provided corresponding thereto, @ is an amplifier that amplifies the output of the displacement detecting section OgJ, ( 2) is the power supply, (Foundation) is the reading unit consisting of an ammeter, the device is the diaphragm (111117J and bellows α4) (pressure case that covers 151, (4) is the connection port, and the fin is the lead wire. Now, the device to be measured When fluid pressure is simultaneously applied to each diaphragm α1J02 through the connection port (to), the larger area diaphragm (12 side) is pushed strongly due to the difference in effective area, and the connecting rod αJ tries to move toward the diaphragm α2 side. , this displacement is detected by the displacement detector, and the detection signal is sent to the amplifier.The output of the amplifier (■) is sent to the electromagnetic coil (21
b) diaphragm α to the permanent magnet (21@)
It generates a repulsive force towards the second side and operates to eliminate the displacement of the connecting rod αe, so by reading the excitation current at this time with an ammeter in the reading section, the pressure of the fluid to be measured can be determined. Can be done.

ここで、被測定流体の圧力をP、ダイヤフラム(2)a
zの有効面積をそれぞれS□、82とすると、各ダイヤ
フラムに加わる圧力の差FdはS2〉S□とすると Fd−(S2−8□)P となり、S2、S□は一定であるのでFd はPの変化
に比例したものとなり、連結棒αりを矢印のように変位
させる。一方、増幅器@は十分大きな感度を有し、その
出力によって永久磁電(211)にFdに対抗する反撥
力Fiを与えるように構成しであるので、 Fd=Fi となるだけの励磁電流■を電磁コイル(21b)に流し
て平衡点に達する。反撥力Fiは電磁コイル(21b)
のアンペアターンに比例するので、pi(1)i  ・
・・・・・・・・・・・・・・ (1)Fd   P 
 ・・・・・・・・・・・・・・・ (2)Fd = 
Fi・・・・・・・・・・・・・・・ (3)の関係か
ら P C/3 ■ ・・・・・・・・川・・・・ +41
となり、圧力Pは電流に比例したものとなって、圧力を
読み取り部關の電流計によって知ることができるのであ
る。
Here, the pressure of the fluid to be measured is P, and the diaphragm (2) a
If the effective areas of z are S□ and 82, respectively, then the difference Fd in the pressure applied to each diaphragm is Fd-(S2-8□)P if S2>S□, and since S2 and S□ are constant, Fd is It is proportional to the change in P, and the connecting rod α is displaced as shown by the arrow. On the other hand, the amplifier @ has a sufficiently large sensitivity and is configured so that its output gives the permanent magnetism (211) a repulsive force Fi that opposes Fd. through the coil (21b) to reach an equilibrium point. The repulsive force Fi is the electromagnetic coil (21b)
Since it is proportional to the ampere-turn of pi(1)i ・
・・・・・・・・・・・・・・・ (1) Fd P
・・・・・・・・・・・・・・・ (2) Fd=
Fi・・・・・・・・・・・・・・・ From the relationship in (3), P C/3 ■ ・・・・・・・・・・・・・+41
Therefore, the pressure P is proportional to the current, and the pressure can be determined by the ammeter connected to the reading section.

本実施例の構成と動作は上述のとおりであり、電磁力に
よるフォースバランス方式であって増幅器@の増幅度を
十分大きくとることにより、ダイヤフラム(11111
’Aや連結棒a段は実質的には無変位となるから、ダイ
ヤフラムaυa2やベローズα41(15)のばね特性
(直線性やヒステリンスなど)に影響されず、また温度
によるダイヤフラム等の熱弾性系数の変化も各ダイヤプ
ラム等を同材質で製作することにより相殺されるので、
原理的に補償や較正をする必要がなく高い精度を容易に
得られ、更に制御電源などの二線式伝送が容易であるの
で設置場所の制約を受けることも少なく、応用範囲の広
い圧力測定装置が得られるのである。
The configuration and operation of this embodiment are as described above, and it is a force balance method using electromagnetic force.
'A and the connecting rod stage A are virtually undisplaced, so they are not affected by the spring characteristics (linearity, hysterinth, etc.) of the diaphragm aυa2 and the bellows α41 (15), and the thermoelastic coefficients of the diaphragm etc. due to temperature Changes in diaphragm etc. can be offset by making each diaphragm etc. from the same material, so
In principle, there is no need to perform compensation or calibration, making it easy to obtain high accuracy.Furthermore, since two-wire transmission of control power, etc. is easy, there are fewer restrictions on installation location, and the pressure measurement device has a wide range of applications. is obtained.

なお、二つのダイヤフラムの有効面積比を太き(すれば
微圧測定が可能であり、感圧ユニットの内部を真空にす
れば気圧(絶対圧)測定に用いることも可能となる。ま
た第4図に示すように感圧ユニット(17)を液体中に
沈めることにより液体のレベルHを測定することもでき
る。
In addition, if the effective area ratio of the two diaphragms is made thicker, it is possible to measure minute pressure, and if the inside of the pressure-sensitive unit is evacuated, it is also possible to use it for atmospheric pressure (absolute pressure) measurement. The level H of the liquid can also be measured by submerging the pressure sensitive unit (17) in the liquid as shown in the figure.

次に本発明装置の応用例を述べる。第一はダム水位の測
定であり、ダムは表面積が大きくわずかな水位変化でも
大きな水量変化となるため、高精度な水位測定が必要で
あり、20m〜30mに対してIC+11すなわち1/
2000〜1/3000程度の精度が一般に要求されて
いるが、本発明によればこの要求に十分応することがで
きる。
Next, an application example of the device of the present invention will be described. The first is to measure the dam water level.Since the dam has a large surface area and even a slight change in water level causes a large change in water volume, highly accurate water level measurement is required.
Generally, an accuracy of about 2000 to 1/3000 is required, and the present invention can fully meet this requirement.

第二は高架水槽のレベル測定であり、工場環水などの高
架水槽にフロート式レベル計を用いた場合、その保守作
業が危険な高所作業となるため、フロート式によらない
地上での計測が望まれる。
The second is level measurement of elevated water tanks.If a float type level meter is used in an elevated water tank such as a factory water tank, maintenance work will be dangerous and high-altitude work, so measurement on the ground without using a float type is required. is desired.

例えば、第5図のように水深5?FLの水槽■を35m
の架台ノ1)上に設置すると、レベル計(支)には40
rrLH20のヘッド圧がかかることになり、水槽■内
の水位を3rrL以内の変化になるようにポンプを駆動
するとすれば、ポンプ制御信号の発信精度は最低2備は
必要であり、レベル測定の精度は2cm740m=1/
2000が要求されるが、本発明によればこの要求に十
分応することができる。
For example, water depth 5 as shown in Figure 5? FL aquarium ■ 35m
When installed on the stand No. 1), the level meter (support) will have 40
If the head pressure of rrLH20 is applied and the pump is driven so that the water level in the water tank changes within 3rrL, the accuracy of the pump control signal transmission requires at least two devices, and the accuracy of level measurement. is 2cm740m=1/
2000 is required, and the present invention can fully meet this requirement.

第三はウィスキー原酒ブレンドのためのレベル測定であ
り、ブレンド作業には3rrLに対して1〜2馴の精度
の測定が要求され、現状では作業者が物さしで行なって
いるが、本発明によれば1〜2mm / 3 mすなわ
ち1/1500〜1/3000の要求精度に十分対応で
きるのである。
The third is level measurement for whiskey blending, and blending requires measurement with an accuracy of 1 to 2 degrees per 3rrL.Currently, workers use a ruler to measure the level, but the present invention According to the above, it can sufficiently meet the required accuracy of 1 to 2 mm/3 m, that is, 1/1500 to 1/3000.

以上の説明から明らかなように、本発明は有効面積の異
なる二つのダイヤフラムを連結して同時に圧力を加え、
その変位を検出して変位をな(す方向の反撥力を題磁力
発生部で発生させて平衡させ、その時の励磁電流によっ
て圧力を測定するものであり、原理的に零位法と見なさ
れるものであるため、補償や較正をせずに高精度を確保
することができ、構造が簡単で応用範囲の広い高精度な
圧力測定装置を容易に得ることができるのである。
As is clear from the above description, the present invention connects two diaphragms with different effective areas and simultaneously applies pressure.
This method detects the displacement, generates a repulsive force in the direction of the displacement in the magnetic force generator, balances it, and measures the pressure using the excitation current at that time.In principle, it is considered a zero-position method. Therefore, high accuracy can be ensured without compensation or calibration, and a highly accurate pressure measuring device with a simple structure and a wide range of applications can be easily obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図及び第2図は従来例の断面図、第3図は本発明の
一実施例の模式図、第4図及び第5図は同上の用途例を
示す図である。 (111021・・・ダイヤフラム、(1漕・・・連結
棒、(18)・・・変位検出部、f21+・・パ喝磁力
発生部、□□□・・・読み取り部。 特 許 出 願 人 川崎製鉄株式会社代 理 人 弁
理士 青白 葆ほか2名第1図 第2図 第3図 第4図 第5図
1 and 2 are cross-sectional views of a conventional example, FIG. 3 is a schematic view of an embodiment of the present invention, and FIGS. 4 and 5 are views showing an example of the same application. (111021...Diaphragm, (1 row...Connecting rod, (18)...Displacement detection section, f21+...Pack magnetic force generation section, □□□...Reading section. Patent applicant: Kawasaki Representative of Steel Manufacturing Co., Ltd. Patent attorney Aohaku Ao and two others Figure 1 Figure 2 Figure 3 Figure 4 Figure 5

Claims (1)

【特許請求の範囲】[Claims] (1)互いに対向させて配置され、且つ相互に連結され
て一体に移動可能に保持された有効面積の異なる二つの
ダイヤプラムと、 被測定流体の圧力を同時に二つのダイヤフラムに加えた
時の変位を検出する変位検出部と、変位検出部の検出信
号に応じて変位をなくす方向の反撥力をダイヤフラムに
与える電磁力発生部と、 電磁力発生部の励磁電流を圧力値として読み取る読み取
り部 tを備えたことを特徴とする圧力測定装置。
(1) Two diaphragms with different effective areas that are arranged facing each other, connected to each other, and movably held together, and the displacement when the pressure of the fluid to be measured is simultaneously applied to the two diaphragms. a displacement detection section that detects the displacement, an electromagnetic force generation section that applies a repulsive force to the diaphragm in the direction of eliminating displacement according to the detection signal of the displacement detection section, and a reading section t that reads the excitation current of the electromagnetic force generation section as a pressure value. A pressure measuring device characterized by comprising:
JP21590481A 1981-12-29 1981-12-29 Pressure measuring device Pending JPS58117433A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21590481A JPS58117433A (en) 1981-12-29 1981-12-29 Pressure measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21590481A JPS58117433A (en) 1981-12-29 1981-12-29 Pressure measuring device

Publications (1)

Publication Number Publication Date
JPS58117433A true JPS58117433A (en) 1983-07-13

Family

ID=16680175

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21590481A Pending JPS58117433A (en) 1981-12-29 1981-12-29 Pressure measuring device

Country Status (1)

Country Link
JP (1) JPS58117433A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0361828A (en) * 1989-07-29 1991-03-18 Ckd Corp Pressure sensor and fluid feeder
JPH03138542A (en) * 1989-10-24 1991-06-12 Ckd Corp Pressure detector
JPH03189530A (en) * 1989-12-19 1991-08-19 Ckd Corp Pressure detector
JPH0386808U (en) * 1989-12-26 1991-09-03
JPH06160224A (en) * 1992-07-17 1994-06-07 Hughes Aircraft Co Electromagnetic pressure transducer
WO1999035478A1 (en) * 1998-01-09 1999-07-15 Helix Technology Corporation Improved force balancing capacitance manometer

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0361828A (en) * 1989-07-29 1991-03-18 Ckd Corp Pressure sensor and fluid feeder
JPH03138542A (en) * 1989-10-24 1991-06-12 Ckd Corp Pressure detector
JPH03189530A (en) * 1989-12-19 1991-08-19 Ckd Corp Pressure detector
JPH0386808U (en) * 1989-12-26 1991-09-03
JPH06160224A (en) * 1992-07-17 1994-06-07 Hughes Aircraft Co Electromagnetic pressure transducer
WO1999035478A1 (en) * 1998-01-09 1999-07-15 Helix Technology Corporation Improved force balancing capacitance manometer
FR2773611A1 (en) * 1998-01-09 1999-07-16 Granville Phillips Company APPARATUS FOR MEASURING THE DIFFERENTIAL PRESSURE BETWEEN AT LEAST TWO FLUIDS
US6412349B1 (en) 1998-01-09 2002-07-02 Helix Technology Corporation Force balancing capacitance manometer

Similar Documents

Publication Publication Date Title
CN100561156C (en) The SOI complete silicon structure silicone-oil-filling high-temperature-resistance pressure sensor
US4986127A (en) Multi-functional sensor
US7503221B2 (en) Dual span absolute pressure sense die
CN103115720B (en) Quartz girder resonant mode micro-pressure sensor chip with silicon substrate single island structure
CN105424236A (en) Multi-range array pressure sensing chip and detection method thereof
JPS614934A (en) Assembly of differential pressure sensor
US3520191A (en) Strain gage pressure transducer
US4411158A (en) Apparatus for sensing the condition of a fluid
CN102928131A (en) Quartz resonance beam type micro-pressure sensor chip
JPH04232436A (en) Automatic transducer selecting system for measuring pressure
US3739644A (en) Linearization of differential pressure integral silicon transducer
JPS58117433A (en) Pressure measuring device
CN1844937B (en) High-sensitivity MEMS photoelectric galvanometer, making and detecting method thereof
JPH0629821B2 (en) Multi-function differential pressure sensor
JPH0972805A (en) Semiconductor sensor
US3191440A (en) Pressure gauge instrument
EP0071581B1 (en) Electronic transducer for transducing pressure values of industrial process fluids
US3743926A (en) Fine linearity control in integral silicon transducers
JPS6038634A (en) Differential pressure transmitter functioning as hydrostaticvariation compensation for industrial rpocess fluid in combination
SU884587A3 (en) Device for measuring density of gaseous media
GB2090417A (en) Pressure measuring transducers
JPH02242121A (en) Pressure/temperature compound detector
KR20090055884A (en) Apparatus for measuring water pressure in differential form
JPH041472Y2 (en)
SU960559A2 (en) Pressure pickup