JPS6139144B2 - - Google Patents
Info
- Publication number
- JPS6139144B2 JPS6139144B2 JP10125876A JP10125876A JPS6139144B2 JP S6139144 B2 JPS6139144 B2 JP S6139144B2 JP 10125876 A JP10125876 A JP 10125876A JP 10125876 A JP10125876 A JP 10125876A JP S6139144 B2 JPS6139144 B2 JP S6139144B2
- Authority
- JP
- Japan
- Prior art keywords
- zone
- secondary cooling
- slab
- length
- amount
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 238000001816 cooling Methods 0.000 claims description 38
- 239000000498 cooling water Substances 0.000 claims description 29
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 20
- 229910000831 Steel Inorganic materials 0.000 claims description 19
- 239000010959 steel Substances 0.000 claims description 19
- 238000002347 injection Methods 0.000 claims description 12
- 239000007924 injection Substances 0.000 claims description 12
- 238000009749 continuous casting Methods 0.000 claims description 8
- 229910001220 stainless steel Inorganic materials 0.000 claims description 8
- 239000010935 stainless steel Substances 0.000 claims description 8
- 238000000034 method Methods 0.000 claims description 7
- 238000009826 distribution Methods 0.000 description 19
- 238000003303 reheating Methods 0.000 description 8
- 238000005336 cracking Methods 0.000 description 7
- 230000035882 stress Effects 0.000 description 6
- 230000000052 comparative effect Effects 0.000 description 5
- 238000007711 solidification Methods 0.000 description 5
- 230000008023 solidification Effects 0.000 description 5
- 230000007246 mechanism Effects 0.000 description 4
- 230000003068 static effect Effects 0.000 description 3
- 238000005266 casting Methods 0.000 description 2
- 230000007704 transition Effects 0.000 description 2
- 230000007547 defect Effects 0.000 description 1
- 210000001787 dendrite Anatomy 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 230000008646 thermal stress Effects 0.000 description 1
- 150000003568 thioethers Chemical class 0.000 description 1
Landscapes
- Continuous Casting (AREA)
Description
本発明はステンレス鋼連鋳鋳片の内部割れを防
止したステンレス鋼スラブの連続鋳造法に関する
ものである。
周知のごとく、ステンレス鋼スラブの連続鋳造
において、鋳片にしばしば内部割れが発生する。
この内部割れ発生時期は鋳片が完全に凝固する以
前であり、従つて割れ発生のさいその部分にデン
ドライト凝固末期の濃化溶鋼が侵入し、大きな鎖
状の硫化物を形成する。これにより製品の曲げ性
を損い、品質上の問題となつている。
本発明はこのような製品欠陥の原因となる連鋳
鋳片の内部割れの発生を防止したステンレス鋼ス
ラブの連続鋳造法に係るものであり、その要旨と
するところは、鋳片が鋳型を通過したあとの2次
冷却帯域において、2次冷却水の注水量を1.0
/Kg−鋼以上とし、2次冷却帯の長さを、鋳片
の完全凝固位置を過ぎた下方まで冷却水が注水さ
れる長さまで延長し、かつこの2次冷却帯を複数
のゾーン(好ましくは4ゾーン)に分割し、上部
ゾーン(上部2ゾーン)の注水量:下部ゾーン
(下部2ゾーン)の注水量=6〜7:3〜4の比
に総2次冷却水量を配分することにある。これに
より、残溶鋼の静圧による鋳片凝固殻の膨脹を抑
止し、かつ凝固殻内における熱応力の発生を防止
することができ、以つて内部割れの発生を防止す
るものである。
なお、2次冷却帯を鋳片の完全凝固位置よりも
2mを超えた下方にまでも延長するのは不経済で
あり、また、各ゾーン毎に(細分割した場合は細
分割されたゾーン毎に)鋳片単位長さあたりの注
水量を一定とするのであるが、上部ゾーンの長さ
は2次冷却帯の全長の1/3〜2/5とするのが
よい。
以下、本方法の原理と実施態様を試験結果をも
とにして具体的に説明しよう。
連続鋳造法によつて鋳型内に鋳込まれた鋳片
は、鋳型および2次冷却帯域により冷却されて表
面から凝固が進行しつつ下方へ移行するわけであ
るが、未凝固の溶鋼が存在する範囲においては溶
鋼の静圧が鋳片の凝固殻にかかることになる。従
つて、凝固殻の強度が弱くて溶鋼の静圧に耐えき
れない場合には、凝固殻はロール間において膨ら
む。膨らんだ鋳片はその後ロールと接するときに
圧下を受けるのであるが、このさいに凝固殻の内
部側には引張応力が生じる。しかるに、凝固殻、
特にその内部寄りのところはその温度が固相線に
近い極めて高温の状態にあるので、引張強さは極
めて小さく、従つて、ロール圧下による引張応力
によつて割れが発生する。これが内部割れ発生の
一つの機構である。
また、2次冷却帯における冷却水の配分が不適
切な場合には、鋳片があるゾーンからその下のゾ
ーンに移行するさいに、または2次冷却帯域から
自然放冷帯に移行するさいに、鋳片表面側に復熱
が生じる。しかるに、もしこの復熱が発生する時
期(位置)においてなお鋳片内部に未凝固の溶鋼
が残留している場合には、鋳片殻の内部側に引張
応力が生じる。一方、この凝固殻の内部側は前記
のように高温で引張強さが極めて小さいから、こ
の場合には内部割れが生じることになる。これが
内部割れ発生の第二の機構である。第1図は、こ
の第二の機構を知る手がかりとなつた鋳片表面温
度の復熱時における凝固殻厚み方向におけるスラ
ブ長手方向の応力分布の調査結果を示している。
ただし第1図において、aは復熱開始時における
凝固殻厚み方向の温度分布と応力分布を、bは60
℃復熱後におけるそれらを表わしており、TSLは
固相線温度位置、SCはスラブセンターである。
このような第一および第二の内部割れ発生機構
に鑑み、その発生の防止対策としては、(1)鋳片凝
固殻のロール間における膨みを皆無にすること、
および(2)鋳片が完全に凝固する以前においては鋳
片表面に復熱が生じないようにする、ことが有効
かつ重要となる。
本発明者らか、かかる条件を満足する2次冷却
帯における冷却水の注水方法について鋭意検討し
た結果、冷却水の注水量を1.0/Kg−鋼以上と
し、2次冷却帯の長さを鋳片の完全凝固位置より
も下方まで延長し、かつ2次冷却帯域を4ゾーン
に分割し、上部2ゾーン対下部2ゾーンとの注水
量の配分比を6〜7対3〜4にコントロールする
ならば、上記(1)および(2)の条件が満足され、これ
によりステンレス鋼スラブの連続鋳造時の内部割
れ発生を完全に防止し得ることが判明した。
第2図は、SUS430鋼の鋳片表面温度の推移に
及ぼす2次冷却水の配分の影響を調べた結果の1
例を示すもので、2次冷却水の注水量は1.0/
Kg−鋼に保持し、第2図の縦軸に示したような距
離で2次冷却帯を第1,2,3,4の4つのゾー
ンに分割し(Mはモールド、ACは自然放冷帯)、
上部の(1+2)のゾーンと下部の(3+4)の
ゾーンへの冷却水の配分を下記第1表のA,B,
Cの如くにした場合の、鋳片表面温度の変化を示
している。
なお、第2図の例では、上部ゾーン(1+2)
の長さは、全2次冷却帯長さの約1/3であり、
下部ゾーン(3+4)の長さは全2次冷却帯長さ
から上部2ゾーンを引いた長さ(つまり、全2次
冷却帯長さの約2/3)であつてこの下部ゾーン
(実際はゾーン4)に完全凝固位置が存在してい
る例を示しているが、この上部ゾーンと下部ゾー
ンの長さの分割割合については、2次冷却帯の全
長さの2/5以下の長さを有する上部ゾーンと、
この2次冷却帯の全長さから上部ゾーンを引いた
長さをもち且つ完全凝固位置をその長さ内に含む
下部ゾーンとに分割すればよく、このような長さ
割合で2次冷却帯域を分割したうえで、2次冷却
水の総量を、上部ゾーンの注水量:下部ゾーンの
注水量=6〜7:3〜4、の比に配分することに
よつて本発明を好適に実施することができる。
The present invention relates to a continuous casting method for stainless steel slabs that prevents internal cracking of continuously cast stainless steel slabs. As is well known, internal cracks often occur in slabs during continuous casting of stainless steel slabs.
This internal cracking occurs before the slab is completely solidified, and therefore, at the time of cracking, the concentrated molten steel at the final stage of dendrite solidification enters the area and forms large chain-shaped sulfides. This impairs the bendability of the product and poses a quality problem. The present invention relates to a continuous casting method for stainless steel slabs that prevents the occurrence of internal cracks in continuously cast slabs that cause product defects. In the secondary cooling zone after
/Kg- steel or more, the length of the secondary cooling zone is extended to a length that allows cooling water to be injected below the fully solidified position of the slab, and this secondary cooling zone is divided into multiple zones (preferably The total amount of secondary cooling water is divided into 4 zones) and the total amount of secondary cooling water is distributed in the ratio of water injection amount in the upper zone (upper 2 zones): water injection amount in the lower zone (lower 2 zones) = 6 to 7: 3 to 4. be. As a result, it is possible to suppress the expansion of the solidified slab shell due to the static pressure of the remaining molten steel, and also to prevent the generation of thermal stress within the solidified shell, thereby preventing the occurrence of internal cracks. In addition, the secondary cooling zone should be positioned below the completely solidified position of the slab.
It is uneconomical to extend it further than 2m, and the amount of water injected per unit length of slab should be constant for each zone (if subdivided, for each subdivided zone). However, the length of the upper zone is preferably 1/3 to 2/5 of the total length of the secondary cooling zone. Hereinafter, the principle and embodiments of this method will be explained in detail based on test results. A slab cast into a mold by the continuous casting method is cooled by the mold and secondary cooling zone, solidifying from the surface and moving downward, but some unsolidified molten steel still exists. In this range, the static pressure of the molten steel will be applied to the solidified shell of the slab. Therefore, if the solidified shell is too weak to withstand the static pressure of the molten steel, the solidified shell will expand between the rolls. The swollen slab is then subjected to a reduction when it comes into contact with the rolls, and at this time tensile stress is generated inside the solidified shell. However, the solidified shell,
In particular, since the temperature near the inside is extremely high near the solidus line, the tensile strength is extremely low, and therefore, cracks occur due to the tensile stress caused by rolling reduction. This is one mechanism by which internal cracks occur. In addition, if the distribution of cooling water in the secondary cooling zone is inappropriate, when the slab moves from one zone to the zone below it, or from the secondary cooling zone to the natural cooling zone, , reheating occurs on the surface side of the slab. However, if unsolidified molten steel still remains inside the slab at the time (position) where this reheating occurs, tensile stress is generated inside the slab shell. On the other hand, since the inner side of this solidified shell is at high temperature and has extremely low tensile strength as described above, internal cracks will occur in this case. This is the second mechanism for the occurrence of internal cracks. Figure 1 shows the results of an investigation of the stress distribution in the longitudinal direction of the slab in the thickness direction of the solidified shell during reheating of the surface temperature of the slab, which provided a clue as to the second mechanism.
However, in Figure 1, a represents the temperature distribution and stress distribution in the solidified shell thickness direction at the start of reheating, and b represents the 60°
These are shown after reheating at °C, where T SL is the solidus temperature position and SC is the slab center. In view of the first and second internal crack generation mechanisms, measures to prevent their occurrence include (1) eliminating any bulge between the rolls of the solidified slab shell;
and (2) it is effective and important to prevent reheating from occurring on the surface of the slab before it is completely solidified. As a result of intensive study on a method of injecting cooling water into the secondary cooling zone that satisfies these conditions, the inventors determined that the amount of cooling water injected should be 1.0/Kg-steel or more, and the length of the secondary cooling zone should be If the cooling zone is extended below the complete solidification point of the piece, and the secondary cooling zone is divided into 4 zones, and the distribution ratio of water injection amount between the upper 2 zones and the lower 2 zones is controlled at 6 to 7 to 3 to 4. For example, it has been found that conditions (1) and (2) above are satisfied, thereby completely preventing the occurrence of internal cracks during continuous casting of stainless steel slabs. Figure 2 shows one of the results of investigating the effect of secondary cooling water distribution on the transition of SUS430 steel slab surface temperature.
This is an example, and the amount of secondary cooling water is 1.0/
Kg - steel, and divide the secondary cooling zone into four zones 1, 2, 3, and 4 at the distance shown on the vertical axis in Figure 2 (M is molded, AC is natural cooling zone). band),
The distribution of cooling water to the upper (1+2) zone and the lower (3+4) zone is shown in A, B, and Table 1 below.
It shows the change in the surface temperature of the cast slab when it is made as shown in C. In addition, in the example of Fig. 2, the upper zone (1+2)
The length of is approximately 1/3 of the total secondary cooling zone length,
The length of the lower zone (3+4) is the total secondary cooling zone length minus the upper two zones (that is, approximately 2/3 of the total secondary cooling zone length), and this lower zone (actually the zone 4) shows an example in which a complete solidification position exists, but the division ratio of the length of this upper zone and lower zone has a length of 2/5 or less of the total length of the secondary cooling zone. an upper zone;
It is sufficient to divide the secondary cooling zone into a lower zone having a length equal to the total length of the secondary cooling zone minus the upper zone and including the complete solidification position within that length. The present invention is suitably implemented by dividing the secondary cooling water and then distributing the total amount of secondary cooling water in the ratio of upper zone water injection amount: lower zone water injection amount = 6 to 7: 3 to 4. I can do it.
【表】
第2図によれば、本発明に従う冷却水配分条件
Aの場合、鋳片の表面温度は鋳片が鋳型Mより2
次冷却帯に移行したときに約900℃付近まで急速
に低下し、その後は鋳片が自然放冷帯ACに移行
するまで、870〜900℃間の比較的均一な温度を保
持し、極端な鋳片表面温度の復熱は認められな
い。この条件Aで連続鋳造したSUS430鋼スラブ
からサンプルを採取し、その内部割れ発生状況を
調査したが、内部割れは全く見られなかつた。
これに対し、条件Bにおいては下部(3+4)
ゾーンへの冷却水の配合割合が条件Aよりも若干
低いので鋳片が2ゾーンから3ゾーンへ移行した
ときに最大約85℃の表面温度の復熱が生じる。こ
の条件Bで鋳造したSUS430鋼のスラブからサン
プルを採取し、その内部割れ発生状況を調査した
ところ、かなり程度のひどい内部割れが観察され
た。。この内部割れの起点の位置よりその発生時
期を算出したところ復熱開始より鋳片が30cm下方
へ移行した点(復熱量が約40℃となつた点)とな
つた。
条件Cは、鋳片が完全凝固する前に2次冷却帯
域を出てしまうような短い2次冷却帯域(従来
例)であり(第2図の第4ゾーンはない)、また
下部ゾーン(第3ゾーン)への冷却水の配分も低
い。この条件Cの場合は、第2図のように、2次
冷却帯を出たあと(第3ゾーンを出たあと)、鋳
片表面温度は約140℃も復熱する。この条件Cで
鋳造したSUS430鋼のスラブからサンプルを採取
し、内部割れの発生状況を調査したところ、内部
割れが多発しているのが観察された。また条件B
と同様に、割れの起点の位置より内部割れの発生
時期を算出したあと、20cm引き抜かれた時期であ
ると考えられた。
以上の条件Aと条件Bの比較により、鋳片表面
における復熱が発生しないことが内部割れ発生の
防止に対して肝要なこと、また条件Aと条件Cの
比較により、2次冷却帯の長さを、鋳片の完全凝
固位置を過ぎた下方まで冷却水が注入される長さ
にまで延長することが必要であること、が明らか
である。そして、復熱を発生させないように、あ
るいは発生しても内部割れの原因とならない程度
に小さく抑える(約30℃以下)ように、2次冷却
帯域の冷却水を配分することが非常に効果的であ
り、この配分比は、条件Aの如き、上部の2ゾー
ンの注水量:下部の2ゾーンの注水量=65:35で
あれば十分満足なものであることが明らかであ
る。この配分比は後述の実施例で示すように若干
の変更が許容され、60〜70:30〜40すなわち6〜
7:3〜4の配分比で本発明の目的が達成され
る。このように冷却水の注水量を適当に配分する
には2次冷却帯を復数のゾーンに分割することが
必要となり、設備の保守上からは4つに分割する
ことが好ましく、その上部2ゾーンと下部2ゾー
ンの注水量の配分比を上記のように設定するのが
実操業上便宜である。
第3図には、内部割れ発生に及ぼす2次冷却水
量の影響を示す。この第3図の結果から、1.0
/Kg−鋼以上の冷却水量であれば、鋳造速度を
速くしても内部割れの発生なく鋳造できるが、こ
れ未満の冷却水量の場合にはその量が少ない程割
れ発生傾向は顕著となることがわかる。このこと
から、内部割れ発生防止に対し2次冷却水の注水
量を1.0/Kg−鋼以上とすることが本発明にと
つて重要な要件となり、これにより健全な鋳片を
速度を速くして生産できることになる。なお、
1.0/Kg−鋼未満の低注水量で内部割れが発生
しやすくなるのは、鋳片の表面温度が高くなり、
凝固殻の強度が劣化してロール間における膨みが
生じやすくなるためと考えられる。
以下さらに、いくつかの本発明実施例および比
較例を総括して第2表に示す。
なお、これらの実施例および比較例において、
上部ゾーン(1ゾーン+2ゾーン)の長さは、第
2図の例におけると同じく、全2次冷却帯長さの
約1/3であつた。[Table] According to FIG. 2, in the case of cooling water distribution condition A according to the present invention, the surface temperature of the slab is 2.
When it moves to the next cooling zone, it rapidly drops to around 900℃, and after that, it maintains a relatively uniform temperature between 870 and 900℃ until the slab moves to the natural cooling zone, AC. No reheating of the slab surface temperature was observed. A sample was taken from a SUS430 steel slab that was continuously cast under Condition A, and the occurrence of internal cracks was investigated, but no internal cracks were observed. On the other hand, in condition B, the lower part (3+4)
Since the mixing ratio of cooling water to the zone is slightly lower than in condition A, when the slab moves from zone 2 to zone 3, reheating occurs with a maximum surface temperature of about 85°C. When samples were taken from the SUS430 steel slab cast under Condition B and the occurrence of internal cracks was investigated, quite severe internal cracks were observed. . The time of occurrence was calculated from the position of the starting point of this internal crack, and it was found to be the point at which the slab moved 30 cm downward from the start of recuperation (the point at which the amount of recuperation reached approximately 40°C). Condition C is a short secondary cooling zone (conventional example) in which the slab leaves the secondary cooling zone before it is completely solidified (there is no fourth zone in Fig. 2), and a lower zone (no fourth zone in Fig. 2). The distribution of cooling water to 3 zones) is also low. In the case of condition C, as shown in Fig. 2, after leaving the secondary cooling zone (after leaving the third zone), the surface temperature of the slab recuperates by approximately 140°C. When samples were taken from the SUS430 steel slab cast under Condition C and investigated for the occurrence of internal cracks, it was observed that internal cracks occurred frequently. Also, condition B
Similarly, after calculating the timing of internal cracking based on the location of the starting point of the crack, it was determined that it was the time when the internal crack was pulled out by 20 cm. A comparison of Conditions A and B above shows that it is important to prevent internal cracking from occurring on the surface of the slab, and a comparison of Conditions A and C shows that the length of the secondary cooling zone is It is clear that it is necessary to extend the length of the casting to such a length that the cooling water is injected below the point of complete solidification of the slab. It is very effective to distribute the cooling water in the secondary cooling zone so that recuperation does not occur, or even if it does occur, it is kept to a low level (approximately 30℃ or less) that does not cause internal cracks. It is clear that this distribution ratio is sufficiently satisfactory if, as in condition A, the amount of water injected into the upper two zones: the amount of water injected into the lower two zones = 65:35. This distribution ratio may be slightly changed as shown in the examples below, and is 60 to 70:30 to 40, that is, 6 to
The objective of the invention is achieved with a distribution ratio of 7:3-4. In order to appropriately distribute the amount of cooling water injected in this way, it is necessary to divide the secondary cooling zone into a number of zones.From the viewpoint of equipment maintenance, it is preferable to divide the secondary cooling zone into four zones, and the upper two It is convenient for actual operation to set the distribution ratio of the water injection amount between the zone and the lower two zones as described above. Figure 3 shows the influence of the amount of secondary cooling water on the occurrence of internal cracks. From the results shown in Figure 3, 1.0
/Kg - If the amount of cooling water is higher than steel, it can be cast without internal cracking even if the casting speed is increased, but if the amount of cooling water is less than this, the tendency for cracking to occur becomes more pronounced as the amount is smaller. I understand. Therefore, it is an important requirement for the present invention to increase the amount of secondary cooling water injected to 1.0/Kg-steel or more in order to prevent the occurrence of internal cracks. It will be possible to produce. In addition,
Internal cracks are more likely to occur at low water injection amounts, less than 1.0/Kg-steel, because the surface temperature of the slab increases,
This is thought to be because the strength of the solidified shell deteriorates and bulges tend to occur between the rolls. Below, some examples of the present invention and comparative examples are summarized in Table 2. In addition, in these Examples and Comparative Examples,
The length of the upper zone (Zone 1+Zone 2) was about 1/3 of the total secondary cooling zone length, as in the example of FIG.
【表】
第2表において、比較例1および2は、鋳片が
完全凝固する以前に2次冷却帯を出る従来例であ
り、2次冷却水の配分も本発明範囲外のものであ
る。
比較例3および4は、2次冷却帯域の長さおよ
び2次冷却水の配分は本発明範囲であるが、注水
量が1.0/Kg−鋼未満である場合の例である。
比較例5および6は、2次冷却帯域の長さおよ
び注水量は本発明範囲であるが、注水量の配分が
本発明範囲外の例である。
実施例7および8は、2次冷却帯の長さを鋳片
の完全凝固位置を過ぎた下方まで冷却水が注水さ
れる位置まで延長し、注水量も1.0/Kg−鋼以
上とし、上部ゾーンと下部ゾーンの注水量の配分
も6〜7:3〜4の範囲にある本発明に従う実施
結果である。
第2表の結果から、本発明の注水条件の1つを
欠いても内部割れ発生を抑えることができないこ
とが明らかである。[Table] In Table 2, Comparative Examples 1 and 2 are conventional examples in which the slab exits the secondary cooling zone before completely solidifying, and the distribution of secondary cooling water is also outside the scope of the present invention. Comparative Examples 3 and 4 are examples in which the length of the secondary cooling zone and the distribution of secondary cooling water are within the range of the present invention, but the amount of water injected is less than 1.0/Kg-steel. Comparative Examples 5 and 6 are examples in which the length of the secondary cooling zone and the amount of water injection are within the range of the present invention, but the distribution of the amount of water injection is outside the scope of the invention. In Examples 7 and 8, the length of the secondary cooling zone was extended to the point below where the cooling water was injected past the completely solidified position of the slab, and the amount of water injected was also 1.0/Kg-steel or more, and the upper zone The distribution of the amount of water injected into the lower zone and the lower zone is also in the range of 6-7:3-4, which is the implementation result according to the present invention. From the results in Table 2, it is clear that even if one of the water injection conditions of the present invention is missing, the occurrence of internal cracks cannot be suppressed.
第1図は連続鋳片の凝固殻厚み方向における温
度分布とそれにより発生した内部応力との関係
図、第2図は鋳片表面温度の推移に及ぼす2次冷
却水の配分条件の影響を示す関係図、第3図は内
部割れ発生に及ぼす2次冷却水の注水量の影響を
示す関係図である。
Figure 1 shows the relationship between the temperature distribution in the thickness direction of the solidified shell of a continuous slab and the internal stress generated thereby, and Figure 2 shows the influence of the secondary cooling water distribution conditions on the transition of the slab surface temperature. FIG. 3 is a relational diagram showing the influence of the amount of secondary cooling water injected on the occurrence of internal cracks.
Claims (1)
片が鋳型を通過したあとの2次冷却帯において、
この2次冷却帯の長さを鋳片の完全凝固位置より
も2m以内下方にまで冷却水が注水されるような
長さに延長し、この2次冷却水の注水量を1.0%
Kg鋼以上とし、この2次冷却帯を全長の1/3〜2/5
の長さを有する上部ゾーンと残りの長さを有しか
つ前記の完全凝固位置をその長さ内に含む下部ゾ
ーンとに分割し、各ゾーン毎に鋳片単位長さあた
りの注水量を一定にすると共に、2次冷却水の総
量を上部ゾーンの注水量:下部ゾーンの注水量=
6〜7:3〜4の比に配分することを特徴とする
ステンレス鋼スラブの連続鋳造法。 2 上部ゾーンをさらに2つのゾーンに細分割
し、下部ゾーンもさらに2つのゾーンに細分割
し、かつそれらの細分割されたゾーン毎に鋳片単
位長さあたりの注水量を一定にする特許請求の範
囲第1項記載のステンレス鋼スラブの連続鋳造
法。[Claims] 1. During continuous casting of stainless steel slabs, in the secondary cooling zone after the slab passes through the mold,
The length of this secondary cooling zone is extended to a length that allows cooling water to be injected within 2m below the fully solidified position of the slab, and the amount of secondary cooling water injected is reduced to 1.0%.
Kg steel or more, and this secondary cooling zone is 1/3 to 2/5 of the total length.
The area is divided into an upper zone having the same length and a lower zone having the remaining length and including the completely solidified position within that length, and the amount of water injected per unit length of the slab is constant for each zone. At the same time, the total amount of secondary cooling water is calculated as follows: Upper zone water injection amount: Lower zone water injection amount =
A continuous casting method for stainless steel slabs, characterized in that the ratio is 6-7:3-4. 2. A patent claim in which the upper zone is further subdivided into two zones, the lower zone is further subdivided into two zones, and the amount of water injected per unit length of slab is constant for each of these subdivided zones. A continuous casting method for stainless steel slabs according to item 1.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10125876A JPS5326730A (en) | 1976-08-25 | 1976-08-25 | Method of continuously casting stainless steel slab |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10125876A JPS5326730A (en) | 1976-08-25 | 1976-08-25 | Method of continuously casting stainless steel slab |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5326730A JPS5326730A (en) | 1978-03-13 |
JPS6139144B2 true JPS6139144B2 (en) | 1986-09-02 |
Family
ID=14295877
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP10125876A Granted JPS5326730A (en) | 1976-08-25 | 1976-08-25 | Method of continuously casting stainless steel slab |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5326730A (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3048711C2 (en) * | 1980-12-23 | 1991-08-01 | Hamburger Stahlwerke Gmbh, 2103 Hamburg | Process for cooling strands in the continuous casting of steel billets |
-
1976
- 1976-08-25 JP JP10125876A patent/JPS5326730A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS5326730A (en) | 1978-03-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN108160964A (en) | A kind of method of phosphor-containing steel sheet billet continuous casting | |
JPS6139144B2 (en) | ||
CN105382232A (en) | Method for preventing generation of center line cracks in steel board continuous casting process | |
JPS5910846B2 (en) | High temperature slab direct rolling method | |
JPS63168260A (en) | Hot working method for continuously cast billet | |
JPH04279264A (en) | Continuous casting method | |
JPH0390263A (en) | Continuous casting method | |
JPH0390259A (en) | Continuous casting method | |
JPS58184049A (en) | Continuous casting method of steel in curbed type | |
JP3022116B2 (en) | Thin slab by continuous casting method | |
JPS5952013B2 (en) | Continuous casting method for seawater resistant steel | |
JPS597464A (en) | Method and device for continuous casting of thin steel plate | |
JP3615482B2 (en) | Light reduction method in billet caster | |
JPS61115653A (en) | Continuous casting method of medium-carbon steel | |
JP2663126B2 (en) | Two-way drawing type horizontal continuous casting method | |
JP2024004032A (en) | Continuous casting method | |
JPH01130860A (en) | Manufacture of stainless steel cast billet for forging | |
JP2000005855A (en) | Corner cracking preventing method for steel piece | |
SU447216A1 (en) | Method of centrifugal casting of cast iron pipes | |
JPH06190521A (en) | Production of large cast bloom | |
JP2845706B2 (en) | Molding equipment for continuous casting equipment | |
JP4458796B2 (en) | Continuous casting equipment | |
JPS5620117A (en) | Manufacture of billet by continuous casting | |
JPH05220557A (en) | Continuous casting method | |
JPS599258B2 (en) | Manufacturing method for continuous casting slabs of healthy Ni-containing steel |