JPS6138122B2 - - Google Patents

Info

Publication number
JPS6138122B2
JPS6138122B2 JP56073593A JP7359381A JPS6138122B2 JP S6138122 B2 JPS6138122 B2 JP S6138122B2 JP 56073593 A JP56073593 A JP 56073593A JP 7359381 A JP7359381 A JP 7359381A JP S6138122 B2 JPS6138122 B2 JP S6138122B2
Authority
JP
Japan
Prior art keywords
adsorption tower
tank
oxygen
adsorption
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56073593A
Other languages
Japanese (ja)
Other versions
JPS57190629A (en
Inventor
Hiroshi Yokoyama
Masaomi Tomomura
Toshio Yahagi
Shunsuke Nokita
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP56073593A priority Critical patent/JPS57190629A/en
Publication of JPS57190629A publication Critical patent/JPS57190629A/en
Publication of JPS6138122B2 publication Critical patent/JPS6138122B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は酸素濃縮方法に係り、特に、空気中か
ら窒素を吸着塔で加圧吸着し、その後に吸着塔を
減圧して窒素を排出し吸着塔を再生する圧力スイ
ング法を適用して濃縮酸素を得るに好適な方法に
関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an oxygen concentration method, and in particular, a pressure swing method in which nitrogen is adsorbed from air under pressure in an adsorption tower, and then the adsorption tower is depressurized to discharge nitrogen to regenerate the adsorption tower. The present invention relates to a method suitable for obtaining concentrated oxygen by applying the method.

従来、圧力スイング法によつて空気中から酸素
を濃縮する方法が種々提案されている。この方法
は、通常、窒素成分を選択的に吸着する合成ゼオ
ライトや天然ゼオライトなどの吸着剤を入れた容
器を準備し、原料空気を容器の一端側から加圧下
で供給し、反対端から製品酸素ガスを取り出すこ
とからなつている。そして、吸着剤が窒素成分で
飽和し、製品酸素ガスが許容濃度の窒素成分を含
むようになつた時に原料空気の送入停止を行い、
引き続き減圧下で吸着剤の脱着を図るようにして
いる。これらの作業は複数の吸着容器を用意し、
各容器を時間により順次切り換えることにより連
続運転を行うようにしている。このような圧力ス
イング法による酸素ガスの製造は、空気液化分離
装置の如く極低温や高圧空気を得るための莫大な
電力や大規模設備を必要としないため、極めて有
利であり、特公昭53―7316号、同53―8558号、同
53―44160号など、非加熱再生スイング法が提案
されているところである。
Conventionally, various methods have been proposed for concentrating oxygen from air using a pressure swing method. This method usually involves preparing a container containing an adsorbent such as synthetic zeolite or natural zeolite that selectively adsorbs nitrogen components, supplying raw air under pressure from one end of the container, and supplying product oxygen from the other end. It is derived from extracting gas. Then, when the adsorbent is saturated with nitrogen components and the product oxygen gas contains a permissible concentration of nitrogen components, the supply of raw air is stopped.
Subsequently, the adsorbent is desorbed under reduced pressure. For these operations, prepare multiple adsorption containers and
Continuous operation is achieved by sequentially switching over each container over time. Production of oxygen gas by such a pressure swing method is extremely advantageous because it does not require huge amounts of electricity or large-scale equipment to obtain extremely low temperature and high-pressure air, such as air liquefaction separation equipment. No. 7316, No. 53-8558, No. 7316, No. 53-8558, No.
No. 53-44160 and other non-heating regeneration swing methods have been proposed.

しかしながら、従来方法では、酸素濃度を90%
以上に維持することは極めて困難であることが知
られており、しかも、脱着工程時に製品酸素ガス
を大量に使用するため酸素収量の減少を招く問題
を有している。即ち、従来方法は吸着剤の再生を
減圧工程中に製品酸素ガスの一部を脱離中の吸着
成分に対してパージすることによつて効率的に行
うことを特徴の一つとしている。この場合、吸着
工程と脱着工程での圧力差が大きい程、吸―脱着
のサイクルが良好に成立するが、圧力差が小さい
場合には製品純度を高めるために脱着パージガス
量が増加することになる。しかも、装置が大型化
し処理量が増大すると取出ガス量の5〜6倍にも
達する場合がある。製品収率の面から考えると製
品ガスの一部が消費されることは無視できない問
題であり、最大の欠点となることは明らかであ
る。このために、減圧状態の吸着塔を高真空で減
圧することによつて圧力差を増し、パージガスを
節約して吸着剤の再生を行う方法も使用されてい
る。しかし真空発生に必要となるエネルギーコス
トを無視することは出来ず、特に装置が大型化し
た場合は莫大な動力コストが必要となり経済的で
ない。一方、排水処理施設等で用いる酸素などで
は特に装置自体とこれを運転するための費用低減
が要求されるので、上記の如き減圧装置を用い
ず、吸着塔へ常圧以上となるよう空気を圧入し、
再生時にはこの吸着塔を常圧に復帰させるように
することも既に行われているが、この場合には良
好な吸着及び再生効率を得るため多数の吸着塔を
必要とし、この結果装置価格が高くなつたり配管
や弁の配置が複雑となる難点がある。
However, in the conventional method, the oxygen concentration is reduced to 90%.
It is known that it is extremely difficult to maintain this level, and furthermore, a large amount of product oxygen gas is used during the desorption process, resulting in a decrease in oxygen yield. That is, one of the characteristics of the conventional method is that the adsorbent is efficiently regenerated by purging a part of the product oxygen gas against the adsorbed components being desorbed during the depressurization process. In this case, the larger the pressure difference between the adsorption process and the desorption process, the better the adsorption-desorption cycle will be, but if the pressure difference is small, the amount of desorption purge gas will increase to increase product purity. . Moreover, as the equipment becomes larger and the throughput increases, the amount of gas to be taken out may reach five to six times. From the standpoint of product yield, the consumption of a portion of the product gas is a problem that cannot be ignored, and is clearly the biggest drawback. For this purpose, a method is also used in which the adsorption tower in a reduced pressure state is reduced in pressure with a high vacuum to increase the pressure difference, thereby saving purge gas and regenerating the adsorbent. However, the energy cost required to generate a vacuum cannot be ignored, and especially when the device becomes large, a huge power cost is required, which is not economical. On the other hand, in the case of oxygen used in wastewater treatment facilities, etc., there is a need to reduce the cost of the equipment itself and its operation, so air is pressurized into the adsorption tower to a pressure above normal pressure without using a pressure reducing device like the one mentioned above. death,
It has already been done to return this adsorption tower to normal pressure during regeneration, but in this case a large number of adsorption towers are required to obtain good adsorption and regeneration efficiency, resulting in high equipment costs. The problem is that the arrangement of the pipes and valves is complicated.

本発明の目的は上記した難点を解消するために
吸着塔を3基のみ用い、脱着再生工程用のパージ
ガス量を最小限とし、かつ真空発生装置を用いず
に吸着剤の再生をほぼ完全に行う方法を提供する
ことにある。すなわち製品酸素ガス濃度を90%以
上に向上させ、かつ製品ガスの収量を飛躍的に増
大することのできる空気からの酸素濃縮方法を提
供することにある。
The purpose of the present invention is to solve the above-mentioned difficulties by using only three adsorption towers, minimizing the amount of purge gas for the desorption and regeneration process, and almost completely regenerating the adsorbent without using a vacuum generator. The purpose is to provide a method. That is, the object of the present invention is to provide a method for concentrating oxygen from air that can improve the concentration of product oxygen gas to 90% or more and dramatically increase the yield of product gas.

本発明者は窒素を選択的に吸着する吸着剤の種
類、加圧下の吸着現象、吸着塔からの排気すなわ
ち減圧による吸着剤の脱着再生現象等の諸工程を
鋭意検討し、酸素濃縮を目的とする経済的サイク
ルを構成する具体的工程の組み合せや各工程の好
ましい具体的実施条件を見出したものである。
The present inventor has intensively studied various processes such as the type of adsorbent that selectively adsorbs nitrogen, the adsorption phenomenon under pressure, and the desorption and regeneration phenomenon of the adsorbent due to exhaust gas from the adsorption tower, that is, reduced pressure. We have discovered the combination of specific steps that make up the economic cycle and the specific preferred conditions for implementing each step.

以下に、第1図を参照して酸素濃縮を行うため
の装置の実施例を詳細に説明する。
Below, an embodiment of an apparatus for oxygen concentration will be described in detail with reference to FIG.

本実施例に係る酸素濃縮装置は、合成ゼオライ
ト、天然ゼオライト等の窒素を選択的に吸着する
吸着剤を充填した第1,第2及び第3吸着塔1,
2,3及びタンク4を備えている。各々の吸着塔
1〜3の下端部には、原料の圧縮空気を導入する
ための導管21からそれぞれ分岐される吸着塔入
口側導管22,23,24が接続され、各々の入
口側導管22〜24に介装された送気用開閉弁
7,9をもつて各別に原料空気を圧入させること
を可能にした原料空気圧入配管が構成されてい
る。また、前記入口側導管22〜24には排気用
開閉弁6,8,10を介装した分岐管を集合して
パージガス排出を行う集合導管25が接続されて
いる。この集合導管25は大気と連通自在となつ
ているものである。
The oxygen concentrator according to this embodiment includes first, second and third adsorption towers 1 filled with adsorbents such as synthetic zeolite and natural zeolite that selectively adsorb nitrogen;
2, 3 and a tank 4. Adsorption tower inlet conduits 22, 23, and 24 branched from a conduit 21 for introducing raw material compressed air are connected to the lower end of each of the adsorption towers 1 to 3, and each inlet conduit 22 to A raw air press-in piping is constructed which has air supply on-off valves 7 and 9 interposed in 24 to make it possible to separately pressurize raw air. Further, a collection pipe 25 is connected to the inlet pipes 22 to 24, which collects branch pipes in which exhaust valves 6, 8, and 10 are interposed, and discharges purge gas. This collecting pipe 25 is capable of freely communicating with the atmosphere.

更に、前記原料空気圧入配管およびパージガス
排出配管が設けられる側の反対側である吸着塔1
〜3の上端部には、出側導管26,27,28が
それぞれ設けられている。この出側導管26,2
7,28には各々開閉弁13,16,19を介装
し、相互連通可能ならしめた連通導管31,3
4,37が分岐されている。この連通配管は開閉
弁13,16,19の操作により各吸着塔1〜〜
3相互が連通状態となさしめるものである。ま
た、前記出側導管26,27,28には、前記タ
ンク4に濃縮酸素を供給するための導出配管2
9,32,35が開閉弁11,14,17を介在
させた分岐配管が設けられている。各導出配管2
9,32,35は集合管となり、濃縮酸素を製品
として取り出す流出導管38と、タンク4に開閉
弁39を介装される配管とに分岐されている。更
に、前記出側導管26,27,28には、前記タ
ンク4に収容された酸素ガスをパージガスとして
各吸着塔1〜3に導入し得る導入配管30,3
3,36が分岐され、各導入配管30,33,3
6は集合管としてタンク4に接続されているもの
である。斯かる装置において、タンク4の容積と
各吸着塔1〜3の容積との比が1:0.5〜2.0を満
足するような大きさとされている。
Furthermore, the adsorption tower 1 is located on the side opposite to the side where the raw material air injection piping and the purge gas discharge piping are provided.
Outlet conduits 26, 27, and 28 are provided at the upper end portions of .about.3, respectively. This outlet conduit 26,2
Communication conduits 31, 3 are provided with on-off valves 13, 16, 19 respectively in 7, 28 so as to be able to communicate with each other.
4,37 are branched. This communication pipe is connected to each adsorption tower 1 through operation of on-off valves 13, 16, and 19.
3 are in communication with each other. Further, the outlet conduits 26, 27, and 28 include outlet pipes 2 for supplying concentrated oxygen to the tank 4.
Branch pipes 9, 32, and 35 are provided with on-off valves 11, 14, and 17 interposed therebetween. Each lead-out pipe 2
9, 32, and 35 are collecting pipes, which are branched into an outflow conduit 38 for taking out concentrated oxygen as a product, and a pipe in which an on-off valve 39 is interposed in the tank 4. Further, the outlet pipes 26, 27, 28 are provided with introduction pipes 30, 3 that can introduce the oxygen gas contained in the tank 4 into each adsorption tower 1-3 as a purge gas.
3, 36 are branched, and each introduction pipe 30, 33, 3
6 is connected to the tank 4 as a collecting pipe. In such an apparatus, the size is such that the ratio of the volume of the tank 4 to the volume of each of the adsorption towers 1 to 3 satisfies 1:0.5 to 2.0.

このような酸素濃縮装置を用いて濃縮酸素ガス
を得る方法は、第2図のガス流れ状態図に示され
るように行われる。
A method for obtaining concentrated oxygen gas using such an oxygen concentrator is performed as shown in the gas flow diagram of FIG.

第1工程は、第2図aに示される如く、第1吸
着塔1を加圧下に保持し、その導出配管29の開
閉弁11のみを開放し、濃縮酸素を流出導管38
から製品酸素として取り出し、同時に開閉弁39
を開放してタンク4と第1吸着塔1とて圧力均等
化を行う。他方、第2,第3吸着塔2,3は集合
導管25に排気用開閉弁8,10のみを開放して
大気と連通させ、常圧下に保持される。したがつ
て、この工程では、開閉弁11,39,8,10
を開とし、他の開閉弁は閉状態とするものであ
る。
In the first step, as shown in FIG. 2a, the first adsorption tower 1 is maintained under pressure, only the on-off valve 11 of its outlet pipe 29 is opened, and concentrated oxygen is transferred to the outflow pipe 38.
At the same time, the on-off valve 39
is opened to equalize the pressure in the tank 4 and the first adsorption tower 1. On the other hand, the second and third adsorption towers 2 and 3 are maintained under normal pressure by opening only the exhaust valves 8 and 10 in the collecting conduit 25 to communicate with the atmosphere. Therefore, in this step, the on-off valves 11, 39, 8, 10
is open, and the other on-off valves are closed.

次に、第2工程は、第2図bに示される如く、
第1吸着塔1の導出配管29の開閉弁11および
連通導管31の開閉弁13と、第2吸着塔2の連
通導管34の開閉弁16、および第3吸着塔3に
おける排気用開閉弁10とを開とし、その他の弁
を閉とする工程である。この工程では、第1吸着
塔1から濃縮酸素を流出導管38を介して取り出
すと同時に、第1,第2吸着塔1,2とを連通状
態にして濃縮酸素を第2吸着塔2に導入し、両者
の圧力均等化を行う。第3吸着塔3は大気開放さ
れ常圧下に保持される。
Next, the second step is as shown in FIG. 2b.
The on-off valve 11 of the outlet pipe 29 of the first adsorption tower 1 and the on-off valve 13 of the communication conduit 31, the on-off valve 16 of the communication conduit 34 of the second adsorption tower 2, and the exhaust on-off valve 10 of the third adsorption tower 3. This is the process of opening the valve and closing the other valves. In this step, concentrated oxygen is taken out from the first adsorption tower 1 through the outflow conduit 38, and at the same time, the first and second adsorption towers 1 and 2 are brought into communication and the concentrated oxygen is introduced into the second adsorption tower 2. , equalizes the pressure between the two. The third adsorption tower 3 is opened to the atmosphere and maintained at normal pressure.

更に、第3工程は、第2図cに示されるよう
に、開閉弁11,15,10を開とし、他の弁を
閉とすることにより行われる。したがつて、第1
吸着塔1から濃縮酸素を流出導管38を通じて取
り出すと同時に、第2吸着塔2とタンク4間の圧
力均等化をなし、第3吸着塔3を常圧下に保持さ
せる工程がなされる。
Furthermore, the third step is performed by opening the on-off valves 11, 15, and 10 and closing the other valves, as shown in FIG. 2c. Therefore, the first
At the same time as the concentrated oxygen is taken out from the adsorption tower 1 through the outflow conduit 38, the pressure is equalized between the second adsorption tower 2 and the tank 4, and the third adsorption tower 3 is maintained at normal pressure.

また、第4工程は、第2図dに示される如く、
開閉弁6,7,10,18,39を開とし、他の
弁を閉とする。このため、タンク4から残留濃縮
酸素を取り出されると同時に、大気開放下にある
第3吸着塔3にも濃縮酸素が送入され、第3吸着
塔3のパージが行われる。また、同時に第1吸着
塔1は大気開放され、第2吸着塔2には原料空気
が圧送される。
In addition, the fourth step is as shown in FIG. 2d,
The on-off valves 6, 7, 10, 18, and 39 are opened, and the other valves are closed. Therefore, at the same time as the residual concentrated oxygen is taken out from the tank 4, the concentrated oxygen is also fed into the third adsorption tower 3 which is open to the atmosphere, and the third adsorption tower 3 is purged. At the same time, the first adsorption tower 1 is opened to the atmosphere, and raw air is fed under pressure to the second adsorption tower 2.

このような4つの工程は、第1,第2,第3吸
着塔1〜3に順次適用される。第1吸着塔1のみ
に着目して第2図aの状態に戻るための1サイク
ルは上記4工程が3回繰り返えされ、その間に第
1吸着塔1から第2吸着塔2、第3吸着塔3に順
次交替するので全12工程となる。
These four steps are sequentially applied to the first, second, and third adsorption towers 1 to 3. Focusing only on the first adsorption tower 1, the above four steps are repeated three times in one cycle to return to the state shown in Fig. 2a. Since the adsorption tower 3 is sequentially replaced, there are 12 steps in total.

このような方法によれば、タンク4に圧入され
た濃縮酸素によつて、各々の吸着塔1〜3との圧
力均等化あるいはパージが行われ、吸着剤の窒素
選択性能を一層効果的に再生することができる。
According to such a method, pressure equalization or purging with each adsorption tower 1 to 3 is performed by the concentrated oxygen injected into the tank 4, and the nitrogen selection performance of the adsorbent is more effectively regenerated. can do.

本発明者は第1図に示した酸素濃縮装置を使用
して種々の酸素濃縮実験を行い、サイクル時間、
酸素ガス取り出し量、タンクへの圧入酸素ガス
量、タンクからの吐出酸素ガス量及びタンク容積
等が酸素濃度へ与える影響の知見を得た。次にそ
の実験結果例について記す。
The present inventor conducted various oxygen concentration experiments using the oxygen concentrator shown in FIG.
We obtained knowledge of the effects of the amount of oxygen gas extracted, the amount of oxygen gas injected into the tank, the amount of oxygen gas discharged from the tank, the tank volume, etc. on oxygen concentration. Next, an example of the experimental results will be described.

<実験例 1> 吸着剤として合成ゼオライト5A型を使用し、
吸着塔は内径200mm、塔高1800mmのものを3基用
い、タンク容量を各種変化させた実験及び該タン
ク内に圧入される濃縮酸素量G0に対して該タン
クから吐出して吸着剤の再生パージガスとして使
用するために吸着塔へ流入する濃縮酸素ガス量
G1との比を各種変化させた実験を行つた。この
時G1の流量調節は該タンクからの出口配管にオ
リフイスを設置して行つた。吸着圧力は3Kg/cm2
とし、弁操作は第3図の工程に従つて行つた。実
験結果は第4図に示した通りである。
<Experiment example 1> Using synthetic zeolite type 5A as an adsorbent,
Three adsorption towers with an inner diameter of 200 mm and a tower height of 1800 mm were used, and the tank capacity was varied in various ways. Amount of concentrated oxygen gas flowing into the adsorption tower for use as purge gas
Experiments were conducted in which the ratio to G 1 was varied. At this time, the flow rate of G1 was adjusted by installing an orifice in the outlet piping from the tank. Adsorption pressure is 3Kg/cm 2
The valve operation was performed according to the steps shown in FIG. The experimental results are shown in FIG.

第4図において、曲線A,B,C,D及びEは
それぞれG1/G0=0.05,0.1,0.2,0.5及び1.0と
した場合の結果である。これらの実験結果から、
酸素濃度90%以上を得ることができる条件はタン
ク容積W1及び吸着塔容積W2の比すなわちW1
W2が0.5ないし2.0の範囲であり、かつ該タンクか
ら吐出してパージガスとして使用されるガス量
G1及び該タンクに吸着塔から圧力均等化時に流
れるガス量G0との比すなわちG1/G0が0.2ないし
0.5であることが明らかになつた。
In FIG. 4, curves A, B, C, D and E are the results when G 1 /G 0 =0.05, 0.1, 0.2, 0.5 and 1.0, respectively. From these experimental results,
The conditions under which an oxygen concentration of 90% or more can be obtained is the ratio of the tank volume W 1 and the adsorption tower volume W 2 , that is, W 1 /
W 2 is in the range of 0.5 to 2.0, and the amount of gas discharged from the tank and used as purge gas
The ratio between G 1 and the gas amount G 0 that flows into the tank from the adsorption tower during pressure equalization, that is, G 1 /G 0 is 0.2 or more.
It was revealed that the value was 0.5.

本実験例の結果を考慮して得られた知見を整理
すると下記の如くである。
The findings obtained in consideration of the results of this experimental example are summarized as follows.

(1) タンク容積が吸着塔容積に比較して0.5より
小さい場合は吸着剤の再生を行うパージガス量
が十分でないため、90%濃度以上の酸素ガスを
得ることはできない。
(1) If the tank volume is less than 0.5 compared to the adsorption tower volume, the amount of purge gas for regenerating the adsorbent is insufficient, and oxygen gas with a concentration of 90% or higher cannot be obtained.

(2) タンク容積が吸着塔容積に比較して2.0より
大きい場合、吸着塔から該タンクへ送入される
ガス量が増加するため、結果的に低濃度の酸素
ガスがタンク内に流入し、パージガスとして該
タンクより吐出されても十分に吸着剤の再生が
行えず、90%濃度以上の酸素ガスを得ることは
できない。
(2) If the tank volume is larger than 2.0 compared to the adsorption tower volume, the amount of gas sent from the adsorption tower to the tank increases, resulting in low concentration oxygen gas flowing into the tank, Even if it is discharged from the tank as a purge gas, the adsorbent cannot be regenerated sufficiently, and oxygen gas with a concentration of 90% or higher cannot be obtained.

(3) タンクから吐出される吸着剤の再生パージガ
ス量が該タンク内に送入されるガス量に比して
0.2より小さい場合、吸着剤の再生が十分に行
われないため、90%濃度以上の酸素ガスを得る
ことはできない。
(3) The amount of regenerated purge gas for the adsorbent discharged from the tank is compared to the amount of gas fed into the tank.
If it is less than 0.2, the adsorbent will not be regenerated sufficiently, making it impossible to obtain oxygen gas with a concentration of 90% or higher.

(4) タンクから吐出される吸着剤の再生パージガ
ス量が該タンク内に送入されるガス量に比して
1.0より大きい場合、該タンク内の圧力が低下
し、第2図aに示した第一工程時の圧力変動が
大きくなるためには低濃度酸素ガスが該タンク
に流入する状態となる。また、第2図cに示し
た第3工程に使用する圧力等化ガス量も制限を
受けるために第2図dに示した第4工程時に圧
入される空気量が増大して吸着塔の負荷が大き
くなる。これらの結果から、90%濃度以上の酸
素ガスを得ることは困難である。
(4) The amount of regeneration purge gas for the adsorbent discharged from the tank is compared to the amount of gas fed into the tank.
If it is larger than 1.0, the pressure inside the tank decreases and the pressure fluctuation during the first step shown in FIG. 2a becomes large, resulting in a state in which low concentration oxygen gas flows into the tank. In addition, since the amount of pressure equalization gas used in the third step shown in Figure 2 c is also limited, the amount of air pressurized during the fourth step shown in Figure 2 d increases, causing a load on the adsorption tower. becomes larger. From these results, it is difficult to obtain oxygen gas with a concentration of 90% or higher.

上記の知見から、第1図に示した酸素濃縮装置
においては0.5≦W1/W2≦2.0及び0.2≦G1/G0
0.5であることが、90%濃度以上の酸素ガスを得
るため必要な条件であることが判明したわけであ
る。
From the above knowledge, in the oxygen concentrator shown in Figure 1, 0.5≦W 1 /W 2 ≦2.0 and 0.2≦G 1 /G 0
It was found that 0.5 is a necessary condition to obtain oxygen gas with a concentration of 90% or higher.

次に本発明の具体的実施例について説明する
が、本発明はこれにより何ら制限されるものでは
ない。
Next, specific examples of the present invention will be described, but the present invention is not limited thereto.

<実施例> 第1図に示した装置を用い、本発明による空気
から酸素の濃縮を行つた。窒素吸着剤として合成
ゼオライト5A型を吸着塔1,2,3に充填し
た。吸着塔1,2,3は各々内径200mm、高さ
1800mmのもので、一塔当りの吸着剤充填量は20Kg
である。導管21より各吸着塔へ導入される原料
空気の送入圧力は3.0Kg/cm2Gとし、酸素濃縮装
置の作動シーケンス、すなわち弁5,6,7,
8,9,10,11,12,13,14,15,
16,17,18,19,39の開閉状態及び開
閉時間は第3図に示した通りに行つた。また、
W1/W2は1.0とし、G1/G0は0.5として行つた。
この結果、酸素濃度91%の製品ガスを800/h
の収量で得ることができた。さらに製品酸素ガス
の取り出し流量を500/hに調節したところ酸
素濃度は93%であつた。これらのことから、本発
明によつて90%以上の酸素ガスが得られることを
確認することができた。
<Example> Using the apparatus shown in FIG. 1, oxygen was concentrated from air according to the present invention. Adsorption towers 1, 2, and 3 were filled with synthetic zeolite type 5A as a nitrogen adsorbent. Adsorption towers 1, 2, and 3 each have an inner diameter of 200 mm and a height.
1800mm, adsorbent filling amount per tower is 20Kg
It is. The feeding pressure of the raw material air introduced into each adsorption tower from the conduit 21 is 3.0 Kg/cm 2 G, and the operating sequence of the oxygen concentrator, that is, valves 5, 6, 7,
8, 9, 10, 11, 12, 13, 14, 15,
The opening/closing conditions and opening/closing times of 16, 17, 18, 19, and 39 were as shown in FIG. Also,
W 1 /W 2 was set to 1.0, and G 1 /G 0 was set to 0.5.
As a result, the product gas with an oxygen concentration of 91% is produced at 800/h.
could be obtained with a yield of . Furthermore, when the flow rate of the product oxygen gas was adjusted to 500/h, the oxygen concentration was 93%. From these results, it was confirmed that 90% or more oxygen gas could be obtained by the present invention.

<比較例 1> 本発明の効果を確認するための第1の比較例と
して、第1図の装置を用いて酸素濃縮を実施し
た。第2図b,c及びdに示した工程を省略し、
さらに第1図の弁39を常時閉状態とし、それ以
外の条件はすべて実施例1と同一条件とし、800
/hのガス量を取り出した場合、酸素濃度は38
%と低かつた。
<Comparative Example 1> As a first comparative example for confirming the effects of the present invention, oxygen concentration was carried out using the apparatus shown in FIG. Omitting the steps shown in FIG. 2 b, c and d,
Furthermore, the valve 39 in FIG. 1 is kept in a normally closed state, and all other conditions are the same as in Example 1.
/h of gas, the oxygen concentration is 38
% was low.

<比較例 2> 第2の比較例として、第1図の装置を用いて酸
素濃縮を実施した、第2図bに示した工程におけ
る吸着塔間の圧力均等化工程を昇略し、第1図の
弁13,16,19を常時閉状態として製品酸素
ガスを取り出した以外は実施例1と同一条件とし
て800/hの酸素ガスを取り出した場合、酸素
濃度は82%であつた。
<Comparative Example 2> As a second comparative example, oxygen concentration was carried out using the apparatus shown in FIG. 1, and the pressure equalization step between the adsorption towers in the step shown in FIG. When 800/h of oxygen gas was taken out under the same conditions as in Example 1 except that the product oxygen gas was taken out with the valves 13, 16, and 19 always closed, the oxygen concentration was 82%.

<比較例 3> 第3の比較例として第1図の装置を用いて酸素
濃縮を実施した。第2図dに示した工程における
吸着塔の再生パージを省略し、この間第1図の弁
10を閉状態として製品酸素ガスを取り出した以
外は実施例1と同一条件とし、800/hの酸素
ガス量を取り出した場合、酸素濃度は45%であつ
た。
<Comparative Example 3> As a third comparative example, oxygen concentration was carried out using the apparatus shown in FIG. The conditions were the same as in Example 1, except that the regeneration purge of the adsorption tower in the step shown in Fig. 2d was omitted, and during this period the valve 10 in Fig. 1 was closed to take out the product oxygen gas. When the amount of gas was taken out, the oxygen concentration was 45%.

<比較例 4> 第4の比較例として、第1図の装置を用い、第
2図cに示した工程におけるタンク及び塔との均
圧化工程を省略し、第1図の弁12,15,18
を常時閉状態として製品酸素ガスを取り出した以
外は実施例1と同一条件として酸素濃縮を実施し
た。800/hの酸素ガス量を取り出した場合、
酸素濃度は73%であつた。
<Comparative Example 4> As a fourth comparative example, the apparatus shown in FIG. 1 was used, the pressure equalization step with the tank and tower in the step shown in FIG. 2 c was omitted, and the valves 12 and 15 in FIG. ,18
Oxygen concentration was carried out under the same conditions as in Example 1, except that the reactor was always closed and the product oxygen gas was taken out. If 800/h of oxygen gas is taken out,
The oxygen concentration was 73%.

これらの比較例から、吸着剤を再生するために
第2図cに示したタンク及び吸着塔との圧力均等
化工程及び第2図dに示したタンク及び吸着塔と
の再生パージ工程が、酸素濃度の向上に寄与する
割合が定量的に明らかになつた。しかるに、本発
明の工程はそのどれか1工程が欠落しても90%以
上の酸素濃度が望めないことが明らかとなつた。
すなわち第2図cに示したタンクと吸着塔との均
圧化工程を行わない場合は酸素濃度が91%→73%
に低下し、第2図dに示したタンク内のガスを利
用した吸着塔のパージを行わない場合は酸素濃度
が91%→45%に低下したことからも、特にタンク
内にガスを圧入して該ガスを吸着塔との均圧化お
よびパージに利用する工程が酸素濃度の向上に効
果を有することが明らかである。
From these comparative examples, it was found that the pressure equalization process between the tank and adsorption tower shown in Figure 2c and the regeneration purge process between the tank and adsorption tower shown in Figure 2d were performed to regenerate the adsorbent. The ratio contributing to the improvement of concentration has been quantitatively clarified. However, it has become clear that in the process of the present invention, even if any one of the steps is missing, an oxygen concentration of 90% or more cannot be expected.
In other words, if the pressure equalization process between the tank and adsorption tower shown in Figure 2c is not performed, the oxygen concentration will decrease from 91% to 73%.
The oxygen concentration decreased from 91% to 45% when the adsorption tower was not purged using the gas in the tank as shown in Figure 2 (d). It is clear that the process of using this gas for pressure equalization with the adsorption tower and for purging is effective in improving the oxygen concentration.

以上説明したように、本発明によれば、製品酸
素ガス濃度を90%以上に向上させることができ、
しかも、3塔式で4塔式に匹敵する製品ガス収量
を得ることができ、収量の飛躍的な増大を図るこ
とができる。
As explained above, according to the present invention, the product oxygen gas concentration can be increased to 90% or more,
Moreover, the product gas yield comparable to that of the four-column type can be obtained with the three-column type, and the yield can be dramatically increased.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本実施例に係る酸素濃縮装置の概略構
成図、第2図は本実施例に係る酸素濃縮方法の工
程を示すガス流れ状態図を示し、同aは第1工程
を、同bは第2工程を、同cは第3工程を、同d
は第4工程を示す図、第3図は作動シーケンス
図、第4図はタンク容量、パージガス流量および
酸素濃度との関係図である。 1…第1吸着塔、2…第2吸着塔、3…第4吸
着塔、4…タンク。
Fig. 1 is a schematic configuration diagram of an oxygen concentrator according to this embodiment, and Fig. 2 is a gas flow state diagram showing the steps of an oxygen concentrating method according to this embodiment, in which a shows the first step and b is the second step, c is the third step, and d is the second step.
3 is a diagram showing the fourth step, FIG. 3 is an operation sequence diagram, and FIG. 4 is a diagram showing the relationship between tank capacity, purge gas flow rate, and oxygen concentration. 1...First adsorption tower, 2...Second adsorption tower, 3...Fourth adsorption tower, 4...Tank.

Claims (1)

【特許請求の範囲】 1 空気中の窒素を吸着剤により加圧下で吸着除
去して酸素富化ガスを得、減圧して吸着剤の脱着
再生を行うことを連続して繰り返す酸素濃縮方法
において、3基の前記吸着剤を内蔵する吸着塔お
よび1基のタンクを準備し、 加圧下に保持された第1の吸着塔と常圧下に保
持されたタンクを連通して濃縮酸素をタンク内に
導入し両者の圧力均等化を図ると同時に第1の吸
着塔から濃縮酸素を取り出し、かつ第2,第3の
吸着塔を大気開放して常圧下に保持する第1の工
程と、 第1の吸着塔とタンク間を閉止しかつ第2の吸
着塔の大気開放状態を解除し、加圧下の第1の吸
着塔と第2の吸着塔とを連通して濃縮酸素を第2
の吸着塔に導入し両者の圧力均等化を図ると同時
に第1の吸着塔から濃縮酸素を取り出し、第3の
吸着塔を大気開放して常圧下に保持する第2の工
程と、 第1および第2の吸着塔間を閉止し、第2の吸
着塔と加圧下にある前記タンクとを連通して両者
の圧力均等化を図るとともに、第1の吸着塔から
濃縮酸素を取り出し、第3の吸着塔を大気開放し
て常圧下に保持する第3の工程と、 第1の吸着塔を大気開放しかつ第2の吸着塔と
タンク間を閉止し、タンクから残留濃縮酸素を取
り出すと同時に大気開放下にある第3の吸着塔と
前記タンクとを連通せしめて当該第3の吸着塔の
パージ再生を行わせ、第2吸着塔には原料空気を
送入して加圧下に保持する第4の工程とを、 第1乃至第3の吸着塔に順次繰り返して行わせ
ることを特徴とする酸素濃縮方法。 2 吸着塔とタンクとの圧力均等化時に該タンク
に流入する濃縮酸素ガス量と、該タンクから吸着
塔へ再生パージのために流入する濃縮酸素ガス量
との比が1:0.2〜0.5であることを特徴とする特
許請求の範囲第1項記載の酸素濃縮方法。
[Scope of Claims] 1. An oxygen enrichment method that continuously repeats the steps of: adsorbing and removing nitrogen in the air with an adsorbent under pressure to obtain an oxygen-enriched gas; and depressurizing and desorbing and regenerating the adsorbent; Three adsorption towers containing the adsorbents and one tank are prepared, and concentrated oxygen is introduced into the tank by communicating the first adsorption tower held under pressure with the tank held under normal pressure. a first step of equalizing the pressures of both, simultaneously extracting concentrated oxygen from the first adsorption tower, and opening the second and third adsorption towers to the atmosphere to maintain them at normal pressure; The space between the tower and the tank is closed, and the second adsorption tower is released from the atmosphere, and the first adsorption tower and the second adsorption tower under pressure are communicated, and concentrated oxygen is transferred to the second adsorption tower.
a second step in which concentrated oxygen is introduced into the first adsorption tower to equalize the pressure between them, and at the same time concentrated oxygen is taken out from the first adsorption tower, and the third adsorption tower is opened to the atmosphere and maintained at normal pressure; The space between the second adsorption towers is closed, and the second adsorption tower and the tank under pressure are communicated with each other to equalize the pressure between them. Concentrated oxygen is taken out from the first adsorption tower and concentrated oxygen is removed from the third adsorption tower. A third step is to open the adsorption tower to the atmosphere and maintain it under normal pressure, and to open the first adsorption tower to the atmosphere and close the space between the second adsorption tower and the tank, and to take out the residual concentrated oxygen from the tank and simultaneously release it to the atmosphere. The third adsorption tower, which is open, is connected to the tank to perform purge regeneration of the third adsorption tower, and the fourth adsorption tower is supplied with feed air and maintained under pressure. An oxygen concentrating method characterized in that the following steps are sequentially and repeatedly carried out in first to third adsorption towers. 2. The ratio of the amount of concentrated oxygen gas flowing into the tank during pressure equalization between the adsorption tower and the tank and the amount of concentrated oxygen gas flowing from the tank to the adsorption tower for regeneration purging is 1:0.2 to 0.5. An oxygen concentrating method according to claim 1, characterized in that:
JP56073593A 1981-05-18 1981-05-18 Method and apparatus for concentrating oxygen Granted JPS57190629A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56073593A JPS57190629A (en) 1981-05-18 1981-05-18 Method and apparatus for concentrating oxygen

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56073593A JPS57190629A (en) 1981-05-18 1981-05-18 Method and apparatus for concentrating oxygen

Publications (2)

Publication Number Publication Date
JPS57190629A JPS57190629A (en) 1982-11-24
JPS6138122B2 true JPS6138122B2 (en) 1986-08-27

Family

ID=13522765

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56073593A Granted JPS57190629A (en) 1981-05-18 1981-05-18 Method and apparatus for concentrating oxygen

Country Status (1)

Country Link
JP (1) JPS57190629A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1249229A (en) * 1983-09-29 1989-01-24 Wilbur C. Kratz Production of oxygen enriched air

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5663804A (en) * 1979-10-29 1981-05-30 Nippon Sanso Kk Oxygen concentrating method

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5663804A (en) * 1979-10-29 1981-05-30 Nippon Sanso Kk Oxygen concentrating method

Also Published As

Publication number Publication date
JPS57190629A (en) 1982-11-24

Similar Documents

Publication Publication Date Title
CA1304699C (en) Preparation of high purity oxygen
US5540758A (en) VSA adsorption process with feed/vacuum advance and provide purge
EP0667178B1 (en) VSA adsorption process with continuous operation
KR930010571B1 (en) Purifying combustible gases containing carbon monoxide
US3564816A (en) Selective adsorption process
US5122164A (en) Process for producing oxygen enriched product stream
CA2516989C (en) Off-gas feed method and target gas purification system
EP0873776B1 (en) Pressure swing adsorption process
JPH04330913A (en) Absorption process for separating gaseous mixture
JP2981302B2 (en) Gas separation method
JPH0788316A (en) Separation of nitrogen-enriched gas and device therefor
JPH07745A (en) Gas separation
CN113350968A (en) Hydrogen extraction device and process for recovering tail gas components by using synthetic hydrogen
US4482362A (en) Method for producing purified gases
EP1354619B1 (en) Method for separating hydrogen gas
JPS6138122B2 (en)
CN112742169B (en) Adsorption process
JPS636481B2 (en)
JPH0194915A (en) Separation of gaseous nitrogen by pressure fluctuation absorption system
US20030188634A1 (en) Pressure swing adsorption process with controlled internal depressurization flow
JPH03262512A (en) Pressure swing adsorbing type gas separation apparatus and operation thereof
JP3369424B2 (en) Mixed gas separation method
KR100228239B1 (en) Apparatus and process for producing nitrogen using psa system depending on nitrogen concentration in the product
JPH04322713A (en) Method and equipment for separating gaseous nitrogen
JPS63103805A (en) Production of nitrogen by pressure swing adsorption process