JPH04322713A - Method and equipment for separating gaseous nitrogen - Google Patents

Method and equipment for separating gaseous nitrogen

Info

Publication number
JPH04322713A
JPH04322713A JP3116787A JP11678791A JPH04322713A JP H04322713 A JPH04322713 A JP H04322713A JP 3116787 A JP3116787 A JP 3116787A JP 11678791 A JP11678791 A JP 11678791A JP H04322713 A JPH04322713 A JP H04322713A
Authority
JP
Japan
Prior art keywords
adsorption tank
tank
adsorption
gas
nitrogen gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3116787A
Other languages
Japanese (ja)
Inventor
Shusaku Yokosuka
秀作 横須賀
Akira Uragami
旦 浦上
Masateru Kataoka
正輝 片岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanebo Ltd
Original Assignee
Kanebo Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanebo Ltd filed Critical Kanebo Ltd
Priority to JP3116787A priority Critical patent/JPH04322713A/en
Publication of JPH04322713A publication Critical patent/JPH04322713A/en
Pending legal-status Critical Current

Links

Landscapes

  • Separation Of Gases By Adsorption (AREA)

Abstract

PURPOSE:To provide a method and equipment for separating gaseous nitrogen capable of increasing separation efficiency of gaseous nitrogen to power source in separation of gaseous nitrogen from feed gas whose main components are nitrogen and oxygen by molecular sieve carbon. CONSTITUTION:A connecting pipe 26 connecting gaseous nitrogen takeoff parts of an adsorption tank 3 and an adsorption tank 4, the first two valves 11, 12, and a branch pipe 27 branching from between the first valves 11, 12 are provided. A holding tank 6 is provided at the end of the branch pipe 27, and the second valve 13 is provided for the branch pipe 27. In the adsorption tank 3 and the adsorption tank 4 in gaseous nitrogen separation equipment of the above constitution, when adsorption, equalization and regeneration processes are repeated to separate gaseous nitrogen, gaseous nitrogen of relatively low concentration in the adsorption tank where adsorption and pressure-equalizing processes are completed successively is transferred to the holding tank 6, then after the regeneration process is completed, gaseous nitrogen of relatively low concentration in the holding tank 6 is again transferred to the adsorption tank.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は分子篩炭素の選択的吸着
特性を利用して、窒素と酸素を主成分とした混合ガス(
例えば空気)から窒素を分離する方法及び装置に関する
[Industrial Application Field] The present invention utilizes the selective adsorption properties of molecular sieve carbon to produce a mixed gas containing nitrogen and oxygen as main components (
The present invention relates to a method and apparatus for separating nitrogen from (eg air).

【0002】0002

【従来の技術】分子篩炭素(CARBON  MOLE
CULAR  SEIVES:以下CMSと呼ぶ)の選
択的吸着特性を利用した圧力変動吸着方式(PRESS
URE  SWING  ADSORPTION:以下
PSAと呼ぶ)により空気などの混合ガスより窒素ガス
を分離する方法は従来より広く知られている。そしてこ
の装置は比較的小型で消費者の近くに置き連続的に安価
な窒素ガスを供給する手段として実用化されている。
[Prior art] Carbon molecular sieve (CARBON MOLE)
The pressure fluctuation adsorption method (PRESS) utilizes the selective adsorption characteristics of CULAR SEIVES (hereinafter referred to as CMS).
A method of separating nitrogen gas from a mixed gas such as air using URE SWING ADSORPTION (hereinafter referred to as PSA) has been widely known. This device is relatively small and has been put into practical use as a means of continuously supplying inexpensive nitrogen gas by placing it near consumers.

【0003】CMSの酸素及び窒素の平衡吸着量は、温
度及び吸着圧力を規定すればほとんど同じであるが、吸
着初期段階の吸着量に於いては顕著な差異が認められる
。図3にこのCMSの吸着特性の一例を示す。同図に示
す如く、CMSは吸着開始後の比較的短時間でほぼ平衡
吸着量まで酸素ガスを吸着するが、逆に窒素ガスをほぼ
平衡吸着量まで吸着するには比較的長時間を要する。 従って、通常CMSに酸素を吸着させる時間は酸素と窒
素の吸着量の差が大きい約60秒乃至約240秒とされ
る。
Although the equilibrium adsorption amounts of oxygen and nitrogen in CMS are almost the same if the temperature and adsorption pressure are specified, there is a noticeable difference in the adsorption amounts at the initial stage of adsorption. FIG. 3 shows an example of the adsorption characteristics of this CMS. As shown in the figure, CMS adsorbs oxygen gas to almost the equilibrium adsorption amount in a relatively short time after the start of adsorption, but conversely, it takes a relatively long time to adsorb nitrogen gas to almost the equilibrium adsorption amount. Therefore, the time for adsorbing oxygen to CMS is usually set to about 60 seconds to about 240 seconds, which is the time when the difference in the amount of adsorption between oxygen and nitrogen is large.

【0004】ところで、このCMSを用いたPSA装置
は原料ガス供給量、吸着槽容量が規制されている場合、
窒素ガス取り出し量とその窒素ガス濃度は図6に示す関
係がある。つまり、窒素ガス取り出し量を増加させると
窒素ガス濃度は低下し、窒素ガス取り出し量を減少させ
ると窒素ガス濃度は上昇する。通常消費者は任意の窒素
ガス濃度を希望するため、その濃度における窒素ガス取
り出し量は規制される。
[0004] By the way, in a PSA device using this CMS, if the raw material gas supply amount and adsorption tank capacity are regulated,
The amount of nitrogen gas taken out and its nitrogen gas concentration have the relationship shown in FIG. That is, when the amount of nitrogen gas taken out is increased, the nitrogen gas concentration decreases, and when the amount of nitrogen gas taken out is decreased, the nitrogen gas concentration increases. Since consumers usually desire any nitrogen gas concentration, the amount of nitrogen gas taken out at that concentration is regulated.

【0005】従来より、この窒素ガス分離装置において
は原料ガスの所定供給量に対し所定濃度の窒素ガス取り
出し量を如何に増加させるかが課題であった。即ち、当
該装置の運転コストは、原料ガスを供給するための圧縮
機の電力コストとほぼ一致しているため、窒素ガスの取
り出し量を増加させることにより、窒素ガス単位使用量
あたりの電力消費(以下、単位電力費と呼ぶ)を縮小す
ることができるのである。
Conventionally, in this nitrogen gas separation apparatus, the problem has been how to increase the amount of nitrogen gas taken out at a predetermined concentration with respect to the predetermined supply amount of raw material gas. In other words, the operating cost of the device is almost the same as the power cost of the compressor for supplying the raw material gas, so by increasing the amount of nitrogen gas extracted, the power consumption per unit amount of nitrogen gas used ( This makes it possible to reduce the unit power cost (hereinafter referred to as unit power cost).

【0006】そして従来より、前記単位電力費の縮小の
ため複数の吸着槽を用いた窒素ガス分離装置で様々な操
作方法の検討がなされてきた。例えば、特公昭39−8
204号公報に記載されている方法では、物質を比較的
高い圧力で吸着し、そして比較的低い圧力で脱着する場
合に、圧力を前記比較的高い圧力と前記比較的低い圧力
との中間に下げ、脱着された物質の少なくとも一部を除
き(以下均圧工程という)、続いて圧力を前記の比較的
低い圧力に下げ、残っている脱着された物質を除くこと
により単位電力費を改善している。
[0006] Conventionally, various operating methods have been studied for nitrogen gas separation apparatuses using a plurality of adsorption tanks in order to reduce the unit power cost. For example,
In the method described in Publication No. 204, when a substance is adsorbed at a relatively high pressure and desorbed at a relatively low pressure, the pressure is lowered to an intermediate level between the relatively high pressure and the relatively low pressure. , removing at least a portion of the desorbed material (hereinafter referred to as a pressure equalization step), subsequently reducing the pressure to said relatively low pressure, and improving unit power costs by removing the remaining desorbed material. There is.

【0007】前述した方法は、PSA方式による窒素ガ
ス分離技術にも適用でき、ある程度の効果が確認されて
いる。即ち、PSA窒素ガス分離装置においては、少な
くとも2塔の吸着槽を備え、両吸着槽に対して、原料ガ
スを供給し前記CMSに酸素ガスを吸着させて窒素ガス
を分離する工程(以下、吸着工程という)、吸着後前記
CMSから吸着した酸素ガスを脱着させる工程(以下、
再生工程という)を交番的に繰り返して実施するが、吸
着工程終了後の吸着槽Aと再生工程終了後の吸着槽Bと
を連通させて吸着槽A内の窒素ガスを吸着槽Bに移動さ
せ(均圧工程)上述した効果を得ていたのである。
The method described above can also be applied to nitrogen gas separation technology using the PSA method, and has been confirmed to be effective to some extent. That is, the PSA nitrogen gas separation apparatus is equipped with at least two adsorption tanks, and a step (hereinafter referred to as adsorption) in which raw material gas is supplied to both adsorption tanks and the CMS adsorbs oxygen gas to separate nitrogen gas. (hereinafter referred to as a step), a step (hereinafter referred to as
The process (referred to as the regeneration process) is repeated alternately, but the nitrogen gas in the adsorption tank A is transferred to the adsorption tank B by communicating the adsorption tank A after the adsorption process and the adsorption tank B after the regeneration process. (Pressure equalization process) The above-mentioned effects were obtained.

【0008】また、前記吸着工程の当初において、吸着
槽に原料ガスを供給すると同時に、その反対側から所定
濃度の窒素ガスを送入し、送出される窒素ガス濃度を当
初から所定の濃度とすることがなされている。
Further, at the beginning of the adsorption step, at the same time as the raw material gas is supplied to the adsorption tank, nitrogen gas of a predetermined concentration is introduced from the opposite side, so that the concentration of the nitrogen gas sent out is set to the predetermined concentration from the beginning. Things are being done.

【0009】[0009]

【発明が解決しようとする課題】ところが、上述した従
来の方法には次のような問題があった。即ち、上述した
均圧工程における吸着槽Aから吸着槽Bへの窒素ガス移
動に際しては、移動させることができる窒素ガスの量に
は限界があり、これを越えると、次に吸着槽Bに対して
吸着工程を実施して取り出せる窒素ガス濃度は極端に低
下するのである。従って、上述した単位電力費の改善に
は自ずと限界があった。
[Problems to be Solved by the Invention] However, the above-mentioned conventional method has the following problems. That is, when transferring nitrogen gas from adsorption tank A to adsorption tank B in the pressure equalization process mentioned above, there is a limit to the amount of nitrogen gas that can be transferred, and if this is exceeded, the amount of nitrogen gas that can be transferred is then transferred to adsorption tank B. The concentration of nitrogen gas that can be extracted by performing the adsorption process is extremely reduced. Therefore, there was naturally a limit to the above-mentioned improvement in unit power costs.

【0010】これは、吸着槽が吸着工程にある時、吸着
槽内のガスは原料ガス供給側から窒素ガス取り出し側に
流れるため、吸着槽内の窒素ガス濃度は吸着時間の十分
にとれる窒素ガス取り出し側の濃度が高く、逆に原料ガ
ス供給側の濃度が低くなっており、これを、例えば上述
の如く吸着槽Aの窒素ガス取り出し側から、吸着槽Bの
窒素ガス取り出し側に移動させると、濃度の高い窒素ガ
スが吸着槽Bの原料供給側に、濃度の低い窒素ガスが窒
素ガス取り出し側に位置する結果、ついで吸着工程を実
施すると当初低濃度の窒素ガスが取り出されるというこ
とに基づく。
[0010] This is because when the adsorption tank is in the adsorption process, the gas in the adsorption tank flows from the raw material gas supply side to the nitrogen gas extraction side, so the nitrogen gas concentration in the adsorption tank is low enough to allow sufficient adsorption time. The concentration on the extraction side is high, and conversely the concentration on the raw material gas supply side is low. For example, if this is moved from the nitrogen gas extraction side of adsorption tank A to the nitrogen gas extraction side of adsorption tank B as described above, This is based on the fact that nitrogen gas with a high concentration is located on the raw material supply side of adsorption tank B, and nitrogen gas with a low concentration is located on the nitrogen gas extraction side, so that when the adsorption process is subsequently performed, nitrogen gas with a low concentration is initially extracted. .

【0011】また、均圧工程時の窒素ガス移動量を増加
させると移動元の吸着槽における窒素ガス取り出し側の
CMSに多量の酸素ガスが吸着され、再生工程でCMS
から充分に酸素ガスが脱着されないという問題があった
。このため、次の吸着工程において、吸着槽の窒素ガス
取り出し側で酸素ガスがCMSに充分に吸着されず、所
望濃度の窒素ガスが得られないのである。また、吸着工
程の当初において所定濃度の窒素ガスを送入する場合に
、所定濃度の窒素ガスで満たされることによって、吸着
槽の窒素ガス取り出し側のCMSが吸着していた酸素ガ
スを脱着する結果、同部における窒素ガス濃度が低下す
るのである。
Furthermore, if the amount of nitrogen gas transferred during the pressure equalization step is increased, a large amount of oxygen gas will be adsorbed by the CMS on the nitrogen gas extraction side of the adsorption tank that is the transfer source, and the CMS will be removed during the regeneration step.
There was a problem that oxygen gas was not sufficiently desorbed from the gas. For this reason, in the next adsorption step, oxygen gas is not sufficiently adsorbed by the CMS on the nitrogen gas extraction side of the adsorption tank, and nitrogen gas with a desired concentration cannot be obtained. In addition, when nitrogen gas of a predetermined concentration is introduced at the beginning of the adsorption process, by being filled with nitrogen gas of a predetermined concentration, the CMS on the nitrogen gas extraction side of the adsorption tank desorbs the adsorbed oxygen gas. , the nitrogen gas concentration in the same area decreases.

【0012】本発明は以上の実状に鑑みなされたもので
あって、動力源に対する窒素ガスの分離効率を高めるこ
とのできる窒素ガスの分離方法及び装置の提供を目的と
している。
The present invention has been made in view of the above-mentioned circumstances, and an object of the present invention is to provide a method and apparatus for separating nitrogen gas that can improve the efficiency of separating nitrogen gas from a power source.

【0013】[0013]

【課題を解決するための手段】上記目的を達成するため
の本発明の第1の発明は方法の発明であり、並設した2
個の吸着槽A及び吸着槽Bに対し、窒素ガス及び酸素ガ
スを主成分とする原料ガスを供給し、吸着槽A及び吸着
槽Bに充填した分子篩炭素により窒素ガスを分離する方
法において、以下の工程を順次連続的に実施することを
要旨とする。
[Means for Solving the Problems] A first invention of the present invention for achieving the above object is an invention of a method, in which two
In the method of supplying raw material gas containing nitrogen gas and oxygen gas as main components to adsorption tanks A and B, and separating nitrogen gas using carbon molecular sieve filled in adsorption tanks A and B, the following The gist is to carry out the steps sequentially and continuously.

【0014】a)吸着を完了し加圧状態にある吸着槽A
と、再生を完了後滞留槽からのガスの移送を完了した吸
着槽Bとを連通して吸着槽A内のガスを吸着槽Bに移送
させる第1工程。
a) Adsorption tank A that has completed adsorption and is in a pressurized state
A first step of communicating the gas in the adsorption tank A with the adsorption tank B, which has completed the transfer of gas from the retention tank after completion of regeneration, to transfer the gas in the adsorption tank A to the adsorption tank B.

【0015】b)前記吸着槽Aと前記滞留槽とを連通さ
せ吸着槽Aから滞留槽にガスを移送する一方、前記吸着
槽Bに前記原料ガスを供給し、窒素ガスを分離する第2
工程。
b) A second step for communicating the adsorption tank A and the retention tank to transfer gas from the adsorption tank A to the retention tank, while supplying the raw material gas to the adsorption tank B and separating nitrogen gas.
Process.

【0016】c)前記吸着槽A内の残留ガスを大気に放
出する一方、前記吸着槽Bに対しては継続的に前記原料
ガスを供給し、窒素ガスを分離する第3工程。
c) A third step of releasing the residual gas in the adsorption tank A to the atmosphere while continuously supplying the raw material gas to the adsorption tank B to separate nitrogen gas.

【0017】d)前記吸着槽Aと前記滞留槽とを連通さ
せ、滞留槽から吸着槽Aにガスを移送する一方、前記吸
着槽Bに対しては継続的に前記原料ガスを供給し、窒素
ガスを分離する第4工程。
d) The adsorption tank A and the retention tank are communicated, and gas is transferred from the retention tank to the adsorption tank A, while the raw material gas is continuously supplied to the adsorption tank B, and nitrogen The fourth step is to separate the gas.

【0018】e)吸着を完了し加圧状態にある前記吸着
槽Bと、前記滞留槽からのガス移送を完了した前記吸着
槽Aとを連通させ、吸着槽B内のガスを吸着槽Aに移送
させる第5工程。
e) The adsorption tank B, which has completed adsorption and is in a pressurized state, is communicated with the adsorption tank A, which has completed the gas transfer from the retention tank, and the gas in the adsorption tank B is transferred to the adsorption tank A. Fifth step of transferring.

【0019】f)前記吸着槽Bと前記滞留槽とを連通さ
せ吸着槽Bから滞留槽にガスを移送する一方、前記吸着
槽Aに前記原料ガスを供給し、窒素ガスを分離する第6
工程。
f) A sixth step of communicating the adsorption tank B and the retention tank to transfer gas from the adsorption tank B to the retention tank, while supplying the raw material gas to the adsorption tank A and separating nitrogen gas.
Process.

【0020】g)前記吸着槽B内の残留ガスを大気に放
出する一方、前記吸着槽Aに対しては継続的に前記原料
ガスを供給し、窒素ガスを分離する第7工程。
g) A seventh step of releasing the residual gas in the adsorption tank B to the atmosphere while continuously supplying the raw material gas to the adsorption tank A to separate nitrogen gas.

【0021】h)前記吸着槽Bと前記滞留槽とを連通さ
せ滞留槽から吸着槽Bにガスを移送する一方、前記吸着
槽Aに対しては継続的に前記原料ガスを供給し、窒素ガ
スを分離する第8工程。
h) The adsorption tank B and the retention tank are communicated and gas is transferred from the retention tank to the adsorption tank B, while the raw material gas is continuously supplied to the adsorption tank A, and the nitrogen gas is 8th step of separating.

【0022】また、第2の発明は第1の発明の構成に加
え、残留ガスを大気に放出した後の前記第3工程の吸着
槽A及び前記第7工程の吸着槽Bに対し、窒素ガスを送
通させることを要旨とする。
[0022] In addition to the configuration of the first invention, the second invention also provides a structure in which nitrogen gas is added to the adsorption tank A in the third step and the adsorption tank B in the seventh step after the residual gas is released into the atmosphere. The purpose is to have the documents sent.

【0023】また、第3の発明は、並設した2個の吸着
槽A及び吸着槽Bに対し交番的にその一方側から窒素ガ
ス及び酸素ガスを主成分とする原料ガスを供給して他方
側から分離した窒素ガスを取り出す装置において、前記
吸着槽A及び吸着槽Bの窒素ガス取り出し部同士を連結
する連結管と、該連結管に設けた2個の第1の弁と、こ
の第1の弁の間から分岐する分岐管と、分岐管の端部に
設けた滞留槽と、前記分岐管に設けた第2の弁とを具備
することを要旨とする。
[0023] Furthermore, in the third invention, raw material gas containing nitrogen gas and oxygen gas as main components is alternately supplied from one side to the two adsorption tanks A and B arranged in parallel, and the other A device for extracting nitrogen gas separated from the side, comprising: a connecting pipe connecting the nitrogen gas extracting parts of the adsorption tank A and the adsorption tank B; two first valves provided on the connecting pipe; The gist of the present invention is to include a branch pipe branching from between the valves, a retention tank provided at an end of the branch pipe, and a second valve provided in the branch pipe.

【0024】[0024]

【作用】以下、本発明の作用について説明する。第1の
発明及び第3の発明によれば、まず、連結管に設けた2
個の第1の弁を開き、吸着を完了し加圧状態にある吸着
槽Aと、再生を完了後滞留槽からのガス移送を完了した
吸着槽Bとを連通して吸着槽A内の所定濃度の窒素ガス
を吸着槽Bにその窒素ガス取り出し部から移送する。
[Operation] The operation of the present invention will be explained below. According to the first invention and the third invention, firstly, the
The first valve is opened, and adsorption tank A, which has completed adsorption and is in a pressurized state, is communicated with adsorption tank B, which has completed regeneration and has completed gas transfer from the retention tank. Concentrated nitrogen gas is transferred to adsorption tank B from the nitrogen gas extraction section.

【0025】ついで、前記吸着槽A側の第1の弁と第2
の弁とを開き吸着槽Aと滞留槽とを連通させて吸着槽A
内の比較的低濃度の窒素ガスを滞留槽に移送する一方、
前記吸着槽Bに前記原料ガスを供給し窒素ガスを分離さ
せる。
Next, the first valve and the second valve on the adsorption tank A side are connected to each other.
Adsorption tank A is opened by opening the valve to connect adsorption tank A and retention tank.
While transferring the relatively low concentration nitrogen gas in the tank to the retention tank,
The raw material gas is supplied to the adsorption tank B to separate nitrogen gas.

【0026】次に、吸着槽A内になお残留するガスを大
気に放出し、CMSに吸着させたガスを脱着させてこれ
を再生する一方、前記吸着槽Bに対しては継続的に前記
原料ガスを供給し、窒素ガスを分離させる。
Next, the gas still remaining in the adsorption tank A is released to the atmosphere, and the gas adsorbed by the CMS is desorbed and regenerated, while the adsorption tank B is continuously supplied with the raw material. Supply gas and separate nitrogen gas.

【0027】ついで、再び吸着槽A側の第1の弁と第2
の弁とを開き吸着槽Aと滞留槽とを連通させて滞留槽内
の比較的低濃度の窒素ガスを吸着槽Aに移送する一方、
前記吸着槽Bに対しては引き続き継続的に原料ガスを供
給し、窒素ガスを分離させる。
Next, the first valve and the second valve on the adsorption tank A side are connected again.
The valve is opened to connect the adsorption tank A and the retention tank to transfer relatively low concentration nitrogen gas in the retention tank to the adsorption tank A.
The raw material gas is continuously supplied to the adsorption tank B to separate nitrogen gas.

【0028】次に、前記2個の第1の弁を開き、吸着を
完了し加圧状態にある吸着槽Bと、再生を完了後滞留槽
からのガス移送を完了した吸着槽Aとを連通して吸着槽
B内の所定濃度の窒素ガスを吸着槽Aに移送する。これ
により吸着槽A内においては、比較的低濃度の窒素ガス
が窒素ガス取り出し部より離れた位置に、所定濃度の窒
素ガスが窒素ガス取り出し部に近接した位置に存在する
ことになる。
Next, the two first valves are opened to connect adsorption tank B, which has completed adsorption and is in a pressurized state, with adsorption tank A, which has completed regeneration and has completed gas transfer from the retention tank. Then, nitrogen gas at a predetermined concentration in adsorption tank B is transferred to adsorption tank A. As a result, in the adsorption tank A, nitrogen gas with a relatively low concentration exists at a position away from the nitrogen gas extraction part, and nitrogen gas with a predetermined concentration exists at a position close to the nitrogen gas extraction part.

【0029】ついで、吸着槽B側の第1の弁と第2の弁
とを開き、吸着槽Bと滞留槽とを連通させて吸着槽B内
の比較的低濃度の窒素ガスを滞留槽に移送する一方、吸
着槽Aに原料ガスを供給し、窒素ガスを分離させる。こ
こに、吸着槽A内の窒素ガス取り出し部に近接した位置
には所定濃度の窒素ガスが移送されているので、原料ガ
スが供給された後の窒素ガス取り出し当初においても所
定濃度の窒素ガス取り出しが可能である。
Next, the first valve and the second valve on the adsorption tank B side are opened, and the adsorption tank B and the retention tank are communicated with each other, so that the comparatively low concentration nitrogen gas in the adsorption tank B is transferred to the retention tank. While being transferred, raw material gas is supplied to adsorption tank A to separate nitrogen gas. Here, since nitrogen gas of a predetermined concentration is transferred to a position close to the nitrogen gas extraction part in the adsorption tank A, the nitrogen gas of a predetermined concentration can be extracted even at the beginning of nitrogen gas extraction after the raw material gas is supplied. is possible.

【0030】次に、吸着槽Bになお残留するガスを大気
に放出し、CMSに吸着させたガスを脱着させてこれを
再生する一方、吸着槽Aに対しては継続的に原料ガスを
供給し窒素ガスを分離させる。
Next, the gas still remaining in the adsorption tank B is released to the atmosphere, and the gas adsorbed by the CMS is desorbed and regenerated, while the raw material gas is continuously supplied to the adsorption tank A. and separate nitrogen gas.

【0031】ついで、再び吸着槽B側の第1の弁と第2
の弁とを開き吸着槽Bと滞留槽とを連通させて滞留槽内
の比較的低濃度の窒素ガスを吸着槽Bに移送する一方、
吸着槽Aに対しては引き続き継続的に原料ガスを供給し
窒素ガスを分離させる。
Next, the first valve and the second valve on the adsorption tank B side are connected again.
The valve is opened to connect the adsorption tank B and the retention tank to transfer relatively low concentration nitrogen gas in the retention tank to the adsorption tank B,
Raw material gas is continuously supplied to adsorption tank A to separate nitrogen gas.

【0032】以後、以上を順次連続的に実施することに
より、所定濃度の窒素ガスを連続的に分離することが可
能である。
Thereafter, by sequentially and continuously carrying out the above steps, it is possible to continuously separate nitrogen gas at a predetermined concentration.

【0033】また、第2の発明によれば窒素ガスを再生
状態にある吸着槽の窒素ガス取り出し部から送入するこ
とにより、吸着槽内の酸素ガスの分圧を低下させ、CM
Sから酸素ガスを強制的に脱着することができる。これ
により、次にCMSに酸素ガスを吸着させることのでき
る量が増し、分離効率を向上させることができる。
Further, according to the second invention, by feeding nitrogen gas from the nitrogen gas take-off section of the adsorption tank in a regenerated state, the partial pressure of oxygen gas in the adsorption tank is lowered, and the CM
Oxygen gas can be forcibly desorbed from S. As a result, the amount of oxygen gas that can be adsorbed by CMS is increased, and the separation efficiency can be improved.

【0034】[0034]

【実施例】以下、本発明の実施例について添付図面に基
づいて説明する。まず本発明を実施するための装置につ
いて説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Examples of the present invention will be described below with reference to the accompanying drawings. First, an apparatus for carrying out the present invention will be explained.

【0035】図2は本発明装置の一実施例を示す説明図
である。同図に示すように、実施例に係る窒素ガス分離
装置は2基の吸着槽A(3)及び吸着槽B(4)と、原
料ガスである空気を加圧供給するコンプレッサー(1)
と、加圧した空気を一時貯留する原料槽(2)と、吸着
槽A(3)及び吸着槽B(4)から分離した窒素ガスを
一時貯留する製品槽(5)と、吸着槽A(3)及び吸着
槽B(4)から分離した比較的低濃度の窒素ガスを一時
貯留する滞留槽(6)と、前記吸着槽A(3)及び吸着
槽B(4)の上方に設けられた取り出し配管部(A)と
、吸着槽A(3)及び吸着槽B(4)の下方に設けられ
た吸気配管部(B)及び排気配管部(C)とからなる装
置である。以下各部について説明する。
FIG. 2 is an explanatory diagram showing an embodiment of the apparatus of the present invention. As shown in the figure, the nitrogen gas separation device according to the example includes two adsorption tanks A (3) and B (4), and a compressor (1) that supplies air as a raw material gas under pressure.
, a raw material tank (2) that temporarily stores pressurized air, a product tank (5) that temporarily stores nitrogen gas separated from adsorption tank A (3) and adsorption tank B (4), and adsorption tank A ( 3) and a retention tank (6) for temporarily storing relatively low concentration nitrogen gas separated from adsorption tank B (4), and a retention tank (6) provided above the adsorption tank A (3) and adsorption tank B (4). This device consists of an extraction piping section (A), an intake piping section (B) and an exhaust piping section (C) provided below adsorption tank A (3) and adsorption tank B (4). Each part will be explained below.

【0036】前記製品槽(5)は弁(16)を有する製
品取り出し管(29)をその下部に備えている。
[0036] The product tank (5) is equipped with a product outlet pipe (29) having a valve (16) at its lower part.

【0037】前記取り出し配管部(A)は弁(14)を
有するとともに前記吸着槽A(3)の上部に接続する取
り出し管(23)と、弁(15)を有するとともに吸着
槽B(4)の上部に接続する取り出し管(24)と、こ
れら取り出し管(23),(24)と製品槽(5)を接
続する取り出し管(28)と、絞り弁(17)を有する
とともに取り出し管(23),(24)に接続するパー
ジ配管(25)と、弁(11),(12)を有するとと
もに前記取り出し管(23),(24)を接続する連結
管(26)と、弁(11),(12)の間の連結管(2
6)から分岐し、弁(13)を経て滞留槽(6)と接続
する分岐管(27)とから構成されるものである。
The take-out piping section (A) has a valve (14) and an take-out pipe (23) connected to the upper part of the adsorption tank A (3), and a valve (15), and also has a valve (15) and a take-out pipe (23) connected to the upper part of the adsorption tank B (4). It has a take-out pipe (24) connected to the upper part of the take-out pipe (23), a take-out pipe (28) that connects these take-out pipes (23), (24) and the product tank (5), and a throttle valve (17). ), (24), a connecting pipe (26) having valves (11), (12) and connecting the extraction pipes (23), (24), and the valve (11). , (12) connecting pipe (2
6) and a branch pipe (27) which is connected to the retention tank (6) via a valve (13).

【0038】前記吸気配管部(B)は、弁(7)を有す
るとともに前記吸着槽A(3)の下部に接続する吸気管
(21)と、弁(9)を有するとともに前記吸着槽B(
4)の下部に接続する吸気管(22)と、これら吸気管
(21),(22)と原料槽(2)とを接続する吸気管
(19)とから構成されている。
The intake piping section (B) has a valve (7) and an intake pipe (21) connected to the lower part of the adsorption tank A (3), and a valve (9) and connects the adsorption tank B (
4), and an intake pipe (19) that connects these intake pipes (21), (22) and the raw material tank (2).

【0039】前記排気配管部(C)は、前記吸着槽A(
3)の下部、弁(7)間の吸気管(21)から分岐する
とともに弁(8)を有する排気管(21a)と、吸着槽
B(4)の下部、弁(9)間の吸気管(22)から分岐
するとともに弁(10)を有する排気管(22a)と、
これら排気管(21a),(22a)の双方に接続した
排気管(20)とから構成されるものである。
[0039] The exhaust piping section (C) is connected to the adsorption tank A (
3), an exhaust pipe (21a) branching from the intake pipe (21) between the valve (7) and having the valve (8), and an intake pipe between the valve (9) and the lower part of the adsorption tank B (4). an exhaust pipe (22a) branching from (22) and having a valve (10);
It is composed of an exhaust pipe (20) connected to both of these exhaust pipes (21a) and (22a).

【0040】前記吸着槽A(3)及び前記吸着槽B(4
)は密閉した中空円筒形状をした部材であり、その内部
にCMSが充填されている。
[0040] The adsorption tank A (3) and the adsorption tank B (4)
) is a hermetically sealed hollow cylindrical member, the inside of which is filled with CMS.

【0041】次に、以上の構成を備える窒素ガス分離装
置により、本発明方法を実施する1実施例について図1
に基づいて説明する。図1は窒素ガス分離装置に於ける
工程を各吸着槽に着目して時系列的に示した説明図であ
る。以下、同図に示す期間T1〜T2、T2〜T3、T
3〜T4、T4〜T5、T5〜T6、T6〜T7、T7
〜T8、T8〜T9に於ける装置の作動状態について説
明する。尚、弁(16)は常時開状態となっている。
Next, FIG. 1 shows an example of carrying out the method of the present invention using a nitrogen gas separation apparatus having the above configuration.
The explanation will be based on. FIG. 1 is an explanatory diagram showing the steps in a nitrogen gas separation apparatus in chronological order, focusing on each adsorption tank. Hereinafter, the periods T1 to T2, T2 to T3, and T shown in the same figure are as follows.
3~T4, T4~T5, T5~T6, T6~T7, T7
-T8, and the operating state of the device at T8-T9 will be explained. Note that the valve (16) is always open.

【0042】また、絞り弁(17)の開度を適宜に調整
し、吸着工程が実施されている高圧側の吸着槽から再生
工程が実施されている低圧側の吸着槽へ常時窒素ガスが
流れている。その流量は所望製品窒素ガス濃度に応じて
異なり、取り出し流量の10%から50%である。
[0042] Also, the opening degree of the throttle valve (17) is adjusted appropriately to ensure that nitrogen gas constantly flows from the adsorption tank on the high pressure side where the adsorption process is being carried out to the adsorption tank on the low pressure side where the regeneration process is being carried out. ing. The flow rate varies depending on the desired product nitrogen gas concentration and ranges from 10% to 50% of the withdrawal flow rate.

【0043】1)期間T1〜T2 この期間に於いては、吸着槽A(3)に対し吸着工程を
実施し、吸着槽B(4)に対し均圧3工程を実施する。 尚、この期間以前の図2に於ける分離装置の弁(11)
,(12)は開いており、弁(7),(8),(9),
(10),(13),(14),(15)は閉じている
1) Period T1-T2 During this period, an adsorption step is performed on adsorption tank A (3), and three pressure equalization steps are performed on adsorption tank B (4). In addition, the valve (11) of the separation device in Figure 2 before this period
, (12) are open and valves (7), (8), (9),
(10), (13), (14), and (15) are closed.

【0044】まず、吸着槽A(3)の作動について説明
する。吸着槽A(3)の下部の弁(7)を開き原料槽(
2)から高圧の空気を吸着槽A(3)に送入する。同時
に、吸着槽A(3)上部の弁(14)を開き製品槽(5
)から高圧の窒素ガスを吸着槽A(3)に送入する。こ
の操作により吸着槽A(3)は昇圧され、原料槽(2)
、製品槽(5)と略等しい圧力となる。コンプレッサー
(1)は連続運転しているので、吸着槽A(3)は更に
昇圧される。
First, the operation of adsorption tank A(3) will be explained. Open the valve (7) at the bottom of adsorption tank A (3) and open the raw material tank (
2), high-pressure air is fed into the adsorption tank A (3). At the same time, open the valve (14) at the top of adsorption tank A (3) and product tank (5).
) is fed into the adsorption tank A (3). Through this operation, the adsorption tank A (3) is pressurized, and the raw material tank (2)
, the pressure is approximately equal to that of the product tank (5). Since the compressor (1) is in continuous operation, the pressure in the adsorption tank A (3) is further increased.

【0045】吸着槽A(3)内部にはCMSが充填され
ており、このCMSが所定の時間加圧されることにより
酸素ガスを吸着する結果、所定濃度の窒素ガスが取り出
し管(23)を経て製品槽(5)に貯留される。この作
動は期間T1〜T4において継続される。従って、期間
T2〜T3、期間T3〜T4における吸着槽A(3)の
説明は省略する。一方、吸着槽B(4)に於いては、該
吸着槽B(4)上部の弁(12),(13)を開けるこ
とにより、吸着槽B(4)内の比較的低濃度の窒素ガス
を連結管(26)、分岐管(27)を介して滞留槽(6
)に送入する。
The inside of adsorption tank A (3) is filled with CMS, and as a result of this CMS adsorbing oxygen gas by pressurizing it for a predetermined period of time, nitrogen gas of a predetermined concentration passes through the extraction pipe (23). After that, it is stored in the product tank (5). This operation continues during periods T1-T4. Therefore, the description of the adsorption tank A(3) during the period T2 to T3 and the period T3 to T4 will be omitted. On the other hand, in adsorption tank B (4), by opening the valves (12) and (13) at the top of adsorption tank B (4), relatively low concentration nitrogen gas in adsorption tank B (4) can be removed. is connected to the retention tank (6) via the connecting pipe (26) and branch pipe (27).
).

【0046】2)期間T2〜T3 この期間においては、吸着槽A(3)に吸着工程を実施
し、吸着槽B(4)に再生工程を実施すべく図2に於け
る弁(7),(10),(14)を開け、残りの弁を閉
じる。
2) Period T2-T3 During this period, the valves (7) and 2 in FIG. Open (10) and (14) and close the remaining valves.

【0047】均圧3工程を終了した吸着槽B(4)は大
気圧より高圧であるため、弁(10)を開けると、吸着
槽B(4)内の残留ガスは吸気管(22)、これから分
岐する排気管(22a)、排気管(20)を介し大気に
放出される。この操作によりCMSに吸着されていた酸
素ガスが脱着し、CMSは再生される。尚この時、絞り
弁(17)を介して、高圧側である吸着槽A(3)から
吸着槽B(4)に所定濃度の窒素ガスが流入している。 これにより、吸着槽B(4)内の酸素ガスの分圧が低下
するため、CMSから酸素ガスが強制的に脱着され、C
MSは高効率に再生される。
Since the adsorption tank B (4) which has completed the pressure equalization step 3 has a higher pressure than the atmospheric pressure, when the valve (10) is opened, the residual gas in the adsorption tank B (4) is discharged through the intake pipe (22), The gas is discharged into the atmosphere through an exhaust pipe (22a) and an exhaust pipe (20) that branch from this. Through this operation, the oxygen gas adsorbed on the CMS is desorbed, and the CMS is regenerated. At this time, nitrogen gas at a predetermined concentration is flowing from adsorption tank A (3) on the high pressure side to adsorption tank B (4) via the throttle valve (17). As a result, the partial pressure of oxygen gas in adsorption tank B (4) decreases, so oxygen gas is forcibly desorbed from CMS, and C
MS is regenerated with high efficiency.

【0048】3)期間T3〜T4 この期間に於いては、吸着槽A(3)に吸着工程を実施
し、吸着槽B(4)に均圧1工程を実施すべく図2にお
ける弁(7),(12),(13),(14)を開け、
残りの弁を閉じる。
3) Period T3 to T4 During this period, the valve (7) in FIG. ), (12), (13), (14),
Close the remaining valves.

【0049】弁(12),(13)を開けることにより
滞留槽(6)内の比較的低濃度の窒素ガスが分岐管(2
7)、連結管(26)、取り出し管(24)を介して吸
着槽B(4)に送入される。
By opening the valves (12) and (13), relatively low concentration nitrogen gas in the retention tank (6) flows into the branch pipe (2).
7), is sent to the adsorption tank B (4) via the connecting pipe (26) and the take-out pipe (24).

【0050】4)期間T4〜T5 この期間に於いては、吸着槽A(3)及び吸着槽B(4
)双方に対して均圧2工程を実施すべく図2に於ける弁
(11),(12)を開け、残りの弁を閉じる。
4) Period T4-T5 In this period, adsorption tank A (3) and adsorption tank B (4
) Open the valves (11) and (12) in FIG. 2 and close the remaining valves to carry out two pressure equalization steps for both.

【0051】吸着工程の完了した吸着槽A(3)窒素ガ
ス取り出し側は高圧かつ所定濃度の窒素ガスが充満して
おり、取り出し管(23)、連結管(26)、取り出し
管(24)を介してこれを均圧1工程の終了した吸着槽
B(4)に送入する。これにより、吸着槽B(4)に先
に送入された比較的低濃度の窒素ガスは、槽の下方部、
即ち、原料ガス供給側に移動させられ、槽の上方部、即
ち、窒素ガス取り出し側は所定濃度の窒素ガスで満たさ
れることになる。
The nitrogen gas extraction side of adsorption tank A (3) where the adsorption process has been completed is filled with nitrogen gas at high pressure and a predetermined concentration, and the extraction pipe (23), connecting pipe (26), and extraction pipe (24) are This is sent to the adsorption tank B (4) where the first pressure equalization step has been completed. As a result, the relatively low concentration nitrogen gas that was previously sent to adsorption tank B (4) is transferred to the lower part of the tank.
That is, it is moved to the source gas supply side, and the upper part of the tank, ie, the nitrogen gas extraction side, is filled with nitrogen gas at a predetermined concentration.

【0052】5)期間T5〜T6 この期間に於いては、吸着槽A(3)に均圧3工程を実
施し、吸着槽B(4)に吸着工程を実施すべく図2に於
ける弁(9),(11),(13),(15)を開き、
残りの弁を閉じる。均圧2工程の完了した吸着槽A(3
)は比較的低濃度の窒素ガスで充満しており、取り出し
管(23)、連結管(26)、分岐管(27)を介しこ
れを滞留槽(6)に送入する。
5) Period T5-T6 During this period, the valves in FIG. Open (9), (11), (13), (15),
Close the remaining valves. Adsorption tank A (3
) is filled with relatively low concentration nitrogen gas, which is fed into the retention tank (6) via the take-out pipe (23), the connecting pipe (26), and the branch pipe (27).

【0053】一方、吸着槽B(4)の下部の弁(9)を
開き原料槽(2)から高圧の空気を吸着槽B(4)に送
入する。これと同時に、吸着槽B(4)上部の弁(15
)を開き製品槽(5)から高圧の窒素ガスを吸着槽B(
4)に送入する。
On the other hand, the valve (9) at the bottom of the adsorption tank B(4) is opened to send high pressure air from the raw material tank (2) into the adsorption tank B(4). At the same time, the valve (15) at the top of adsorption tank B (4)
) is opened and high-pressure nitrogen gas is introduced from the product tank (5) into the adsorption tank B (
4).

【0054】この操作により前記比較的低濃度の窒素ガ
スはさらに下方に押しやられるとともに、吸着槽B(4
)は昇圧され、原料槽(2)、製品槽(5)と略等しい
圧力となる。コンプレッサー(1)は連続運転している
ので、吸着槽B(4)は更に昇圧され、吸着槽B(4)
の圧力が製品槽(5)の圧力に勝ると、吸着槽B(4)
から取り出し管(24)を介して窒素ガスが取り出され
るが、前述の如く、吸着槽B(4)の窒素ガス取り出し
側は所定濃度の窒素ガスで充満しているので当初から窒
素ガスを取り出すことができる。そして、CMSが所定
時間加圧されることにより酸素ガスを吸着する結果、所
定濃度の窒素ガスが取り出し管(24)を経て製品槽(
5)に貯留される。
[0054] Through this operation, the relatively low concentration nitrogen gas is pushed further downward, and the nitrogen gas in adsorption tank B (4
) is pressurized to approximately the same pressure as the raw material tank (2) and product tank (5). Since the compressor (1) is in continuous operation, the pressure in adsorption tank B (4) is further increased, and the pressure in adsorption tank B (4) is increased.
When the pressure of B exceeds the pressure of product tank (5), adsorption tank B (4)
Nitrogen gas is taken out from the tank via the take-out pipe (24), but as mentioned above, the nitrogen gas take-out side of adsorption tank B (4) is filled with nitrogen gas at a predetermined concentration, so it is necessary to take out nitrogen gas from the beginning. Can be done. As a result of the CMS being pressurized for a predetermined period of time and adsorbing oxygen gas, nitrogen gas of a predetermined concentration passes through the take-out pipe (24) to the product tank (
5).

【0055】以降の期間T6からT9においては、前述
の期間T2からT5における吸着槽A(3)及び吸着槽
B(4)に対して実施する工程を逆にしたものであって
、吸着槽A(3)に再生工程、均圧1工程、均圧2工程
を、吸着槽B(4)に吸着工程、均圧2工程をそれぞれ
実施するものであり、その詳細は省略する。
[0055] In the subsequent period T6 to T9, the steps performed for adsorption tank A (3) and adsorption tank B (4) in the above-mentioned period T2 to T5 are reversed, and the steps performed for adsorption tank A (3) and adsorption tank B (4) are reversed. In (3), a regeneration step, a pressure equalization step, and a pressure equalization step 2 are carried out, and an adsorption step and a pressure equalization step 2 are carried out in the adsorption tank B (4), and the details thereof will be omitted.

【0056】そして以降、吸着槽A(3)及び吸着槽B
(4)に対し、図1に示す工程を交番的に繰り返して実
施することにより、連続的に窒素ガスを取り出すことが
できる。
[0056] From then on, adsorption tank A (3) and adsorption tank B
In contrast to (4), by alternately repeating the steps shown in FIG. 1, nitrogen gas can be continuously extracted.

【0057】以上詳述した実施例により窒素ガスを製造
した結果を図5に示す。図5には均圧2工程及び均圧3
工程における移動率(吸着槽内のガス量=100%)を
横軸とし窒素ガス取り出し量(従来方式による窒素ガス
取り出し量=100とした割合で示す)を縦軸に示す。 同図に示すように、本発明方法による滞留槽を用いた場
合、従来に比べ約8%取り出し量が増加し、これに加え
、再生工程において所定濃度の窒素ガスで吸着槽内を掃
気した場合、従来に比べ約20%の取り出し量が増加し
た。
FIG. 5 shows the results of producing nitrogen gas according to the example detailed above. Figure 5 shows pressure equalization 2 process and pressure equalization 3.
The horizontal axis indicates the transfer rate in the process (gas amount in the adsorption tank = 100%), and the vertical axis indicates the amount of nitrogen gas extracted (expressed as a ratio where the amount of nitrogen gas extracted by the conventional method = 100). As shown in the figure, when using the retention tank according to the method of the present invention, the extraction amount increases by about 8% compared to the conventional method, and in addition to this, when the inside of the adsorption tank is purged with nitrogen gas at a specified concentration in the regeneration process. , the amount taken out increased by about 20% compared to the conventional method.

【0058】[0058]

【発明の効果】以上詳述したように本発明によれば吸着
工程当初において、窒素ガス取り出し側の吸着槽内を当
初から所定濃度の窒素ガスで満たしているので、当初か
ら所定濃度の窒素ガスを取り出すことができ、窒素ガス
の分離量を増加することができるとともに、製造原価の
低減を図ることができる。また、再生工程において吸着
槽内を所定濃度の窒素ガスで掃気することとしたので、
CMSを高効率に再生することができる結果、CMSの
吸着量が増加され、窒素ガスの分離量を増加することが
でき、上述の如く、製造原価の低減を図ることができる
Effects of the Invention As detailed above, according to the present invention, at the beginning of the adsorption process, the adsorption tank on the nitrogen gas extraction side is filled with nitrogen gas at a predetermined concentration from the beginning. can be extracted, the amount of nitrogen gas separated can be increased, and manufacturing costs can be reduced. In addition, in the regeneration process, we decided to scavenge the inside of the adsorption tank with nitrogen gas at a predetermined concentration.
As a result of being able to regenerate CMS with high efficiency, the amount of CMS adsorbed is increased, the amount of nitrogen gas separated can be increased, and as described above, manufacturing costs can be reduced.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】窒素ガス分離装置の各吸着槽に対し実施される
工程を示す説明図である。
FIG. 1 is an explanatory diagram showing steps performed for each adsorption tank of a nitrogen gas separation device.

【図2】本発明装置の一実施例の概略を示す説明図であ
る。
FIG. 2 is an explanatory diagram schematically showing an embodiment of the device of the present invention.

【図3】CMSの吸着特性を示すグラフである。FIG. 3 is a graph showing the adsorption characteristics of CMS.

【図4】均圧工程における移動したガス量(吸着槽内ガ
ス量=100%)とガス中に含まれる酸素ガス濃度の関
係を示したグラフである。
FIG. 4 is a graph showing the relationship between the amount of gas transferred in the pressure equalization step (the amount of gas in the adsorption tank=100%) and the concentration of oxygen gas contained in the gas.

【図5】本発明方法における窒素ガス取り出し量を示し
たグラフである。
FIG. 5 is a graph showing the amount of nitrogen gas taken out in the method of the present invention.

【図6】窒素ガス分離装置の窒素ガス取り出し量と窒素
ガス濃度との関係を示すグラフである。
FIG. 6 is a graph showing the relationship between the amount of nitrogen gas taken out of the nitrogen gas separation device and the nitrogen gas concentration.

【符号の説明】[Explanation of symbols]

1  コンプレッサー 2  原料槽 3  吸着槽A 4  吸着槽B 5  製品槽 6  滞留槽 11  弁 12  弁 13  弁 17  絞り弁 26  連結管 27  分岐管 1 Compressor 2 Raw material tank 3 Adsorption tank A 4 Adsorption tank B 5 Product tank 6 Retention tank 11 Valve 12 Valve 13 Valve 17 Throttle valve 26 Connecting pipe 27 Branch pipe

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】  並設した2個の吸着槽A及び吸着槽B
に対し、窒素ガス及び酸素ガスを主成分とする原料ガス
を供給し、吸着槽A及び吸着槽Bに充填した分子篩炭素
により窒素ガスを分離する方法において、以下の工程を
順次連続的に実施することを特徴とする窒素ガス分離方
法。 a)吸着を完了し加圧状態にある吸着槽Aと、再生を完
了後滞留槽からのガスの移送を完了した吸着槽Bとを連
通して吸着槽A内のガスを吸着槽Bに移送させる第1工
程。 b)前記吸着槽Aと前記滞留槽とを連通させ吸着槽Aか
ら滞留槽にガスを移送する一方、前記吸着槽Bに前記原
料ガスを供給し、窒素ガスを分離する第2工程。 c)前記吸着槽A内の残留ガスを大気に放出する一方、
前記吸着槽Bに対しては継続的に前記原料ガスを供給し
、窒素ガスを分離する第3工程。 d)前記吸着槽Aと前記滞留槽とを連通させ、滞留槽か
ら吸着槽Aにガスを移送する一方、前記吸着槽Bに対し
ては継続的に前記原料ガスを供給し、窒素ガスを分離す
る第4工程。 e)吸着を完了し加圧状態にある前記吸着槽Bと、前記
滞留槽からのガス移送を完了した前記吸着槽Aとを連通
させ、吸着槽B内のガスを吸着槽Aに移送させる第5工
程。 f)前記吸着槽Bと前記滞留槽とを連通させ吸着槽Bか
ら滞留槽にガスを移送する一方、前記吸着槽Aに前記原
料ガスを供給し、窒素ガスを分離する第6工程。 g)前記吸着槽B内の残留ガスを大気に放出する一方、
前記吸着槽Aに対しては継続的に前記原料ガスを供給し
、窒素ガスを分離する第7工程。 h)前記吸着槽Bと前記滞留槽とを連通させ滞留槽から
吸着槽Bにガスを移送する一方、前記吸着槽Aに対して
は継続的に前記原料ガスを供給し、窒素ガスを分離する
第8工程。
[Claim 1] Two adsorption tanks A and B installed in parallel.
In the method of supplying a raw material gas containing nitrogen gas and oxygen gas as main components and separating nitrogen gas using carbon molecular sieves filled in adsorption tank A and adsorption tank B, the following steps are sequentially and continuously carried out. A nitrogen gas separation method characterized by: a) Adsorption tank A, which has completed adsorption and is in a pressurized state, is communicated with adsorption tank B, which has completed regeneration and has completed transfer of gas from the retention tank, to transfer the gas in adsorption tank A to adsorption tank B. The first step is to b) A second step of communicating the adsorption tank A and the retention tank to transfer gas from the adsorption tank A to the retention tank, while supplying the raw material gas to the adsorption tank B and separating nitrogen gas. c) While releasing the residual gas in the adsorption tank A to the atmosphere,
A third step of continuously supplying the raw material gas to the adsorption tank B and separating nitrogen gas. d) Connecting the adsorption tank A and the retention tank to transfer gas from the retention tank to the adsorption tank A, while continuously supplying the raw material gas to the adsorption tank B to separate nitrogen gas. The fourth step. e) A step in which the adsorption tank B, which has completed adsorption and is in a pressurized state, and the adsorption tank A, which has completed gas transfer from the retention tank, are communicated, and the gas in the adsorption tank B is transferred to the adsorption tank A. 5 steps. f) A sixth step of communicating the adsorption tank B and the retention tank to transfer gas from the adsorption tank B to the retention tank, while supplying the raw material gas to the adsorption tank A and separating nitrogen gas. g) While releasing the residual gas in the adsorption tank B to the atmosphere,
A seventh step of continuously supplying the raw material gas to the adsorption tank A and separating nitrogen gas. h) Connecting the adsorption tank B and the retention tank to transfer gas from the retention tank to the adsorption tank B, while continuously supplying the raw material gas to the adsorption tank A and separating nitrogen gas. Eighth step.
【請求項2】  残留ガスを大気に放出した後の前記第
3工程の吸着槽A及び前記第7工程の吸着槽Bに対し、
窒素ガスを送通させる請求項1記載の窒素ガス分離方法
2. For the adsorption tank A in the third step and the adsorption tank B in the seventh step after the residual gas is released into the atmosphere,
The nitrogen gas separation method according to claim 1, wherein nitrogen gas is passed through.
【請求項3】  並設した2個の吸着槽A及び吸着槽B
に対し交番的にその一方側から窒素ガス及び酸素ガスを
主成分とする原料ガスを供給して他方側から分離した窒
素ガスを取り出す装置において、前記吸着槽A及び吸着
槽Bの窒素ガス取り出し部同士を連結する連結管と、該
連結管に設けた2個の第1の弁と、この第1の弁の間か
ら分岐する分岐管と、分岐管の端部に設けた滞留槽と、
前記分岐管に設けた第2の弁とを具備することを特徴と
する窒素ガス分離装置。
[Claim 3] Two adsorption tanks A and B arranged in parallel.
In the apparatus for alternately supplying a raw material gas mainly composed of nitrogen gas and oxygen gas from one side of the tank and taking out the separated nitrogen gas from the other side, the nitrogen gas take-off portion of the adsorption tank A and the adsorption tank B a connecting pipe connecting the connecting pipes, two first valves provided on the connecting pipe, a branch pipe branching from between the first valves, and a retention tank provided at the end of the branch pipe;
and a second valve provided in the branch pipe.
JP3116787A 1991-04-19 1991-04-19 Method and equipment for separating gaseous nitrogen Pending JPH04322713A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3116787A JPH04322713A (en) 1991-04-19 1991-04-19 Method and equipment for separating gaseous nitrogen

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3116787A JPH04322713A (en) 1991-04-19 1991-04-19 Method and equipment for separating gaseous nitrogen

Publications (1)

Publication Number Publication Date
JPH04322713A true JPH04322713A (en) 1992-11-12

Family

ID=14695694

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3116787A Pending JPH04322713A (en) 1991-04-19 1991-04-19 Method and equipment for separating gaseous nitrogen

Country Status (1)

Country Link
JP (1) JPH04322713A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017160079A (en) * 2016-03-09 2017-09-14 エア・ウォーター株式会社 Method and apparatus for manufacturing nitrogen gas
JP2020001017A (en) * 2018-06-29 2020-01-09 大陽日酸株式会社 Pressure fluctuation adsorption device
JP2020025931A (en) * 2018-08-14 2020-02-20 大陽日酸株式会社 Gas separation apparatus, gas separation method, nitrogen-enriched gas production apparatus and nitrogen-enriched gas production method
JP2020081929A (en) * 2018-11-19 2020-06-04 大陽日酸株式会社 Pressure fluctuation adsorption device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62223587A (en) * 1986-02-24 1987-10-01 ザ・ビ−オ−シ−・グル−プ・インコ−ポレ−テツド Method and device for recovering argon from purge gas of ammonia plant using combination of low-temperature separation means and non-low temperature separation means
JPS62228862A (en) * 1986-02-24 1987-10-07 ザ・ビ−オ−シ−・グル−プ・インコ−ポレ−テツド Recovery of argon from purge gas of ammonia plant after discharge of hydrogen utilizing combination of low-temperature separation and non-low temperature separation
JPS62247818A (en) * 1986-02-24 1987-10-28 ザ・ビ−オ−シ−・グル−プ・インコ−ポレ−テツド Psa multicomponent separation utilizing equalizing tank pressure
JPH01313301A (en) * 1988-05-04 1989-12-18 Boc Group Inc:The Continuous production of hydrogen and carbon dioxide

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62223587A (en) * 1986-02-24 1987-10-01 ザ・ビ−オ−シ−・グル−プ・インコ−ポレ−テツド Method and device for recovering argon from purge gas of ammonia plant using combination of low-temperature separation means and non-low temperature separation means
JPS62228862A (en) * 1986-02-24 1987-10-07 ザ・ビ−オ−シ−・グル−プ・インコ−ポレ−テツド Recovery of argon from purge gas of ammonia plant after discharge of hydrogen utilizing combination of low-temperature separation and non-low temperature separation
JPS62247818A (en) * 1986-02-24 1987-10-28 ザ・ビ−オ−シ−・グル−プ・インコ−ポレ−テツド Psa multicomponent separation utilizing equalizing tank pressure
JPH01313301A (en) * 1988-05-04 1989-12-18 Boc Group Inc:The Continuous production of hydrogen and carbon dioxide

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017160079A (en) * 2016-03-09 2017-09-14 エア・ウォーター株式会社 Method and apparatus for manufacturing nitrogen gas
JP2020001017A (en) * 2018-06-29 2020-01-09 大陽日酸株式会社 Pressure fluctuation adsorption device
JP2020025931A (en) * 2018-08-14 2020-02-20 大陽日酸株式会社 Gas separation apparatus, gas separation method, nitrogen-enriched gas production apparatus and nitrogen-enriched gas production method
JP2020081929A (en) * 2018-11-19 2020-06-04 大陽日酸株式会社 Pressure fluctuation adsorption device

Similar Documents

Publication Publication Date Title
US3564816A (en) Selective adsorption process
JP3310249B2 (en) Oxygen production method and apparatus using one adsorber and one blower
JPH04330913A (en) Absorption process for separating gaseous mixture
US6048384A (en) PSA process and system using simultaneous top and bottom evacuation of absorbent bed
EP1101522B1 (en) Pressure swing adsorption process
US5993517A (en) Two stage pressure swing adsorption process
JPH0263520A (en) Method and apparatus for separating oxygen from air
CA2200997A1 (en) Process for treating a gas mixture by pressure swing adsorption
US5997611A (en) Single vessel gas adsorption system and process
JPH07745A (en) Gas separation
JPS60176901A (en) Method for concentrating and purifying hydrogen, etc. in mixed gas containing at least hydrogen by using adsorption
US4848985A (en) Separation of gas mixtures
JPH04322713A (en) Method and equipment for separating gaseous nitrogen
JP3287607B2 (en) Method for producing an oxygen-enriched product stream
US6709486B2 (en) Pressure swing adsorption process with controlled internal depressurization flow
JPH0994424A (en) Gaseous mixture separator
EP0512780A1 (en) Method and apparatus for continuously separating nitrogen
JPH0352615A (en) Gas separation
JP3121293B2 (en) Mixed gas separation method by pressure swing adsorption method
JPH034244B2 (en)
JP3755622B2 (en) Mixed gas separation method
JP2529928B2 (en) Method for separating and recovering carbon monoxide gas
JPS6219882B2 (en)
JP3073061B2 (en) Gas separation device
JPS63190615A (en) Gas separating and concentrating method