JPH03262512A - Pressure swing adsorbing type gas separation apparatus and operation thereof - Google Patents

Pressure swing adsorbing type gas separation apparatus and operation thereof

Info

Publication number
JPH03262512A
JPH03262512A JP2060710A JP6071090A JPH03262512A JP H03262512 A JPH03262512 A JP H03262512A JP 2060710 A JP2060710 A JP 2060710A JP 6071090 A JP6071090 A JP 6071090A JP H03262512 A JPH03262512 A JP H03262512A
Authority
JP
Japan
Prior art keywords
adsorption
pressure
gas
outlet
product gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2060710A
Other languages
Japanese (ja)
Other versions
JP3165964B2 (en
Inventor
Masanobu Toshimitsu
利光 正信
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Oxygen Co Ltd
Nippon Sanso Corp
Original Assignee
Japan Oxygen Co Ltd
Nippon Sanso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Oxygen Co Ltd, Nippon Sanso Corp filed Critical Japan Oxygen Co Ltd
Priority to JP06071090A priority Critical patent/JP3165964B2/en
Publication of JPH03262512A publication Critical patent/JPH03262512A/en
Application granted granted Critical
Publication of JP3165964B2 publication Critical patent/JP3165964B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Separation Of Gases By Adsorption (AREA)

Abstract

PURPOSE:To enhance the recovery of product gas by connecting the product gas outlet parts of a plurality of adsorbing cylinders by a pressure equalizing conduit and connecting the product gas outlet parts and the raw material gas inlet parts of other adsorbing cylinders by a series pressure equalizing conduit. CONSTITUTION:In the operation method of a pressure swing adsorbing type gas separation apparatus separating gas by changing over a plurality of adsorbing cylinders A, B packed with an adsorbent to an adsorbing process and a regenerating process, the product gas outlet part of the adsorbing cylinder A after the completion of the regenerating process and the product gas outlet part of the adsorbing cylinder B after the completion of the adsorbing process are allowed to communicate with each other by an outlet part pressure equalizing conduit 10 having outlet part pressure equalizing valves 10a, 10b. The raw material gas inlet part of the adsorbing cylinder A and the product gas outlet part of the adsorbing cylinder B are respectively allowed to communicate by a series pressure equalizing conduit 11 having a series pressure equalizing valve to perform a series pressure equalizing process moving gas. By this method, a pressure equalizing process can be performed until the pressures of both cylinders reach pressure near to perfectly equal pressure and many gases can be recovered.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、圧力変動吸着式ガス分離装置及びその運転方
法に関し、詳しくは、効率のよい均圧工程を行うことの
できる圧力変動吸着式分離装置及び該装置における均圧
工程の操作方法に関する。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a pressure fluctuation adsorption type gas separation device and an operating method thereof, and more particularly, to a pressure fluctuation adsorption type separation device that can perform an efficient pressure equalization process. The present invention relates to an apparatus and a method of operating a pressure equalization process in the apparatus.

〔従来の技術〕[Conventional technology]

従来から、混合ガス中の特定成分を分離したり、不純物
成分を除去する手段として、内部に吸着剤を充填した複
数の吸着筒を順次吸着工程に切換えてガスを分離する圧
力変動吸着式ガス分離装置(以下、PSAと称す)が用
いられている。このPSAは、吸着工程を終了した吸着
筒について再生工程を行い、吸着工程と再生工程とを順
次切換えることにより、連続的に製品ガスを生産するよ
うに構成されている。
Conventionally, as a means of separating specific components in a mixed gas or removing impurity components, pressure fluctuation adsorption gas separation is used to separate gases by sequentially switching multiple adsorption cylinders filled with adsorbent into an adsorption process. (hereinafter referred to as PSA) is used. This PSA is configured to perform a regeneration process on an adsorption cylinder that has completed an adsorption process, and to continuously produce product gas by sequentially switching between the adsorption process and the regeneration process.

上記PSAは、−膜内に、吸着、均圧、再生。The above PSA is - adsorbed, pressure equalized and regenerated within the membrane.

均圧、充圧の各工程をひとつのサイクルとして、これを
各吸着筒について順次実施している。即ち、ひとつの吸
着筒は、加圧された原料ガスを導入して製品ガスを導出
する吸着工程、該吸着筒内に残存するガス(数)cg 
/ cd Gの圧力を有するガス)を再生工程が終了し
た他の吸着筒に導入する均圧工程、該吸着筒内を吸着工
程時よりも低い圧力に減圧する減圧再生工程及び/又は
該吸着筒に製品ガスの一部を逆流させて再生を促進させ
るパージ再生工程、再生工程が終了した該吸着筒に吸着
工程の終了した他の吸着筒内のガスを導入する均圧工程
、該吸着筒内に製品ガスを導入して筒内を吸着工程時の
操作圧力に高める充圧工程の各工程を順次行うように設
定されている。
The pressure equalization and pressure charging steps are treated as one cycle, and are carried out sequentially for each adsorption column. That is, one adsorption column is used for the adsorption process in which pressurized raw material gas is introduced and product gas is derived, and the amount of gas (number) cg remaining in the adsorption column is
/ cd G) into another adsorption column after the regeneration step, a depressurization regeneration step of reducing the pressure inside the adsorption column to a lower pressure than during the adsorption step, and/or the adsorption column. A purge regeneration step in which a part of the product gas is reversed to promote regeneration, a pressure equalization step in which gas from another adsorption column whose adsorption step has been completed is introduced into the adsorption column after the regeneration step, and a pressure equalization step in which the gas from another adsorption column whose adsorption step has been completed is introduced into the adsorption column after the regeneration step has been completed. The system is set to sequentially perform each step of the pressurization step in which product gas is introduced into the cylinder to raise the pressure inside the cylinder to the operating pressure for the adsorption step.

ここで上記均圧工程は、製品ガスの回収率を向上させる
目的で行われるもので、吸着工程が終了した吸着筒と再
生工程が終了した吸着筒の圧力差を利用してガスを移動
させ、一方の吸着筒を中間圧力まで減圧するとともに、
他方の吸着筒を中間圧力まで充圧するものである。この
均圧工程としては、吸着工程が終了した吸着筒と再生工
程が終了した吸着筒の製品出口部同士を連通して行う出
口部(上部)均圧法と、両筒の原料ガス人口部同士を連
通して行う入口部(下部)均圧法と、出口部均圧と入口
部均圧を同時に行う同時(上下同時)均圧法と、吸着工
程が完了した吸着筒の出口部と再生工程が終了した吸着
筒の人口部を連通して行う直列均圧法とが行われている
Here, the pressure equalization step is performed for the purpose of improving the recovery rate of product gas, and the gas is moved using the pressure difference between the adsorption column where the adsorption step has been completed and the adsorption column where the regeneration step has been completed. While reducing the pressure in one adsorption column to an intermediate pressure,
The other adsorption cylinder is charged to an intermediate pressure. This pressure equalization process is carried out by the exit part (upper part) pressure equalization method in which the product outlets of the adsorption column that has completed the adsorption process and the product outlet part of the adsorption column that has completed the regeneration process are communicated with each other, and the pressure equalization method that is carried out by connecting the product outlet parts of the adsorption column that has completed the adsorption process and the product outlet part of the adsorption column that has completed the regeneration process. The pressure equalization method at the inlet (lower part) is carried out in a continuous manner, the simultaneous pressure equalization method (simultaneously at the top and bottom) where the outlet and inlet pressures are equalized at the same time, and the outlet section of the adsorption column where the adsorption process has been completed and the regeneration process has been completed. A series pressure equalization method is used in which the artificial part of the adsorption cylinder is communicated.

上記各均圧法の内、いずれの均圧法を用いるかは、PS
Aの構成及びその運転方法、特に再生方法や均圧工程に
より回収されるガス量等によって異なる。
Which pressure equalization method to use among the above pressure equalization methods is determined by PS.
It varies depending on the configuration of A and its operating method, especially the regeneration method and the amount of gas recovered by the pressure equalization process.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら、上記いずれの均圧法においても、製品ガ
ス純度が最も高くなる回収ガス量があり、そのガス量を
超えて均圧工程を行うと製品ガス純度が低下する。従っ
て、両筒の圧力が一致するまで均圧を行う、いわゆる完
全均圧は行わないのが一般的である。このことは圧力を
回収するという観点からは不利であるため、製品ガス純
度を低下させずに、できるだけ均圧回収ガス量を大きく
てきる均圧方法が望まれている。
However, in any of the above pressure equalization methods, there is a recovered gas amount at which the product gas purity is the highest, and if the pressure equalization step is performed in excess of that gas amount, the product gas purity will decrease. Therefore, it is common to not perform so-called complete pressure equalization, in which pressure is equalized until the pressures in both cylinders match. Since this is disadvantageous from the viewpoint of pressure recovery, a pressure equalization method is desired that can increase the amount of pressure equalized recovery gas as much as possible without reducing the product gas purity.

そこで本発明は、製品ガス純度を低下させずに、できる
だけ均圧回収ガス量を多くし、原料ガスに対する製品ガ
スの回収率を向上させて製品ガスの製造原価を低減させ
ることのできる運転を行うことのできるPSA及びその
運転方法を提供することを目的としている。
Therefore, the present invention aims to perform an operation that can increase the amount of equalized pressure recovery gas as much as possible without reducing the product gas purity, improve the recovery ratio of product gas to raw material gas, and reduce the production cost of product gas. The purpose of the present invention is to provide a PSA that can be used and a method for operating the same.

〔課題を解決するための手段〕[Means to solve the problem]

上記した目的を達成するために、本発明のPSAは、吸
着剤を充填した複数の吸着筒を吸着工程と再生工程とに
切換えてガスを分離する圧力変動吸着式ガス分離装置に
おいて、前記複数の吸着筒の製品ガス出口部を、出口部
均圧弁を有する出口部均圧導管で互いに連通させるとと
もに、吸着筒の製品ガス出口部と他の吸着筒の原料ガス
入口部とを直列均圧弁を有する直列均圧導管でそれぞれ
連通させたことを特徴としている。
In order to achieve the above object, the PSA of the present invention provides a pressure fluctuation adsorption type gas separation device that separates gas by switching a plurality of adsorption cylinders filled with adsorbent between an adsorption process and a regeneration process. The product gas outlet parts of the adsorption cylinders are communicated with each other by an outlet pressure equalization conduit having an outlet pressure equalization valve, and the product gas outlet part of the adsorption cylinder and the raw material gas inlet part of the other adsorption cylinder are connected in series, each having a pressure equalization valve. They are characterized by being connected to each other through series pressure equalizing conduits.

また、本発明のPSAの運転方法は、前記再生工程が終
了した吸着筒の製品ガス出口部と吸着工程が終了した吸
着筒の製品ガス出口部とを連通させてガスを移動させる
出口部均圧工程を行った後、再生操作が終了した吸着筒
の原料ガス入口部と吸着工程が終了した吸着筒の製品ガ
ス出口部とを連通させてガスを移動させる直列均圧工程
を行うことを特徴としている。
In addition, the method of operating the PSA of the present invention is such that the product gas outlet of the adsorption column where the regeneration step has been completed is communicated with the product gas outlet of the adsorption column where the adsorption step has been completed to equalize the pressure at the outlet to move the gas. After performing the process, a series pressure equalization process is carried out in which the raw gas inlet of the adsorption column where the regeneration operation has been completed is communicated with the product gas outlet of the adsorption column where the adsorption process has been completed to move the gas. There is.

〔作 用〕[For production]

上記のごと<PSAを構成して上記のごとき運転方法を
行うことにより、吸着工程を終了した吸着筒内に残る製
品純度の高いガスを効率よく再生工程を終えた吸着筒内
に導入でき、均圧工程において両筒の圧力を略同程度、
即ち完全均圧乃至完全均圧に近い圧力まで均圧工程を行
うことが可能となり、製品ガスの純度低下を生じること
なく、より多くのガスを回収することができる。
By configuring the PSA as described above and performing the operation method as described above, the gas with high product purity remaining in the adsorption column after the adsorption process can be efficiently introduced into the adsorption column after the regeneration process, and evenly. In the pressure process, the pressure in both cylinders is approximately the same,
That is, it becomes possible to carry out the pressure equalization process to a pressure that is completely equalized or close to completely equalized pressure, and more gas can be recovered without reducing the purity of the product gas.

〔実施例〕〔Example〕

以下、本発明を図面に示す一実施例に基づいて、さらに
詳細に説明する。
Hereinafter, the present invention will be explained in more detail based on an embodiment shown in the drawings.

第1図は空気(窒素と酸素の混合ガス)を原料として窒
素ガスを生産する2筒式のPSAを示すもので、吸着@
A、Bの内部には、分子篩炭(MSC)が充填されてい
る。
Figure 1 shows a two-cylinder PSA that produces nitrogen gas using air (a mixture of nitrogen and oxygen) as a raw material.
The insides of A and B are filled with molecular sieve charcoal (MSC).

このPSAIには、一対の吸着筒A、Bと、原料空気導
入側の空気槽2と、製品ガス供給側の製品槽3と、吸着
筒再生時に用いられる真空ポンプ4及びブロー弁5が設
けられるとともに、それぞれの吸着筒A、Bに附随する
大口弁5 g 、  6 b %出口弁7a、7b、再
生出口弁8a、8bが設けられており、両吸着筒A、B
の入口部At、Biには、両吸着筒入口部At、Biを
連通ずる入口部連通導管9が、また、両吸着筒A、Hの
出口部Ao、Boには、両吸着筒出口部Ao、Boを互
いに連通ずる出口部均圧導管10がそれぞれ設けられる
とともに、入口部連通導管9には入口部均圧弁9a、9
bが、出口部均圧導管10には出口部均圧弁10a、1
0bがそれぞれ吸着筒A、  Bに対応して設けられ、
さらに両導管9,10の各弁の間には、流量調節弁11
aを介して両導管9゜10を連通する直列均圧導管11
が設けられている。尚、空気槽2の上流側には図示しな
い空気圧縮機や精製設備等が設けられており、製品槽3
の供給側には製品供給弁3aが設けられている。
This PSAI is provided with a pair of adsorption cylinders A and B, an air tank 2 on the feed air introduction side, a product tank 3 on the product gas supply side, and a vacuum pump 4 and blow valve 5 used during adsorption cylinder regeneration. In addition, large-mouth valves 5g, 6b% outlet valves 7a, 7b, and regeneration outlet valves 8a, 8b are provided for each adsorption cylinder A, B, and both adsorption cylinders A, B
The inlet portions At and Bi of the adsorption tubes have an inlet communication conduit 9 that communicates the inlet portions At and Bi of the adsorption cylinders, and the outlet portions Ao and Bo of both adsorption cylinders A and H have an outlet portion Ao of both adsorption cylinders. , Bo are provided with outlet pressure equalizing conduits 10 for communicating with each other, and the inlet communicating conduit 9 is provided with inlet pressure equalizing valves 9a, 9.
b, the outlet pressure equalizing conduit 10 has outlet pressure equalizing valves 10a, 1
0b are provided corresponding to adsorption cylinders A and B, respectively,
Further, between each valve of both conduits 9 and 10, a flow rate control valve 11 is provided.
A series pressure equalizing conduit 11 that communicates both conduits 9 and 10 via a.
is provided. Note that an air compressor, purification equipment, etc. (not shown) are installed upstream of the air tank 2, and the product tank 3
A product supply valve 3a is provided on the supply side.

このPSAは、第2図に示す工程1から工程6をひとつ
のサイクルとしている。尚、各工程期間中は、説明中の
各弁及び流量調節弁11a以外の弁は閉じられている。
This PSA includes steps 1 to 6 shown in FIG. 2 as one cycle. Note that during each process period, the valves other than the valves being described and the flow rate control valve 11a are closed.

工程l まず、一方の吸着筒Aが吸着工程、他方の吸着筒Bが再
生工程の場合、所定圧力に昇圧された加圧空気は、空気
槽2を介して吸着筒Aに附随する大口弁6aから吸着筒
Aに導入され、筒内のMSCにより酸素が優先的に吸着
除去されて吸着筒出口部Ao側に窒素が濃縮される。濃
縮された窒素は、出口弁7aを経て製品槽3に貯留され
、製品供給弁3aから製品窒素ガスとして需要先に供給
される。
Step 1 First, when one adsorption cylinder A is in the adsorption process and the other adsorption cylinder B is in the regeneration process, pressurized air that has been pressurized to a predetermined pressure is passed through the air tank 2 to the large mouth valve 6a attached to the adsorption cylinder A. The nitrogen gas is introduced into the adsorption column A, where oxygen is preferentially adsorbed and removed by the MSC in the column, and nitrogen is concentrated on the side of the adsorption column outlet Ao. The concentrated nitrogen is stored in the product tank 3 via the outlet valve 7a, and is supplied to the consumer as product nitrogen gas from the product supply valve 3a.

この間に、他方の吸着筒Bでは再生工程が行われており
、吸着筒Bの再生出口弁8bが開かれ、筒内のガスがブ
ロー弁5から大気中に排出され、次いて真空ポンプ4に
よって真空排気されることにより筒内の吸着剤に吸着さ
れていたガス(主に酸素ガス)が脱着される。尚、パー
ジ再生では、製品窒素ガスの一部を出口弁7bから吸着
筒Bに逆流させて再生出口弁8b、ブロー弁5又は真空
ポンプ4から排出することにより筒内の吸着剤に吸着さ
れていたガスを脱着する。
During this time, the regeneration process is being performed in the other adsorption cylinder B, and the regeneration outlet valve 8b of the adsorption cylinder B is opened, and the gas in the cylinder is discharged from the blow valve 5 to the atmosphere, and then the vacuum pump 4 By evacuation, the gas (mainly oxygen gas) adsorbed by the adsorbent in the cylinder is desorbed. In addition, in purge regeneration, a part of the product nitrogen gas is caused to flow back from the outlet valve 7b to the adsorption cylinder B and is discharged from the regeneration outlet valve 8b, the blow valve 5, or the vacuum pump 4, so that the nitrogen gas is not adsorbed by the adsorbent in the cylinder. Desorbs the gas.

工程2 一定時間それぞれの吸着工程、再生工程を行い、一方の
吸着筒Aの吸着が進行し、他方の吸着筒Bの再生工程が
終了したときには、人口弁5a、出口弁7a、再生出目
弁8bを閉じた後、出口部均圧弁10a、10bを開い
て両吸着筒A、Bの出口部Ao、Boを連通させる。こ
れにより、吸着筒Aの出口部Aoに存在する窒素ガスが
吸着筒Bの出口部Boへ移動する(出口部均圧工程)。
Step 2 Each adsorption step and regeneration step are performed for a certain period of time, and when the adsorption of one adsorption cylinder A has progressed and the regeneration process of the other adsorption cylinder B has been completed, the population valve 5a, the outlet valve 7a, and the regeneration output valve are closed. 8b is closed, the outlet pressure equalizing valves 10a and 10b are opened to allow the outlet sections Ao and Bo of both adsorption cylinders A and B to communicate with each other. As a result, the nitrogen gas present at the outlet Ao of the adsorption column A moves to the outlet Bo of the adsorption column B (outlet pressure equalization step).

続けて吸着筒A側の出口部均圧弁10aを開いたまま、
吸着筒B側の出口部均圧弁10bを閉じるとともに、吸
着筒B側の入口部均圧弁9bを開く。これにより、吸着
筒Aの出口部Aoに存在する窒素濃度の高いガスが流量
調節弁11aを介して所定流量で吸着筒Bの入口部Bi
へ移動する(直列均圧工程)。
Continuously, with the outlet pressure equalizing valve 10a on the adsorption cylinder A side open,
The outlet pressure equalizing valve 10b on the adsorption cylinder B side is closed, and the inlet pressure equalizing valve 9b on the adsorption cylinder B side is opened. As a result, the gas with high nitrogen concentration present at the outlet Ao of the adsorption cylinder A is transferred to the inlet part Bi of the adsorption cylinder B at a predetermined flow rate via the flow rate control valve 11a.
(Series pressure equalization process).

上記出口部均圧工程によるガス移動量及び直列均圧工程
によるガス移動量は、各弁の開閉による連通時間あるい
は流量調節弁1.1 aの開度によって制御することか
でき、各配管の径や配管途中に絞り板を挿入することな
どでも同様の制御が可能である。
The amount of gas transferred by the outlet pressure equalization process and the amount of gas transferred by the series pressure equalization process can be controlled by the communication time by opening and closing each valve or the opening degree of the flow rate control valve 1.1a, Similar control is also possible by inserting a diaphragm plate in the middle of the pipe.

上記のごとく再生工程中の均圧工程を、出口部均圧工程
とこれに続く直列均圧工程とで行うことにより、吸着工
程が終了した吸着筒Aの出口部AOに存在する窒素濃度
の高いガスを、効率よく再生工程が終了した吸着筒Bに
導入することができる。
By performing the pressure equalization process during the regeneration process as described above with the outlet pressure equalization process and the series pressure equalization process that follows, the high nitrogen concentration present at the outlet AO of the adsorption column A after the adsorption process has been completed. Gas can be efficiently introduced into the adsorption cylinder B where the regeneration process has been completed.

即ち、吸着工程が終了した一方の吸着筒Aの出口部Ao
に存在する最も窒素濃度の高いガスを再生処理が終了し
た吸着筒Bの出口部Boから導入することにより、吸着
筒B内に残存する脱着ガス(酸素)を入口部Blに移動
させるとともに吸着剤に吸着させることができる。また
、続けて吸着筒A内の窒素濃度の比較的高いガスを吸着
筒Bの人口部B1から導入することにより、該ガス中の
酸素を吸着除去しながら均圧を進めることができる。
That is, the outlet part Ao of one adsorption cylinder A where the adsorption process has been completed.
By introducing the gas with the highest nitrogen concentration existing in the adsorption column B from the outlet Bo of the adsorption column B that has undergone regeneration processing, the desorption gas (oxygen) remaining in the adsorption column B is moved to the inlet Bl and the adsorbent is can be adsorbed to. Further, by subsequently introducing gas with a relatively high nitrogen concentration into the adsorption column A from the artificial part B1 of the adsorption column B, pressure equalization can be proceeded while removing oxygen in the gas.

従って、吸着工程が終了した吸着筒Aと再生処理が終了
した吸着筒Bとを等しい圧力まで均圧工程を行っても、
該均圧工程の後段の直列均圧工程では吸着筒Bの入口部
Bfから原料空気よりも窒素濃度の高いガスが筒内に導
入されるため、吸着筒Bの出口BOに向って、より窒素
濃度の高いガスを配置することができる。
Therefore, even if the pressure equalization process is performed to bring the adsorption cylinder A, which has undergone the adsorption process, and the adsorption cylinder B, which has undergone the regeneration process, to the same pressure,
In the series pressure equalization step that follows the pressure equalization step, gas with a higher nitrogen concentration than the feed air is introduced into the cylinder from the inlet Bf of the adsorption column B, so that more nitrogen is introduced toward the outlet BO of the adsorption column B. Highly concentrated gas can be placed.

尚、上記均圧工程の時間は、PSAの構成、吸着筒の容
積、吸着剤の種類及び充填量、製品ガスの種類及び純度
、その他の条件により異なるが、吸着剤へのガスの吸着
速度の差を利用してガスを分離するMSCを用いたPS
Aの場合には、30秒以内、好ましくは20秒以内であ
る。さらに該均圧工程中の出口部均圧工程の時間は、5
秒以内、特に3秒以内とすることが好ましい。例えば出
口部均圧工程の時間が長くなると吸着工程を終えた一方
の吸着筒から、窒素純度の低いガスが他方の吸着筒の出
口部に導入されることになり、製品窒素ガスの純度を低
下させてしまうおそれがある。
The time for the above pressure equalization step varies depending on the configuration of the PSA, the volume of the adsorption cylinder, the type and filling amount of the adsorbent, the type and purity of the product gas, and other conditions, but it depends on the rate of gas adsorption to the adsorbent. PS using MSC that separates gases using differences
In case A, it is within 30 seconds, preferably within 20 seconds. Furthermore, the time for the outlet pressure equalization step during the pressure equalization step is 5
It is preferably within seconds, particularly within 3 seconds. For example, if the outlet pressure equalization process takes a long time, gas with low nitrogen purity will be introduced from one adsorption column after the adsorption process to the outlet of the other adsorption column, reducing the purity of the product nitrogen gas. There is a risk that it may cause

また、均圧工程時間を長く設定すると、吸着工程が終了
した吸着筒内の吸着剤から脱着する酸素ガスを再生工程
が終了した吸着筒へ移動させることになり、やはり製品
ガスの純度を低下させてしまう。
In addition, if the pressure equalization process time is set for a long time, the oxygen gas desorbed from the adsorbent in the adsorption column where the adsorption process has finished will be transferred to the adsorption column where the regeneration process has finished, which will also reduce the purity of the product gas. It ends up.

本発明の方法は、吸着速度の差を利用して分離を行うM
SCのような吸着速度が比較的遅い吸着剤(速度分離型
の吸着剤)に対して特に有効である。即ち、この型の吸
着剤においては、吸着速度が遅いため、吸着工程が終了
した吸着筒内のガスの純度変化が入口部から出口部に向
かって緩かであり、いわゆる吸着破過帯か長いため、こ
の吸着筒上部に存在するガスを再生工程が終了した吸着
筒内へ均圧回収する場合、より純度の高いガスを出口部
に向かって配置させることのできる本発明方法が特に有
効である。
The method of the present invention performs separation using the difference in adsorption rate.
It is particularly effective for adsorbents such as SC that have a relatively slow adsorption rate (rate separation type adsorbents). In other words, in this type of adsorbent, since the adsorption speed is slow, the change in the purity of the gas in the adsorption column after the adsorption process is completed is gradual from the inlet to the outlet, and the so-called adsorption breakthrough zone is long. Therefore, when the gas existing in the upper part of the adsorption column is recovered under equal pressure into the adsorption column after the regeneration process has been completed, the method of the present invention is particularly effective because it allows the gas with higher purity to be arranged toward the outlet. .

工程3 吸着筒Aの減圧再生を行うために、再生出目弁8 ar
 ブロー弁5を開いて筒内圧力を大気圧程度まで下げる
(ブローダウン)とと、もに、吸着筒B内を吸着操作圧
力に高めるために、再生出目弁7bを開いて吸着筒Bの
出口部BOから製品槽3内の製品窒素ガスを導入する、
及び/又は人口弁6bを開いて空気槽2内の原料空気を
吸着塔Bに導入する(充圧工程)。この充圧工程により
、吸着筒出口部Bo側に製品窒素ガスと同じ純度のガス
を配置でき、次の吸着工程初期に該吸着筒Bから製品槽
3へ送出するガスの窒素濃度の低下を防ぐことができる
Step 3 In order to perform depressurization regeneration of adsorption column A, regeneration outlet valve 8 ar
When the blow valve 5 is opened to lower the cylinder pressure to around atmospheric pressure (blowdown), the regeneration valve 7b is opened to raise the pressure in the adsorption cylinder B to the adsorption operating pressure. Introducing the product nitrogen gas in the product tank 3 from the outlet BO,
And/or the artificial valve 6b is opened to introduce the raw material air in the air tank 2 into the adsorption tower B (pressurizing step). Through this pressure charging process, gas with the same purity as the product nitrogen gas can be placed on the side of the adsorption cylinder outlet Bo, and a decrease in the nitrogen concentration of the gas sent from the adsorption cylinder B to the product tank 3 at the beginning of the next adsorption process can be prevented. be able to.

工程4 次に、出口弁7bを開のまま、大口弁6bを開けること
により、または該入口弁6bが開のまま吸着筒Bが吸着
工程に入り、ブロー弁5を閉じて真空ポンプ4を作動さ
せることにより吸着筒Aか再生工程に入る。以下、工程
5及び工程6は、上記工程2及び工程3における吸着筒
A、Bを入替えて同様の操作がなされ、工程6の後に工
程1に戻って各工程が繰返されることにより、連続的1
こ窒素ガスを得ることができる。
Step 4 Next, by opening the large mouth valve 6b while leaving the outlet valve 7b open, or by leaving the inlet valve 6b open, the adsorption cylinder B enters the adsorption process, and the blow valve 5 is closed to operate the vacuum pump 4. By doing so, adsorption cylinder A enters the regeneration process. Hereinafter, in steps 5 and 6, the same operations as those in steps 2 and 3 are performed by replacing the adsorption cylinders A and B, and after step 6, the process returns to step 1 and each step is repeated.
This nitrogen gas can be obtained.

ここで上記工程を行った本実施例装置と、前記上部均圧
及び上下同時均圧を行った従来装置とを比較する実験を
行った結果を説明する。
Here, the results of an experiment comparing the apparatus of this embodiment in which the above steps were performed and a conventional apparatus in which the upper pressure equalization and the upper and lower pressure equalization were performed simultaneously will be described.

第1図に示す構成のPSAを用い、空気を原料ガスとし
て吸着圧を7 、 0 kg / cd Gとし、再生
は真空ポンプを用いて100 Torrまで減圧して行
った。吸着工程、再生工程は、それぞれの時間を90秒
とし、1ONrri’/hの製品窒素ガスを連続的に取
り出した場合の製品純度及び回収率を測定した。その結
果を第1表、第2表及び第3図に示す。
Using a PSA having the configuration shown in FIG. 1, the adsorption pressure was set at 7.0 kg/cd G using air as the raw material gas, and regeneration was performed by reducing the pressure to 100 Torr using a vacuum pump. The adsorption step and the regeneration step were each conducted for 90 seconds, and the product purity and recovery rate were measured when 1 ONrri'/h of product nitrogen gas was continuously taken out. The results are shown in Table 1, Table 2, and Figure 3.

第1表は、均圧回収圧(均圧によって加圧される吸着筒
の均圧終了時の圧力)を変えた場合の製品純度(製品窒
素中に含まれる残存酸素濃度で表わす)と回収率を示し
たものであり、第3図はこれをグラフ化したものである
。また、第2表は、残存酸素0.070%の純度の製品
窒素ガスを得られるように均圧工程を行った場合の均圧
回収圧と回収率を示すものである。
Table 1 shows the product purity (expressed as the concentration of residual oxygen contained in the product nitrogen) and recovery rate when the equalization recovery pressure (the pressure at the end of pressure equalization in the adsorption cylinder pressurized by pressure equalization) is changed. Figure 3 is a graph of this. Furthermore, Table 2 shows the equalization recovery pressure and recovery rate when the pressure equalization step was performed to obtain a product nitrogen gas with a purity of 0.070% residual oxygen.

尚、回収率は均圧工程以外の工程が同し場合は均圧回収
圧に依存し、均圧回収圧が高いほど製品回収率は高くな
る(第3図参照)。
The recovery rate depends on the equalization recovery pressure when the steps other than the pressure equalization process are the same, and the higher the equalization recovery pressure, the higher the product recovery rate (see Figure 3).

第1表 第2表 上記第1表、第2表及び第3図から明らかなように、本
実施例装置を用いて前記均圧工程を実施することにより
、製品の回収率を同じにする場合には製品純度を向上で
き、製品の純度を同じにする場合には、製品の回収率の
向上とともに均圧回収圧も高めることができる。
As is clear from Table 1, Table 2, and Figure 3 above, when the product recovery rate is made the same by performing the pressure equalization process using the apparatus of this embodiment The product purity can be improved, and when the product purity is kept the same, the product recovery rate can be improved and the equalization recovery pressure can also be increased.

尚、本発明は、上記実施例に示すPSAに限らず、3筒
以上の吸着器を備えたPSAや他の吸着剤を用いて他の
製品ガスを製出あるいは精製するPSAにも適用するこ
とができ、特に速度分離型吸着剤を用いたPSAに用い
て効果がある。
Note that the present invention is not limited to the PSA shown in the above embodiments, but can also be applied to a PSA equipped with three or more adsorbers and a PSA that produces or purifies other product gases using other adsorbents. It is particularly effective when used in PSA using a velocity separation type adsorbent.

また、この均圧法は、上記のように真空ポンプによる真
空再生のみならず、大気に開放して再生を行う常圧再生
法、及び製品ガスにより再生を行うパージ再生法等、再
生法の種類によらず有効である。
In addition, this pressure equalization method is applicable not only to vacuum regeneration using a vacuum pump as described above, but also to other types of regeneration methods, such as the normal pressure regeneration method that performs regeneration by opening it to the atmosphere, and the purge regeneration method that performs regeneration using product gas. It is valid regardless.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明装置は、複数の吸着筒の製
品ガス出口部を、出口部均圧弁、を有する出口部均圧導
管で互いに連通させるとともに、製品ガス出口部と他の
吸着筒の原料ガス入口部とを直列均圧弁を有する直列均
圧導管でそれぞれ連通させたことにより、本発明方法に
示す均圧工程、即ち、再生工程が終了した吸着筒の製品
ガス出口部と吸着工程が終了した吸着筒の製品ガス出口
部とを連通させてガスを移動させる出口部均圧工程を行
った後、続けて再生操作が終了した吸着筒の原料ガス人
口部と吸着工程が終了した吸着筒の製品ガス出口部とを
連通させてガスを移動させる直列均圧工程を行うことが
でき、本発明方法を実施することにより、吸着工程を終
了した吸着筒内に残る窒素濃度の高いガスを効率よく再
生工程を終えた吸着筒内に導入できる。
As explained above, the device of the present invention allows the product gas outlet sections of a plurality of adsorption cylinders to communicate with each other through an outlet pressure equalization conduit having an outlet pressure equalization valve, and also connects the product gas outlet sections with other adsorption cylinders. By communicating the raw material gas inlet with a series pressure equalizing conduit having a series pressure equalizing valve, the pressure equalizing process shown in the method of the present invention, that is, the product gas outlet of the adsorption column after the regeneration process has been completed, and the adsorption process can be communicated with each other. After performing an outlet pressure equalization process in which the product gas outlet of the completed adsorption column is communicated with the product gas outlet section to move the gas, the feed gas intake section of the adsorption column whose regeneration operation has been completed and the adsorption column whose adsorption process has been completed are then connected. By implementing the method of the present invention, the gas with high nitrogen concentration remaining in the adsorption cylinder after the adsorption process can be efficiently removed. It can be easily introduced into an adsorption column that has completed the regeneration process.

これにより、均圧工程において両筒の圧力を略同程度、
即ち完全均圧乃至完全均圧に近い圧力まで均圧工程を行
うことが可能となり、製品ガス純度の低下を生しること
なく、より多くのガスを回収することができる。
This allows the pressure in both cylinders to be approximately the same during the pressure equalization process.
That is, it becomes possible to perform the pressure equalization process to a pressure that is completely equalized or close to completely equalized pressure, and more gas can be recovered without causing a decrease in product gas purity.

従って、従来の均圧法によるPSAと比較して、同し純
度の製品ガスを発生させた場合の製品回収率を高くする
ことが可能となり原料ガスの供給量を低減でき、圧縮機
の装置コスト、運転コスト等を低減できる。また、従来
の均圧法では、均圧工程で完全均圧近くまで均圧すると
製品純度が著しく低下するのに対して、本発明方法では
、完全均圧に近い均圧あるいは完全均圧を行っても、製
品ガス純度の低下が非常に小さいため、より多くのガス
を回収することができ、圧力の回収、即ちエネルギー回
収の観点からみても有利である。
Therefore, compared to PSA using the conventional pressure equalization method, it is possible to increase the product recovery rate when generating product gas of the same purity, reduce the supply amount of raw material gas, and reduce the equipment cost of the compressor. Operation costs etc. can be reduced. In addition, in the conventional pressure equalization method, product purity drops significantly when the pressure is equalized to near complete pressure equalization in the pressure equalization process, whereas in the method of the present invention, pressure equalization close to complete pressure equalization or complete pressure equalization is performed. Also, since the reduction in product gas purity is very small, more gas can be recovered, which is also advantageous from the viewpoint of pressure recovery, that is, energy recovery.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明装置の一実施例を示す系統図、第2図は
運転工程を順を追って示す説明図、第3図は実験結果を
示すグラフである。 1・・・圧力変動吸着式分離装置(PSA)2・・・空
気槽  3・・・製品槽  4・・・真空ポンプ5・・
・ブロー弁  6a、6b・・・入口弁  7a。
FIG. 1 is a system diagram showing one embodiment of the apparatus of the present invention, FIG. 2 is an explanatory diagram showing the operating steps in order, and FIG. 3 is a graph showing experimental results. 1... Pressure fluctuation adsorption separator (PSA) 2... Air tank 3... Product tank 4... Vacuum pump 5...
・Blow valve 6a, 6b...Inlet valve 7a.

Claims (1)

【特許請求の範囲】 1、吸着剤を充填した複数の吸着筒を吸着工程と再生工
程とに切換えてガスを分離する圧力変動吸着式ガス分離
装置において、前記複数の吸着筒の製品ガス出口部を、
出口部均圧弁を有する出口部均圧導管で互いに連通させ
るとともに、吸着筒の製品ガス出口部と他の吸着筒の原
料ガス入口部とを直列均圧弁を有する直列均圧導管でそ
れぞれ連通させたことを特徴とする圧力変動吸着式ガス
分離装置。 2、前記吸着剤が分子篩炭であることを特徴とする請求
項1記載の圧力変動吸着式ガス分離装置。 3、吸着剤を充填した複数の吸着筒を吸着工程と再生工
程とに切換えてガスを分離する圧力変動吸着式ガス分離
装置の運転方法において、前記再生工程が終了した吸着
筒の製品ガス出口部と吸着工程が終了した吸着筒の製品
ガス出口部とを連通させてガスを移動させる出口部均圧
工程を行った後、再生操作が終了した吸着筒の原料ガス
入口部と吸着工程が終了した吸着筒の製品ガス出口部と
を連通させてガスを移動させる直列均圧工程を行うこと
を特徴とする圧力変動吸着式ガス分離装置の運転方法。 4、前記吸着剤が分子篩炭であることを特徴とする請求
項1記載の圧力変動吸着式ガス分離方法。 5、前記出口部均圧工程及び直列均圧工程の合計時間が
30秒以内であり、かつ前記出口部均圧工程の時間が5
秒以内であることを特徴とする請求項4記載の圧力変動
吸着式ガス分離装置の運転方法。
[Scope of Claims] 1. In a pressure fluctuation adsorption type gas separation device that separates gas by switching a plurality of adsorption cylinders filled with adsorbent between an adsorption process and a regeneration process, the product gas outlet portion of the plurality of adsorption cylinders of,
They were communicated with each other by an outlet pressure equalizing conduit having an outlet pressure equalizing valve, and the product gas outlet of one adsorption column and the raw material gas inlet of another adsorption column were communicated with each other by a series pressure equalizing conduit having a series pressure equalizing valve. A pressure fluctuation adsorption type gas separation device characterized by: 2. The pressure fluctuation adsorption type gas separation device according to claim 1, wherein the adsorbent is molecular sieve charcoal. 3. In the method of operating a pressure fluctuation adsorption type gas separation device in which gas is separated by switching a plurality of adsorption cylinders filled with adsorbent between an adsorption process and a regeneration process, the product gas outlet part of the adsorption cylinder after the regeneration process has been completed. After performing an outlet pressure equalization process in which gas is transferred by communicating the product gas outlet of the adsorption column where the adsorption process has been completed, the product gas inlet of the adsorption column where the regeneration operation has been completed and the product gas outlet of the adsorption column where the adsorption process has been completed are carried out. A method of operating a pressure fluctuation adsorption type gas separation device, characterized by performing a series pressure equalization process in which gas is moved by communicating with the product gas outlet of an adsorption column. 4. The pressure fluctuation adsorption gas separation method according to claim 1, wherein the adsorbent is molecular sieve carbon. 5. The total time of the outlet pressure equalization step and the series pressure equalization step is within 30 seconds, and the time of the outlet pressure equalization step is 5.
5. The method of operating a pressure fluctuation adsorption type gas separation apparatus according to claim 4, wherein the pressure fluctuation is within seconds.
JP06071090A 1990-03-12 1990-03-12 Pressure fluctuation adsorption type gas separation method Expired - Fee Related JP3165964B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP06071090A JP3165964B2 (en) 1990-03-12 1990-03-12 Pressure fluctuation adsorption type gas separation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP06071090A JP3165964B2 (en) 1990-03-12 1990-03-12 Pressure fluctuation adsorption type gas separation method

Publications (2)

Publication Number Publication Date
JPH03262512A true JPH03262512A (en) 1991-11-22
JP3165964B2 JP3165964B2 (en) 2001-05-14

Family

ID=13150118

Family Applications (1)

Application Number Title Priority Date Filing Date
JP06071090A Expired - Fee Related JP3165964B2 (en) 1990-03-12 1990-03-12 Pressure fluctuation adsorption type gas separation method

Country Status (1)

Country Link
JP (1) JP3165964B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009006255A (en) * 2007-06-27 2009-01-15 Ihi Corp Method of uniforming pressure of oxygen concentrator
JP2018090480A (en) * 2016-11-30 2018-06-14 大陽日酸株式会社 Method for producing nitrogen and oxygen

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009006255A (en) * 2007-06-27 2009-01-15 Ihi Corp Method of uniforming pressure of oxygen concentrator
JP2018090480A (en) * 2016-11-30 2018-06-14 大陽日酸株式会社 Method for producing nitrogen and oxygen

Also Published As

Publication number Publication date
JP3165964B2 (en) 2001-05-14

Similar Documents

Publication Publication Date Title
EP0681859B1 (en) Vacuum swing adsorption process with mixed repressurization and provide product depressurization
US6641645B1 (en) Vacuum swing adsorption process with controlled waste gas withdrawal
EP0791388B1 (en) VSA adsorption process with energy recovery
KR100254295B1 (en) Pressure swing adsorption process with a single adsorbent bed
JP2634022B2 (en) Separation method of gas components by vacuum swing adsorption method
US5906674A (en) Process and apparatus for separating gas mixtures
JPH04330913A (en) Absorption process for separating gaseous mixture
JPH0929044A (en) Reflux in pressure swing type suction method
CA2232181C (en) Pressure swing adsorption process and apparatus
JPH07745A (en) Gas separation
JP3006759B2 (en) How to separate nitrogen-rich gas
US5403385A (en) Serial flow pressure swing adsorption process for gas separation
JPH03262512A (en) Pressure swing adsorbing type gas separation apparatus and operation thereof
US6709486B2 (en) Pressure swing adsorption process with controlled internal depressurization flow
JPH0994424A (en) Gaseous mixture separator
JPH04227018A (en) Manufacture of inert gas of high purity
JPH05192527A (en) Pressure swing adsorption type gas separating method
JPS63103805A (en) Production of nitrogen by pressure swing adsorption process
GB2163669A (en) Apparatus for the separation of a gaseous mixture by pressure swing adsorption (PSA)
JPS6238281B2 (en)
JP3561886B2 (en) Pressure fluctuation adsorption separation method
JPS60161308A (en) Production of o2-enriched gas
JP3369424B2 (en) Mixed gas separation method
JP2540137B2 (en) Oxygen production method by presser-swing adsorption method
JPS63144104A (en) Production of oxygen by pressure swing adsorption

Legal Events

Date Code Title Description
S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees