JPS6136814B2 - - Google Patents

Info

Publication number
JPS6136814B2
JPS6136814B2 JP57051805A JP5180582A JPS6136814B2 JP S6136814 B2 JPS6136814 B2 JP S6136814B2 JP 57051805 A JP57051805 A JP 57051805A JP 5180582 A JP5180582 A JP 5180582A JP S6136814 B2 JPS6136814 B2 JP S6136814B2
Authority
JP
Japan
Prior art keywords
water
reaction
xylene
decalactone
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57051805A
Other languages
English (en)
Other versions
JPS58170728A (ja
Inventor
Kazunori Yamataka
Toshiro Isotani
Nobuya Kitaguchi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP57051805A priority Critical patent/JPS58170728A/ja
Publication of JPS58170728A publication Critical patent/JPS58170728A/ja
Publication of JPS6136814B2 publication Critical patent/JPS6136814B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

【発明の詳細な説明】 本発明は2―シクロペンテノン類の製造方法、
さらに詳しくはγ―アルキル―γ―ブチロラクト
ン類を脱水縮合して2―シクロペンテノン類を製
造する方法に関するものである。
2―シクロペンテノン類は香料、医薬、農薬な
どの出発原料として有用であるのみならず、それ
自体が香料物質であるものも多く、例えばジヤス
ミン系香料成分であるジヤスモン(ジヒドロジヤ
スモン)がジヤスモン酸メチル(ジヒドロジヤス
モン酸メチル)の合成中間体などとして用いられ
る。
従来から知られている主要な2―シクロペンテ
ノン類の製造方法としては、例えば(1)γ―ラクト
ンを五酸化リンとともに加熱する方法〔J.Am.
Chem.Soc.,66,4(1944)及びJ.Am.Chem.
SOc.,70,1379(1948)〕、(2)γ―ラクトンをポ
リリン酸とともに加熱する方法〔Experientia,
11(3),114(1955)〕、(3)五酸化リンとメタンスル
ホン酸との混合液中において低温でγ―ラクトン
を処理する方法〔J.Org.Chem.,38,(23),4071
(1973)〕、(4)γ―ラクトンを固体酸触媒存在下に
気相で脱水縮合する方法(特公昭53―18493号公
報)などが挙げられる。
しかしながら、(1)方法においては収率が低く、
特にγ―モノアルキル―γ―ブチロラクトンを用
いる場合は、その傾向が著しいという問題があ
り、(2)の方法においてはγ―メチル―γ―アルキ
ル―γ―ブチロラクトンに関しては収率が良いと
記載されているが、γ―モノアルキル―γ―ブチ
ロラクトンに関しては記載がなく、しかも後記比
較例に示されるように、γ―モノアルキル―γ―
ブチロラクトンに関しては収率が極めて悪いとい
う問題や、さらに、工業的に実施するに際しては
ポリリン酸を回収再使用することが必要である
が、脱水再生することがかなり困難であるという
問題がある。また、(3)の方法においては、反応収
率に関して前記(2)の方法とほぼ同様の問題があつ
て、その上かなり多量の五酸化リンが消費される
という問題を有しており、(4)の方法においては、
反応収率に関して前記(2)の方法とほぼ同様の問題
があり、さらに触媒の再生問題や反応が高温で行
われることにより、設備がはん雑になるなどの問
題がある。
本発明者らは、このような種々の問題点を一挙
に解決しうる工業的に有利な製造方法を提供すべ
く鋭意研究を重ねた結果、驚くべきことに従来の
知見では不利とされていた強プロトン化触媒を用
い、かつ不活性溶媒中において、反応によつて生
成する水を系外に除去しながら反応させることに
よつて、γ―ジアルキル―γ―ブチロラクトンは
もちろんのこと、従来の方法で収率の悪かつたγ
―モノアルキル―γ―ブチロラクトンを用いる場
合でも極めて好収率で2―シクロペンテノン類を
得ることができることを見出し、この知見に基づ
いて本発明を完成するに至つた。
すなわち、本発明は、一般式 (式中のR1及びR2は水素又はアルキル基であ
る) で表わされるγ―ラクトン類を脱水縮合して一般
(式中のR1及びR2は前記と同じ意味をもつ) で表わされる2―シクロペンテノン類を製造する
に当り、非水溶性不活性溶媒中において、スルホ
ン酸触媒の存在下、反応によつて生成する水を系
外に除去しながら加熱することを特徴とする2―
シクロペンテノン類の製造方法を提供するもので
ある。
本発明の反応は、既に提案されているように
〔M.F.ANSELL and S.S.Brown,J.Chem.Soc.,
1958,2755〜2761、M.F.ANSELL and M.H.
PALMER,Quartery Rev.,18,211(1964)〕、
次に示すような反応機構に従つて、酸触媒下に脱
水されて進行するものと考えられる。
これらの提案においては、硫酸、p―トルエン
スルホン酸などの強プロトン化試薬を用いると、
エチレン結合へ優先的にプロトン化して主として
ラクトンが生成し、ケトンを生成する方向へは反
応は進みにくいという説明がなされており、一方
ポリリン酸、五酸化リン、無水トリフルオル酢酸
などの試薬を用いると、アシリウムイオンを生成
する方朋であるカルボニル基へのプロトン化が優
先的に起り、主としてケトンが生成するという説
明がなされている。
また従来から知られている製造方法について
は、次のように考えることができる。すなわち、
用いられている触媒は、いずれも前記触媒群のう
ち、後者の範ちゆうに属しており、また脱水の作
用機構については、五酸化リン、ポリリン酸を用
いる方法の場合、生成した水が触媒中に取り込ま
れることによつて反応が進行し、固体酸触媒の存
在下に気相において高温で反応させる場合、高温
下にあるため、生成した水はただちに除去されて
反応が進行するものと思われる。
これらの従来方法に対して、本発明方法におい
ては、用いる触媒が従来の考え方とは逆の強プロ
トン化触媒のスルホン酸触媒であることが第1の
特徴であり、さらにこのスルホン酸触媒を非水溶
性不活性溶媒中で用い、かつ反応によつて生成し
た水を不活性溶媒とともに、または単独で反応系
から留去しながら反応を進めるということが第2
の特徴であつた、これらの2つの特徴を組み合わ
せることによつて、はじめて本発明の目的を達成
しうる。例えば比較例2に示しているように、従
来の考え方による触媒であるポリリン酸を用い、
溶媒としてキシレンを用いた反応では収率が極め
て悪くて本発明の目的は達成されない。この理由
については、ポリリン酸は原料のγ―ラクトン及
び生成物の2―シクロペンテノンをともに極めて
よく溶解するが、原料及び生成物はともに溶媒の
キシレンにはほとんど溶解せず、したがつてキシ
レン中に分散しているポリリン酸にそれらの大部
分が溶解した状態で反応が進行しているため、ポ
リリン酸単独で反応した場合と類似した状況にな
つているものと推定される。また、従来の考え方
では強プロトン化試薬の範疇に入ると思われるジ
クロル酢酸を触媒として用いた場合、比較例3に
示しているように理由はよくわからないが、まつ
たく反応が進行せず、本発明の目的は達成されな
い。
本発明方法においては、原料としてアルキル基
をγ―位に置換基としてもつγ―ジアルキル―γ
―ブチロラクトン及びγ―モノアルキル―γ―ブ
チロラクトンが用いられる。このアルキル置換基
としては直鎖状のものでも側鎖のあるものでもよ
いく、また炭素数が1〜10のものが通常用いられ
るが、収率の点から炭素数2以上のもの、さらに
は3以上のものが好ましい。また、γ―モノアル
キル―γ―ブチロラクトンに本発明方法を適用す
ると、収率の改善が特に著しくてその使用は好ま
しい。さらに、γ―ジアルキル―γ―ブチロラク
トン及びγ―モノアルキル―γ―ブチロラクトン
の反応性については、次のような相違がある。す
なわち、γ―モノアルキル―γ―ブチロラクトン
はγ―ジアルキル―γ―ブチロラクトンに比べ
て、同一反応条件下では反応速度が速いが、原料
の転化率が増加するにつれて生成物への選択率が
低下するため、高い選択率を維持するためには転
化率を50%以下に抑えることが必要である。これ
に対してγ―ジアルキル―γ―ブチロラクトンは
γ―モノアルキル―γ―ブチロラクトンに比べて
反応速度は遅いが、原料の転化率が増加しても生
成物への選択率はあまり低下しない。このような
反応性の違いがアルキル置換基の炭素数について
もみられ、炭素数の少ないもの、特に3以下のも
のについては原料の転化率を50%以下に抑えるこ
とが好ましい。
本発明方法において用いる溶媒は、非水溶性不
活性溶媒であるが、原料であるγ―ラクトン類及
び生成物である2―シクロペンテノン類及び触媒
であるスルホン酸の溶解性及び収率の点から、例
えぱトルエン、キシレン、メシチレン、テトラリ
ン、アルキル置換ジフエニルなどの芳香族炭化水
素が好ましい。これらの溶媒の使用量は原料のγ
―ラクトン類1重量部に対して5〜100重量部の
範囲が望ましい。その量が5重量部未満では収率
が急激に低下して好ましくなく、一方100重量部
を越えると、収率に関しては問題はないが、溶媒
の除去に手間がかかり好ましくない。
また、本発明方法においては、触媒としてスル
ホン酸を用いることが必要であり、特に、収率の
点から反応温度において溶媒に完全に溶解するよ
うなスルホン酸が好ましく、このようなものとし
ては、例えばp―トルエンスルホン酸、β―ナフ
タリンスルホン酸、メタンスルホン酸、トリフル
オルメタンスルホン酸などが挙げられる。ここれ
らの触媒は単独で用いてもよいし、また2種以上
混合して用いてもよい。このような溶媒に可溶な
スルホン酸触媒に対して、例えばスルホン酸型強
酸性カチオン交換樹脂のような溶媒に不溶な触媒
は、反応速度の点に問題があり、また収率も十分
ではない。
本発明方法における触媒の使用量は、原料のγ
―ラクトン類に対して0.2〜5倍モルの範囲が好
ましく、さらには、例えばトリフルオルメタンス
ルホン酸のような酸度の強い触媒においては、
0.2〜2倍モルの範囲が反応速度や収率の点から
より好ましい。これに対し、p―トルエンスルホ
ン酸のような触媒の場合は、γ―ラクトン類に対
して等モル以上用いることが好ましい。
本発明方法における反応温度は、90〜230℃の
範囲が好ましく、さらには110〜200℃の範囲がよ
り好ましい。反応温度が90℃未満では反応速度が
遅くて実質上反応が進まない。また本発明の反応
では反応の進行とともに水が生成し、この水を系
外に除去する必要があり、そのためにも90℃以上
の温度が好ましい。一方、反応温度が230℃を越
えると、反応速度は極めて速くなるが、反応の選
択性が悪くなつて好ましくない。さらに、原料の
γ―ラクトン類のアルキル置換基の炭素数の少な
いもの、特に3以下のものについては、130℃以
上、さらには150℃以上の温度が収率の点からよ
り好ましい。
本発明方法における反応液の処理は、通常用い
られている方法によつて行うことができる。例え
ばまず反応液を水で処理してスルホン酸触媒を除
去し、次いで溶媒を蒸留したのち、残液を減圧蒸
留することによつて生成物である2―シクロペン
テノン類を容易に得ることができる。水層中に抽
出されたスルホン酸触媒は、再度反応に用いるこ
とが可能であり、また未反応のγ―ラクトン類は
生成物を蒸留単離した残液中に残つており、その
残液をそのまま再度反応に用いることもでき、場
合によつてはγ―ラクトン類を残液中から減圧蒸
留によつて単離して再度反応に用いることもでき
る。
本発明方法は、従来から提案されている種々の
方法に比べて、次のような利点があり、工業的に
極めて有利である。すなわち、第1には、反応を
比較的温和な条件で行うことが可能であり、かつ
触媒の回収が容易であつて、回収した触媒を反応
に再使用しうる。第2には、本発明方法によると
極めて高収率で目的生成物を得ることができる。
特にγ―モノアルキル―γ―ブチロラクトンの場
合は、従来法に比べてその効果が顕著である。第
3には、特にγ―モノアルキル―γ―ブチロラク
トンの場合に、目的生成物である2―シクロペン
テノン類以外に副生物として2―シクロヘキセノ
ン類を得ることができ、この物質も2―シクロペ
ンテノン類と同様に香料、医薬、農薬などの出発
原料として有用である。
次に実施例によつて本発明をさらに詳細に説明
するが、本発明はこれらの例によつてなんら限定
されるものではない。
実施例 1 温度計、かきまぜ装置、凝縮器を取り付けた2
の四つ口フラスコに、p―トルエンスルホン酸
200gとp―キシレン1000gを入れてp―キシレ
ンが還流するまで温度を上げ、次いでp―キシレ
ンとともに還流してきた水を少量のp―キシレン
とともに留去した。次にγ―デカラクトン50gを
フラスコに入れ、内温を138℃にし、生成した水
を少量のp―キシレンとともに留去しながら0.5
時間かきまぜた。留去したp―キシレンと水の量
は合計で27gであつた。反応終了後、反応液に
700gの水を加えてp―トルエンスルホン酸を抽
出した。油層は1020gであり、この油層からp―
キシレンを留去し、得られた残液を減圧下に蒸留
して2―n―ブチル―2―シクロヘキセノン、2
―n―ペンチル―2―シクロペンテノン及びγ―
デカラクトンをそれぞれ2.0g(沸点70℃/3.5mm
Hg)、6.5g(沸点80℃/3.0mmHg)及び38g(沸
点125℃/3.5mmHg)を得た。γ―デカラクトン
の転化率は24%であり、2―n―ペンチル―2―
シクロペンテノンの選択率は6.0%であつた。
なお、2―n―ペンチル―2―シクロペンテノ
ン及び2―n―ブチル―2―シクロヘキセノンは
赤外吸収スペクトル(IR)、核磁気共鳴スペクト
ル(NMR)、重量スペクトル(Mass)により確
認した。
2―n―ペンチル―2―シクロペンテノン IR(液膜):1700,1630cm-1 NMR(CDCl3):δ(ppm),0.7〜1.8(9H),
1.8〜2.8(6H),7.3(1H) Mass :m/e 152(M+) 2―n―ブチル―2―シクロヘキセノン IR(液膜):1675,1630cm-1 NMR(CDCl3):δ(ppm),0.7〜1.8(7H)
1.8〜2.8(8H),6.7(1H) Mass :m/e 152(M+) 実施例 2 温度計、かきまぜ装置、凝縮器を取り付けてあ
る200mlの四つ口フラスコに、p―トルエンスル
ホン酸20gとp―キシレン100gを入れてp―キ
シレンが還流するまで加熱し、次いで、p―キシ
レンとともに還流してきた水を少量のp―キシレ
ンとともに留去した。次にγ―デカラクトン10g
を4つ口フラスコに入れ、内温を138℃にして生
成したきた水を少量のp―キシレンとともに留去
しながら2時間かきまぜた。留去したp―キシレ
ンと水の量は合計で2.5gであつた。反応終了
後、反応液に水50gを加えてp―トルエンスルホ
ン酸を抽出した。油層は106gであり、油層中の
γ―デカラクトンの濃度は6.42重量%、2―n―
ペンチル―2―シクロペンテノンの濃度は1.38重
量%、2―n―ブチル―2―シクロヘキセノンの
濃度は0.46重量%であつた。すなわち、γ―デカ
ラクトンの転化率は32%であり、2―n―ペンチ
ル―2―シクロペンテノンの選択率は51%であつ
た。
なお、油層中のγ―デカラクトン、2―n―ペ
ンチル―2―シクロペンテノン及び2―n―ブチ
ル―2―シクロヘキセノンの濃度は、ガスクロマ
トグラフ分析によつて求めた。以降の実施例及び
比較例についても同様にして行つた。
実施例 3 実施例2と同様の反応装置を用い、四つ口フラ
スコにp―トルエンスルホン酸15gとトルエン
100gを入れて加熱し、トルエンと共沸してきた
水を留去した。次にγ―デカラクトン4gを四つ
口フラスコに入れ、10時間還流加熱した。還流加
熱の間、生成した水は少量のトルエンとともに系
外に留去した。留去したトルエンと水の量の合計
は3.1gであつた。次に実施例2と同様の処理を
行つて油層99gを得た。油層中のγ―デカラクト
ンの濃度は3.27重量%、2―n―ペンチル―2―
シクロペンテノンの濃度は0.43重量%、2―n―
ブチル―2―シクロヘキセノンの濃度は0.14重量
%であつた。すなわち、γ―デカラクトンの転化
率は19%であり、2―n―ペンチル―2―シクロ
ペンテノンの選択率は62%であつた。
実施例 4 実施例2と同様の反応装置を用い、四つ口フラ
スコにp―トルエンスルホン酸15gとトルエン
100gを入れて加熱し、トルエンと共沸してきた
水を除去し、次いでトルエンをも留去した。次に
ジエチルジフエニル120g及びγ―デカラクトン
4gをそれぞれ四つ口フラスコに入れ、反応温度
を150℃にして2時間かきまぜた。反応中、微量
の水が凝縮器に付着した。次に実施例2と同様の
処理を行い、油層121gを得た。油層中のγ―デ
カラクトンの濃度は2.34重量%、2―n―ペンチ
ル―2―シクロペンテノンの濃度は0.43重量%、
2―n―ブチル―2―シクロヘキセノンの濃度は
0.13重量であつた。すなわち、γ―デカラクトン
の転化率は30%であり、2―n―ペンチル―2―
シクロペンテノンの選択率は49%であつた。
実施例 5 実施例2と同様の反応装置を用い、四つ口フラ
スコにβ―ナフタレンスルホン酸15gとp―キシ
レン100gを入れてp―キシレンが還流するまで
加熱し、次いでp―キシレンとともに還流してき
た水を少量のp―キシレンとともに留去した。次
にγ―デカラクトン5gを四つ口フラスコに入
れ、0.5時間還流加熱した。還流加熱中、生成し
た水は少量のp―キシレンとともに留去した。留
去したp―キシレンと水の合計量は5.2gであつ
た。次いで反応液に水20gを加えてβ―ナフタレ
ンスルホン酸を抽出した。油層は97gであり、油
層中のγ―デカラクトンの濃度は3.87重量%、2
―n―ペンチル―2―シクロペンテノンの濃度は
0.65重量%、2―n―ブチル―2―シクロヘキセ
ノンの濃度は0.22重量%であつた。すなわち、γ
―デカラクトンの転化率は25%であり、2―n―
ペンチル―2―シクロペンテノンの選択率は56%
であつた。
実施例 6 実施例2と同様の装置を用い、四つ口フラスコ
にトリフルオルメタンスルホン酸2g、p―キシ
レン100g、γ―デカラクトン2gを入れ、0.5時
間還流加熱した。還流加熱中、生成した水を少量
のp―キシレンとともに合計量で1.9g留去し
た。次に反応液に水20gを加えてトリフルオルメ
タンスルホン酸を抽出除去した。油層は96gであ
り、油層中のγ―デカラクトンの濃度は1.54重量
%、2―n―ペンチル―2―シクロペンテノンの
濃度は0.31重量%、2―n―ブチル―2―シクロ
ヘキセノンの濃度は0.10重量%であつた。すなわ
ち、γ―デカラクトンの転化率は26%であり、2
―n―ペンチル―2―シクロペンテノンの選択率
は64%であつた。
実施例 7 実施例2と同様の装置を用い、四つ口フラスコ
にp―トルエンスルホン酸2.5g、トリフルオル
メタンスルホン酸1.0g及びトルエン100gを入れ
て加熱し、トルエンと共沸してきた水を留去し
た。次にγ―デカラクトン2.5gを四つ口フラス
コに入れて4時間還流加熱した。還流加熱の間生
成した水は少量のトルエンとともに系外に留去し
た。留去した水とトルエンの量の合計は18gであ
つた。次に反応液に10gの水を加えてスルホン酸
を抽出し、油層84gを得た。油層中のγ―デカラ
クトンの濃度は2.11重量%、2―n―ペンチル―
2―シクロペンテノンの濃度は0.50重量%、2―
n―ブチル―2―シクロヘキセノンの濃度は0.17
重量%であつた。すなわち、γ―デカラクトンの
転化率は29%であり、2―n―ペンチル―2―シ
クロペンテノンの選択率は65%であつた。
実施例 8 実施例2と同様の反応装置を用い、四つ口フラ
スコにp―トルエンスルホン酸13gとp―キシレ
ン120gを入れて還流加熱し、少量のキシレンと
ともに水を留去した。次にγ―メチル―γ―デカ
ラクトン3gを四つ口フラスコに入れて5時間還
流加熱した。還流加熱中、生成した水は少量のp
―キシレンとともに留去した。留去したp―キシ
レンと水の合計量は9gであつた。次に実施例2
と同様の後処理を行い、油層113gを得た。油層
中のγ―メチル―γ―デカラクトン濃度は1.14重
量%、ジヒドロジヤスモンの濃度は1.30重量%で
あつた。すなわち、γ―メチル―γ―デカラクト
ンの転化率は57%であり、ジヒドロジヤスモンの
選択率は95%であつた。
実施例 9 γ―メチル―γ―デカラクトンを用い、実施例
8とまつたく同様にして10時間還流加熱した。反
応器から留去したp―キシレンと水の合計量は19
gであつた。次いで実施例8と同様の後処理を行
い油層103gを得た。油層中のγ―メチル―γ―
デカラクトンの濃度は0.55重量%、ジヒドロジヤ
スモンの濃度は1.92重量%であつた。すなわち、
γ―メチル―γ―デカラクトンの転化率は81%で
あり、ジヒドロジヤスモンの選択率は90%であつ
た。
実施例 10 実施例2と同様の反応装置を用い、四つ口フラ
スコにp―トルエンスルホン酸15g及びp―キシ
レン100gを入れて還流加熱し、少量のp―キシ
レンとともに水を留去した。次にγ―オクタラク
トン5gを四つ口フラスコに入れて0.5時間還流
加熱した。還流加熱中、生成した水は少量のp―
キシレンとともに留去した。留去したp―キシレ
ンと水の合計量は3.5gであつた。次に実施例2
と同様の後処理を行い、油層101gを得た。油層
中のγ―オクタラクトンの濃度は3.86重量%、2
―n―プロピル―2―シクロペンテノンの濃度は
0.57重量%であつた。すなわちγ―オクタラクト
ンの転化率は22%であり、2―n―プロピル―2
―シクロペンテノンの濃度は60%であつた。
実施例 11 実施例2と同様の反応装置を用い、四つ口フラ
スコにp―トルエンスルホン酸13.4gとメシチレ
ン36.5gを入れて還流加熱し、少量のメシチレン
とともに水を留去した。次にγ,γ―ジメチル―
γ―ブチロラクトン3gを四つ口フラスコに入れ
30分間加熱還流した。還流加熱中、生成した水は
少量のメシチレンとともに留去した。留去したメ
シチレンとの水の合計量は4gであつた。次に反
応液に水を110g加えて油層と水層に分離した。
次に水層を30gのクロロホルムで3回抽出した。
油層の合計量は128gであり、油層中のγ,γ―
ジメチル―γ―ブチロラクトンの濃度は1.95重量
%、3―メチル―2―シクロペンテン―1―オン
濃度は0.23重量であつた。すなわち、γ,γ―ジ
メチル―γ―ブチロラクトンの転化率は17%であ
り、3―メチル―2―シクロペンテン―1―オン
の選択率は68%であつた。
実施例 12 実施例1と同様の反応装置を用い、四つ口フラ
スコ中にp―トルエンスルホン酸110gとp―キ
シレン1020gを入れてp―キシレンが還流するま
で混度を上げ、次いでp―キシレンとともに還流
してきた水を少量のp―キシレンとともに留去し
た。次にγ―デカラクトン25gをフラスコに入れ
て還流加熱し、生成した水を少量のp―キシレン
とともに留去しながら1.7時間かきまぜた。留去
したp―キシレンと水の量は合計で25gであつ
た。反応終了後、反応液に水52gを加えて冷却し
二層分離した。油層は1028gであり、油層中のγ
―デカラクトンの濃度は2.02重量%、2―n―ペ
ンチル―2―シクロペンテノンの濃度は0.24重量
%、2―n―ブチル―2―シクロヘキセノンの濃
度は0.07重量%であつた。すなわちγ―デカラク
トンの転化率は17%であり、2―n―ペンチル―
2―シクロペンテノンの選択率は65%であつた。
次に分離回収した水層のうち125gを用いて再
度反応を行つた。すなわち、上記と同様の反応装
置を用い四つ口フラスコ中に水層125gと油層か
ら蒸留によつて回収したp―キシレン930gを入
れ、上記と同様の操作によつてp―キシレンとと
もに還流してきた水を留去した。次にγ―デカラ
クトン23gをフラスコに入れて還流加熱し、生成
した水を少量のp―キシレンとともに留去しなが
ら1.5時間かきまぜた。留去したp―キシレンと
水の合計量は24gであつた。反応終了後、反応液
に水47gを加えて二層分離した、油層は939gで
あり、油層中のγ―デカラクトンの濃度は2.03重
量%、2―n―ペンチル―2―シクロペンテノン
の濃度は0.23重量%、2―n―ブチル―2―シク
ロヘキセノンの濃度は0.07重量%であつた。すな
わち、γ―デカラクトンの転化率は17%であり、
2―n―ペンチル―2―シクロペンテノンの選択
率は62%であつた。
比較例 1 実施例2と同様の反応装置を用い、四つ口フラ
スコにγ―デカラクトン20g及びポリリン酸100
gを入れ、100〜106℃に加熱して2.0時間加熱し
た。反応液を60℃に冷却したのち、水100gを加
え1時間かきまぜた。次にトルエン100gで未反
応のγ―デカラクトン及び生成物である2―n―
ヘキシル―2―シクロペンテノンを抽出した。γ
―デカラクトンの転化率は91%であり、2―n―
ヘキシル―2―シクロペンテノンの選択率は26%
であつた。
比較例 2 実施例2と同様の反応装置を用い、四つ口フラ
スコにγ―デカラクトン5g、ポリリン酸20g及
びp―キシレン100gを入れて2時間還流加熱し
た。次に反応液を60℃に冷却し、水を100g入れ
てさらに1時間かきまぜた。γ―デカラクトンの
転化率は100%であり、2―n―ペンチル―2―
シクロペンテノンの選択率は28%であつた。
比較例 3 実施例2と同様の反応装置を用い、四つ口フラ
スコにγ―デカラクトン5g、ジクロル酢酸15g
及びp―キシレン100gを加え、5時間還流加熱
した。還流加熱中、キシレンを合計で10g留去し
た。反応はほとんど進まず、γ―デカラクトンが
ほぼ全量残つており、2―n―ペンチル―2―シ
クロペンテノンは生成していなかつた。

Claims (1)

  1. 【特許請求の範囲】 1 一般式 (式中のR1及びR2は水素又はアルキル基であ
    る) で表わされるγ―ラクトン類を脱水縮合して一般
    (式中のR1及びR2は前記と同じ意味をもつ) で表わされる2―シクロペンテノン類を製造する
    に当り、非水溶性不活性溶媒中において、スルホ
    ン酸触媒の存在下、反応によつて生成する水を系
    外に除去しながら加熱することを特徴とする2―
    シクロペンテノン類の製造方法。 2 γ―ラクトン類のR1がアルキル基である特
    許請求の範囲第1項記載の方法。 3 γ―ラクトン類のR1がアルキル基であり、
    かつR2が水素である特許請求の範囲第2項記載
    の方法。 4 非水溶性不活性溶媒が芳香族系炭化水素であ
    る特許請求の範囲第1項記載の方法。 5 非水溶性不活性溶媒の使用量がγ―ラクトン
    類1重量部に対して5〜100重量部の範囲である
    特許請求の範囲第1項記載の方法。 6 スルホン酸触媒が反応温度において溶媒に可
    能なものである特許請求の範囲第1項記載の方
    法。 7 スルホン酸触媒の使用量がγ―ラクトン類に
    対して0.2〜5倍モルの範囲である特許請求の範
    囲第1項記載の方法。 8 加熱温度が90〜230℃の範囲である特許請求
    の範囲第1項記載の方法。
JP57051805A 1982-03-30 1982-03-30 2−シクロペンテノン類の製造方法 Granted JPS58170728A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57051805A JPS58170728A (ja) 1982-03-30 1982-03-30 2−シクロペンテノン類の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57051805A JPS58170728A (ja) 1982-03-30 1982-03-30 2−シクロペンテノン類の製造方法

Publications (2)

Publication Number Publication Date
JPS58170728A JPS58170728A (ja) 1983-10-07
JPS6136814B2 true JPS6136814B2 (ja) 1986-08-20

Family

ID=12897132

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57051805A Granted JPS58170728A (ja) 1982-03-30 1982-03-30 2−シクロペンテノン類の製造方法

Country Status (1)

Country Link
JP (1) JPS58170728A (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3900815A1 (de) * 1989-01-13 1990-07-19 Huels Chemische Werke Ag Verfahren zur herstellung von 3-methyl-2-pentyl-cyclopent-2-en-1-on
DE4007925A1 (de) * 1990-03-13 1991-09-19 Basf Ag Verfahren zur herstellung von cyclopentenonen

Also Published As

Publication number Publication date
JPS58170728A (ja) 1983-10-07

Similar Documents

Publication Publication Date Title
Gilman et al. The preparation of dodecamethylcyclohexasilane
US4388217A (en) Process for the recovery of catalyst values
EP0064989B1 (en) Process for the recovery of rhodium catalyst
JPS6136814B2 (ja)
CA1329394C (en) Production of trisubstituted hydroxyalkyl alkanoates from aldehydes
JP2644330B2 (ja) 2,2,4‐トリメチル‐1,2‐ジヒドロキノリンオリゴマーの製造方法
JPS6023345A (ja) グリオキシル酸エステルの製法
KR100635892B1 (ko) 2-(4-피리딜)에탄티올의 제조 방법
JPS6136813B2 (ja)
US6689921B2 (en) Preparation of biphenols by oxidative coupling of alkylphenols using a recyclable copper catalyst
US5688973A (en) Process for the production of 2-vinyl-1,3-dioxolane
US4409419A (en) Process for preparing 2,5-dimethyl-2,4-hexadiene
JP3958865B2 (ja) ジメチロールアルカン酸の製造方法
JPS5946932B2 (ja) p−クレゾ−ルの製造法
EP0102314B1 (en) Separation of resorcinol from non-extractable impurities
JPH03123752A (ja) 4,4′―ジヒドロキシベンゾフェノンの製造法
US4263442A (en) Process for the preparation of 2,3-dihydro-5,6-diphenyl-1,4-oxathiin
JPH0273033A (ja) 4,4―ジメチル―1―(p―クロロフエニル)ペンタン―3―オンの製造方法
JPH02229125A (ja) 2,6―ジ―tert―ブチル―4―メチルフェノールの製造方法
JP4111680B2 (ja) ビストリフルオロメチルヒドロキシブテン−1の精製方法
JPS6315022B2 (ja)
KR100645669B1 (ko) 고수율 및 고순도로tmhq-디에스테르를 제조하는 방법
JPS6176475A (ja) ポリアルキル−7−ヒドロキシ−4h−クロメンの製造方法
JPH02138145A (ja) ヘミアセタール化合物の製造方法
EP0071225A2 (en) Process for forming alkyl vanadates using a catalyst