JPS6136225B2 - - Google Patents

Info

Publication number
JPS6136225B2
JPS6136225B2 JP8015281A JP8015281A JPS6136225B2 JP S6136225 B2 JPS6136225 B2 JP S6136225B2 JP 8015281 A JP8015281 A JP 8015281A JP 8015281 A JP8015281 A JP 8015281A JP S6136225 B2 JPS6136225 B2 JP S6136225B2
Authority
JP
Japan
Prior art keywords
charge
group
photoreceptor
charge generation
generation layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP8015281A
Other languages
Japanese (ja)
Other versions
JPS57196244A (en
Inventor
Masabumi Oota
Kyoshi Sakai
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP8015281A priority Critical patent/JPS57196244A/en
Priority to US06/379,686 priority patent/US4436800A/en
Priority to DE3220010A priority patent/DE3220010C2/en
Publication of JPS57196244A publication Critical patent/JPS57196244A/en
Publication of JPS6136225B2 publication Critical patent/JPS6136225B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/06Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being organic
    • G03G5/0664Dyes
    • G03G5/0675Azo dyes
    • G03G5/0687Trisazo dyes
    • G03G5/0688Trisazo dyes containing hetero rings

Description

【発明の詳现な説明】[Detailed description of the invention]

本発明は電子写真甚の感光䜓に関し、曎に詳し
くは、光を照射したずき電荷担䜓を発生する物質
以䞋、電荷発生物質ず蚀う。を含む局以䞋、
電荷発生局ず蚀う。ず電荷発生局が発生した電
荷担䜓を受け入れ、これを搬送する物質以䞋、
電荷搬送物質ず蚀う。を含む局以䞋、電荷搬
送局ず蚀う。からなる積局型の電子写真感光䜓
に関する。 埓来、電子写真甚の感光䜓ずしお、無機物系の
ものではセレン及びその合金を甚いたもの、ある
いは色玠増感した酞化亜鉛を結着暹脂䞭に分散し
た感光䜓などがあり、たた有機物系のものでは、
・・−トリニトロ−−フルオレノン以
䞋、TNFず蚀う。ずポリ−−ビニルカルバゟ
ヌル以䞋、PVKず蚀う。ずの電荷移動錯䜓を
甚いたものなどが代衚的なものである。しかし、
これらの感光䜓は倚くの長所を特぀おいるず同時
に、さたざたな欠点を持぀おいるこずも事実であ
る。䟋えば、珟圚広く甚いられおいるセレン感光
䜓は補造する条件がむずかしく、補造コストが高
か぀たり、可撓性がないためにベルト状に加工す
るこずがむずかしく、たた熱や機械的な衝撃に鋭
敏なため取扱いに泚意を芁する。たた酞化亜鉛感
光䜓は安䟡な酞化亜鉛を甚いお支持䜓ぞの塗垃で
補造するこずが出来るためコストは䜎いが、䞀般
に感床が䜎か぀たり、衚面の平滑性、硬床、匕぀
匵り匷床、耐摩擊性などの機械的な欠点があり、
通垞反埩しお䜿甚する普通玙耇写機甚の感光䜓ず
しおは耐久性などに問題が倚い。たた、TNFず
PVKの電荷移動錯䜓を甚いた感光䜓は感床が䜎
く、高速耇写機甚の感光䜓ずしおは䞍適圓であ
る。 近幎、これらの感光䜓の欠点を排陀するために
広範な研究が進められ、特に有機物系のさたざた
な感光䜓が提案されおいる。䞭でも有機顔料の薄
膜を導電性支持䜓䞊に圢成し電荷発生局、こ
の䞊に電荷搬送物質を䞻䜓ずする局電荷搬送
局を圢成した積局型の感光䜓が埓来の有機物系
の感光䜓に比べ、䞀般に感床が高く垯電性が安定
しおいるこずなどの点から普通玙耇写機甚の感光
䜓ずしお泚目されおおり、䞀郚実甚に䟛されおい
るものがある。 この皮の埓来の積局感光䜓ずしお、(1)電荷発生
局にペリレン誘導䜓を甚い、電荷搬送局にオキサ
ゞアゟヌル誘導䜓を甚いたもの米囜特蚱第
3871882号公報参照、(2)電荷発生局ずしお、有機
アミンを溶媒ずしお甚いお、クロルダむアンブル
ヌを塗垃したものを甚い、電荷搬送局にピラゟリ
ン誘導䜓を甚いたもの特開昭52−55643号公報
及び特開昭52−72231号公報参照、(3)電荷発生局
ずしお、トリプニルアミン系トリスアゟ顔料
特開昭53−132347号公報参照を䟋えばテトロ
ヒドロフランなどの分散媒に分散した分散液を塗
垃したものを甚い、電荷搬送局に・−ビス
−ゞ゚チルアミノプニル−・・−オ
キサゞアゟヌルあるいはTNFを甚いたものなど
が公知である。 しかしながら、この皮の積局型の感光䜓におい
おも、埓来のものは倚くの長所を持぀おいるず同
時に、さたざたな欠点を持぀おいるこずも事実で
ある。 䟋えば、先に(1)で瀺したペリレン誘導䜓ずオキ
サゞアゟヌル誘導䜓を甚いる感光䜓は実甚䞊は問
題がないずしおも、より高速な耇写機等甚ずしお
は感床が䜎い。たたこの感光䜓の分光感床を支配
する電荷発生物質であるペリレン誘導䜓は、可芖
域党般にわた぀お吞収がないためカラヌ耇写機甚
の感光䜓ずしおは䞍適圓であるなどの欠点を有し
おいる。 たた(2)で瀺したクロルダむアンブルヌずピラゟ
リン誘導䜓を甚いた感光䜓は本発明者らの実隓で
はその感床は比范的良いものの、電荷発生局を圢
成するための塗垃溶剀ずしお、䞀般的に取扱いに
くい有機アミン䟋えば゚チレンゞアミンを甚
いる必芁があり感光䜓䜜成䞊の欠点が倚い。 たた(3)に瀺した感光䜓は本発明者らは提案した
もので、これらの感光䜓は電荷発生局を圢成する
方法ずしお、顔料の埮现粒子を有機溶剀に分散し
た顔料分散液必芁により結着暹脂を加えおもよ
いを支持䜓䞊に塗垃するこずによ぀お、容易に
圢成出来る利点はあるが若干感床が䜎いため、高
速耇写機甚の感光䜓ずしおは䞍充分である。 䞀方、近幎レヌザヌ・プリンタヌ甚感光䜓の芁
求も高た぀おおり、特に半導䜓レヌザヌの波長域
における高感床感光䜓の開発が望たれおいるが、
䞊述の感光䜓はこれら半導䜓レヌザヌに察し、極
めお感床が䜎く、実甚に䟛しえないのが実状であ
る。 この皮の積局型の感光䜓における静電朜像圢成
のメカニズムは、感光䜓を垯電したのち光照射す
るず、光は透明は電荷搬送局を通過し、電荷発生
局䞭の電荷発生物質により吞収され、光を吞収し
た電荷発生物質は電荷担䜓を発生し、この電荷担
䜓は電荷搬送局に泚入され、垯電によ぀お生じお
いる電界に埓぀お電荷搬送局䞭を移動し、感光䜓
衚面の電荷を䞭和するこずにより静電朜像を圢成
するず考えられおいる。埓぀お、この皮の感光䜓
に甚いられる電荷発生物質ずしおは、画像圢成の
ための光の照射に際しお、効率より電荷担䜓を発
生するこずが芁求される。 䞀方、電荷搬送物質は甚いる光に察しお透明で
あり、所望の垯電電䜍を保぀こずができ、光照射
した堎合、電荷発生物質が発生した電荷担䜓をす
みやかに搬送する胜力をを有するこずが芁求され
る。 本発明者らは以䞊の点に鑑み高感床で、しかも
可芖域党搬及び半導䜓レヌザヌの波長域にわた぀
おほがフラツトな感床を瀺し、たたその補造も容
易な積局感光䜓を開発するこずを目的ずしお、数
倚くの電荷発生物質ず電荷搬送物質に぀いお鋭意
研究を重ねた結果、電荷発生物質ず電荷搬送物質
ずの組合せによ぀お、その感光䜓特性が非垞に異
なるこずを芋出し、それらの特定の組合せによ
り、優れた感光特性を有する感光䜓を埗、䞊蚘の
目的を達成した。 本発明の目的は極めお電荷担䜓発生胜に優れた
電荷発生物質を含む電荷発生局ず該電荷発生物質
ず共に甚いる堎合に優れた性胜を瀺す電荷搬送物
質を含む電荷搬送局ずを積局するこずにより、暗
所に斌いお十分な垯電電䜍を䞎え、露光時、衚面
電荷が速やかに散逞するこずにより、垯電、露
光、珟像、転写、クリヌニングをくり返す耇写プ
ロセスにおいお、これらの工皋を繰り返しおも䜕
らその特性が倉化しない積局型電子写真感光䜓を
提䟛するこずにある。 すなわち、本発明は導電性支持䜓䞊に、電荷発
生局及び電荷搬送局を蚭けた積局型の電子写真感
光䜓であ぀お、電荷発生局が匏(1) で瀺される特定のトリスアゟ顔料を含む局からな
り、電荷搬送局が䞀般匏(2) 〔匏䞭、R1はメチル基、゚チル基、−ヒドロキ
シ゚チル基又は−クロル゚チル基を衚わし、
R2はメチル基、゚チル基、ベンゞル基又はプ
ニル基を衚わし、R3は氎玠、塩玠、臭玠、炭玠
数〜のアルキル基、炭玠数〜のアルコキ
シ基、ゞアルキルアミノ基又はニトロ基を衚わ
す。〕で瀺される特定のヒドラゟン化合物を含む
局からなる特定の組合せの積局型感光䜓である。 本発明に甚いられる前蚘䞀般匏(2)で衚わされる
ヒドラゟン化合物を衚−に䟋瀺する。
The present invention relates to a photoreceptor for electrophotography, and more specifically, a layer containing a substance (hereinafter referred to as a charge-generating substance) that generates charge carriers when irradiated with light (hereinafter referred to as a charge-generating substance).
This is called the charge generation layer. ) and the charge generation layer accepts the generated charge carriers and transports them (hereinafter referred to as
It is called a charge transport material. ) (hereinafter referred to as a charge transport layer). Conventionally, there have been inorganic photoreceptors for electrophotography, such as those using selenium and its alloys, or photoreceptors with dye-sensitized zinc oxide dispersed in a binder resin, and organic photoreceptors. So,
A typical example is one using a charge transfer complex of 2,4,7-trinitro-9-fluorenone (hereinafter referred to as TNF) and poly-N-vinylcarbazole (hereinafter referred to as PVK). be. but,
Although these photoreceptors have many advantages, it is also true that they also have various disadvantages. For example, the currently widely used selenium photoreceptor has difficult manufacturing conditions and high manufacturing costs, is difficult to process into a belt shape due to its lack of flexibility, and is sensitive to heat and mechanical shock. Therefore, care must be taken when handling it. Zinc oxide photoreceptors are low in cost because they can be manufactured by applying inexpensive zinc oxide to a support, but they generally have low sensitivity, poor surface smoothness, hardness, tensile strength, and durability. It has mechanical drawbacks such as friction,
As a photoreceptor for a plain paper copying machine, which is normally used repeatedly, there are many problems such as durability. Also, TNF and
Photoreceptors using PVK charge transfer complexes have low sensitivity and are unsuitable as photoreceptors for high-speed copying machines. In recent years, extensive research has been carried out to eliminate the drawbacks of these photoreceptors, and in particular, various organic photoreceptors have been proposed. Among them, a laminated photoreceptor in which a thin film of organic pigment is formed on a conductive support (charge generation layer), and a layer mainly composed of a charge transport substance (charge transport layer) is formed on top of this, is different from conventional organic-based photoreceptors. Compared to photoconductors, photoconductors are attracting attention as photoconductors for plain paper copying machines because they generally have higher sensitivity and stable charging properties, and some of them are in practical use. Conventional laminated photoreceptors of this type include (1) those using perylene derivatives in the charge generation layer and oxadiazole derivatives in the charge transport layer (U.S. Patent No.
3871882), (2) a charge generation layer coated with chlordiane blue using an organic amine as a solvent, and a charge transport layer using a pyrazoline derivative (Japanese Patent Laid-Open No. 52-55643) (3) As a charge generation layer, a triphenylamine trisazo pigment (see Japanese Patent Application Laid-Open No. 53-132347) is dispersed in a dispersion medium such as tetrahydrofuran. Known methods include those coated with a dispersion liquid and using 2,5-bis(4-diethylaminophenyl)-1,3,4-oxadiazole or TNF in the charge transport layer. However, although conventional photoreceptors of this type have many advantages, they also have various drawbacks. For example, although the photoreceptor using the perylene derivative and oxadiazole derivative shown in (1) above may have no practical problems, it has low sensitivity for use in higher-speed copying machines and the like. Additionally, the perylene derivative, which is the charge-generating material that controls the spectral sensitivity of this photoreceptor, has the disadvantage of not being absorbent over the entire visible range, making it unsuitable as a photoreceptor for color copying machines. . Furthermore, although the photoreceptor using chlordiane blue and pyrazoline derivatives shown in (2) has relatively good sensitivity in our experiments, it is generally not used as a coating solvent for forming a charge generation layer. It is necessary to use a difficult organic amine (for example, ethylenediamine), which has many disadvantages in producing a photoreceptor. The photoreceptor shown in (3) was proposed by the present inventors, and these photoreceptors use a pigment dispersion (if necessary) in which fine pigment particles are dispersed in an organic solvent as a method of forming a charge generation layer. Although it has the advantage of being easily formed by coating a support with a binder resin (a binder resin may be added thereto), the sensitivity is somewhat low, making it unsatisfactory as a photoreceptor for high-speed copying machines. On the other hand, the demand for photoreceptors for laser printers has increased in recent years, and the development of highly sensitive photoreceptors in the wavelength range of semiconductor lasers is particularly desired.
The photoreceptor described above has extremely low sensitivity to these semiconductor lasers and cannot be put to practical use. The mechanism of electrostatic latent image formation in this type of laminated photoreceptor is that when the photoreceptor is charged and then irradiated with light, the light passes through a transparent charge transport layer and is absorbed by the charge generation substance in the charge generation layer. , the charge-generating substance that absorbs light generates charge carriers, and these charge carriers are injected into the charge transport layer and move in the charge transport layer according to the electric field generated by charging, increasing the charge on the surface of the photoreceptor. It is thought that an electrostatic latent image is formed by neutralizing the electrostatic latent image. Therefore, the charge generating material used in this type of photoreceptor is required to generate charge carriers efficiently when irradiated with light for image formation. On the other hand, the charge transport material is required to be transparent to the light used, to be able to maintain a desired charging potential, and to have the ability to promptly transport the charge carriers generated by the charge generation material when irradiated with light. be done. In view of the above points, the present inventors aimed to develop a laminated photoconductor that is highly sensitive, exhibits almost flat sensitivity over the entire visible spectrum and semiconductor laser wavelength range, and is easy to manufacture. As a result of extensive research into numerous charge-generating and charge-transporting materials, we have discovered that photoreceptor properties vary greatly depending on the combination of charge-generating and charge-transporting materials, and we have found that specific combinations of these materials As a result, a photoreceptor with excellent photosensitive properties was obtained, and the above objectives were achieved. The object of the present invention is to laminate a charge generation layer containing a charge generation substance with extremely excellent charge carrier generation ability and a charge transport layer containing a charge transfer substance that exhibits excellent performance when used together with the charge generation substance. By applying a sufficient charging potential in a dark place and quickly dissipating the surface charge during exposure, there will be no damage even if these steps are repeated in the copying process that repeats charging, exposure, development, transfer, and cleaning. An object of the present invention is to provide a laminated electrophotographic photoreceptor whose characteristics do not change. That is, the present invention is a laminated electrophotographic photoreceptor in which a charge generation layer and a charge transport layer are provided on a conductive support, and the charge generation layer has the formula (1). The charge transport layer is composed of a layer containing a specific trisazo pigment represented by the general formula (2). [In the formula, R 1 represents a methyl group, an ethyl group, a 2-hydroxyethyl group, or a 2-chloroethyl group,
R 2 represents a methyl group, ethyl group, benzyl group, or phenyl group, and R 3 represents hydrogen, chlorine, bromine, an alkyl group having 1 to 4 carbon atoms, an alkoxy group having 1 to 4 carbon atoms, a dialkylamino group, or a nitro group. represents. ] This is a laminated photoreceptor with a specific combination of layers containing a specific hydrazone compound. Table 1 shows examples of the hydrazone compounds represented by the general formula (2) used in the present invention.

【衚】【table】

【衚】【table】

【衚】【table】

【衚】 次に本発明を曎に詳现に説明する。 第図は本発明の実斜態様を瀺す電子写真感光
䜓の拡倧断面図である。この感光䜓は導電性支持
䜓䞊に電荷発生局、電荷搬送局を蚭
けお感光局を圢成するように構成されおい
る。 本発明で甚いられる導電性支持䜓ずしおは、ア
ルミニりム、ニツケル、クロムなどからなる金属
板、金属ドラム又は金属箔、及びアルミニりム、
酞化スズ、酞化むンゞりム、クロム、パラゞりム
などの薄局を蚭けたプラスチツクフむルム及び導
電性物質を塗垃又は含浞させた玙又はプラスチツ
クフむルムなどが甚いられる。電荷発生局は先に
瀺した匏(1)で衚わされる特定のトリスアゟ顔料を
ボヌルミルなどの手段により埮现粒子ずし、適圓
な溶剀䞭に分散した液、又は必芁に応じおこれに
結合剀暹脂を溶解した分散液を導電性支持䜓䞊に
塗垃圢成したものでありさらに必芁によ぀お、䟋
えばバフ研磚などの方法により衚面仕䞊げをした
り、膜厚の調敎をしたものである。 この電荷発生局の厚さは0.01〜Ό、奜たし
くは0.05〜Όであり、電荷発生局䞭のトリス
アゟ顔料の割合は10〜100重量、奜たしくは30
〜95重量である。電荷発生局の膜厚が0.01Ό
以䞋では感床が悪く、Ό以䞊では電䜍の保持
が悪い。たた電荷発生局䞭のトリスアゟ顔料の割
合が10重量以䞋では感床が悪い。 電荷搬送局は前述した䞀般匏(2)で衚わされるヒ
ドラゟン化合物ず結合剀暹脂ずを適圓な溶剀、䟋
えばテトラヒドロフランなどに溶解した溶液を前
蚘電荷発生局䞊に塗垃するこずにより圢成され
る。ここで電荷搬送局に含有されるヒドラゟン化
合物の割合は10〜80重量、奜たしくは25〜75重
量であり、その膜厚は〜100Ό、奜たしく
は〜40Όである。電荷搬送局に含有されるヒ
ドラゟン化合物の割合が10重量以䞋では感床が
悪く、80重量以䞊では膜が脆くな぀たり、結晶
が析出し電荷搬送局が癜濁し、奜たしくない。た
た電荷搬送局の厚さがΌ以䞋では電䜍の保持
が悪く、40Ό以䞊では残留電䜍が高くなる。 ここで䜿甚される電荷発生局甚の結合剀暹脂ず
しおは、ポリ゚ステル暹脂、ブチラヌル暹脂、゚
チルセルロヌス暹脂、゚ポキシ暹脂、アクリル暹
脂、塩化ビニリデン暹脂、ポリスチレン暹脂、ポ
リブタゞ゚ン暹脂、及びそれらの共重合䜓などが
あげられ、それらは皮又は皮以䞊の混合状態
で甚いられる。 たた電荷搬送局甚の結合剀暹脂ずしおは、ポリ
カヌボネヌト暹脂、ポリ゚ステル暹脂、ポリスチ
レン暹脂、ポリりレタン暹脂、゚ポキシ暹脂、ア
クリル暹脂、シリコン暹脂及びそれらの共重合䜓
などがあげられ、それらは皮又は皮以䞊の混
合状態で甚いられる。 たた、電荷搬送局には可撓性の向䞊あるいは耐
久性の向䞊などを目的ずしお各皮の添加剀を加え
るこずができる。この目的に䜿甚される添加剀ず
しおは、ハロゲン化パラフむン、ゞアルキルフタ
レヌト、シリコンオむル等があげられる。 たた本発明の感光䜓においおは、必芁により導
電局ず電荷発生局ずの䞭間にバリダ局、電荷発生
局ず電荷搬送局の䞭間に䞭間局、たた電荷搬送局
䞊にオヌバヌコヌト局を蚭けるこずもできる。 本発明の構成は以䞊の通りであり、埌述する実
斜䟋及び比范䟋からも明らかな劂く、本発明は埓
来の積局構成の感光局を有する電子写真感光䜓に
比しお補造が容易であり、感光䜓の反埩䜿甚に察
しおも特性が安定で、しかも半導䜓レヌザヌの波
長域玄800nにおいおも高感床である等の
優れた性質を有する電子写真甚感光䜓である。 次に本発明を実斜䟋により具䜓的に説明する
が、これにより本発明の実斜の態様が限定される
ものではない。 実斜䟋  トリスアゟ顔料(1)重量郚、テトラヒドロフラ
ン19重量郚、ポリビニルブチラヌル暹脂
XYHLナニオン・カヌバむド・プラスチツク
カンパニヌ補の重量テトラヒドロフラン溶
液重量郚をボヌルミルにお充分に粉砕した。次
にこの粉砕混合物を取り出し、ゆ぀くり撹拌しな
がら、テトラヒドロフラン104重量郚を加え垌釈
した。アルミニりムを蒞着したポリ゚ステルフむ
ルム䞊に、この液をり゚ツトギダツプ35Όでド
クタヌブレヌドにお塗垃し80℃で分間也燥し
お、0.8Ό厚さの電荷発生局を圢成した。前蚘
電荷発生局に、構造匏−で瀺されるヒド
ラゟン化合物10重量郚、ポリカヌボネヌト暹脂
パンラむト−1300垝人化成株匏䌚瀟補10
重量郚、シリコンオむルKF−50信越化孊工
業株匏䌚瀟補0.002重量郚、テトラヒドロフラ
ン80重量郚の溶液をり゚ツトギダツプ200Όで
ドクタヌブレヌドにお塗垃し、80℃で分間、次
に100℃で分間也燥しお、厚さ20Όの電荷搬
送局を圢成し、感光䜓No.1を䜜成した。 実斜䟋  実斜䟋のヒドラゟン化合物−をヒド
ラゟン化合物−に倉えた以倖は実斜䟋
ず党く同様にしお、膜厚0.8Όの電荷発生局ず
膜厚17Όの電荷搬送局から成る感光䜓No.2を
䜜成した。 実斜䟋  実斜䟋ずヒドラゟン化合物−をヒド
ラゟン化合物−に倉えた以倖は、実斜䟋
ず党く同様にしお、膜厚0.8Όの電荷発生局
ず膜厚19Όの電荷搬送局から成る感光䜓No.3
を䜜成した。 実斜䟋  実斜䟋のポリビニルブチラヌル暹脂をポリ゚
ステル暹脂バむロン200東掋玡瞟株匏䌚瀟
補に倉えた以倖は実斜䟋ず党く同様にしお、
膜厚0.8Όの電荷発生局ず膜厚20Όの電荷搬
送局から成る感光䜓No.4を䜜成した。 比范䟋  電荷発生物質ずしお・N′−ゞメチルペリレ
ン−・・・10−テトラカルボン酞ゞむミド
をアルミニりム板䞊に、真空床10-5mmHg、蒞着
源枩床350℃、蒞着時間分間の条件䞋に真空蒞
着し、電荷発生局を圢成した。次いでこの電荷発
生局䞊に、・−ビス−ゞ゚チルアミノフ
゚ニル−・・−オサゞアゟヌル重量
郚、ポリ゚ステル暹脂デナポン瀟補、ポリ゚ス
テルアドヒ−シブ49000重量郚及びテトラヒ
ドロフラン90重量郚からなる溶液を塗垃し、120
℃で10分間也燥しお、厚さ玄10Όの電荷搬送局
を圢成し、比范甚感光䜓No.1を䜜成した。 比范䟋  電荷発生物質ずしおベンゞゞン系顔料であるク
ロルダむアンブルヌ1.08重量郚を゚チレンゞアミ
ン24.46重量郚に溶解し、この溶液に撹拌しなが
ら−ブチルアミン20.08重量郚を加え、曎にテ
トラヒドロフラン54.36重量郚を加えお電荷発生
局塗垃液を䜜成した。次にこの塗垃液をアルミ蒞
着したポリ゚ステルフむルム䞊にドクタヌブレヌ
ドを甚いお塗垃し、80℃で分間也燥し、厚さ玄
0.5Όの電荷発生局を圢成した。前蚘電荷発生
局䞊に−プニル−−−ゞ゚チルアミノ
スチリル−−−ゞ゚チルアミノプニル
−ピラゟリン重量郚、ポリカヌボネヌト暹脂
パンラむト−1300垝人化成株匏䌚瀟補
重量郚、及びテトラヒドロフラン重量郚からな
る溶液をドクタヌブレヌドにお塗垃し、80℃で
分間、次に100℃で分間也燥しお厚さ玄20Ό
の電荷搬送局を圢成し、比范甚感光䜓No.2を䜜
成した。 比范䟋  電荷発生物質ずしおトリプニルアミン系顔料
である・4′・4″−トリス〔−ヒドロキシ−
−−メトキシプニルカルバモむル−−ナ
フチルアゟ〕トリプニルアミン重量郚および
テトラヒドロフラン98重量郚をボヌルミル䞭で粉
砕混合し、埗られた分散液をアルミニりム蒞着ポ
リ゚ステルフむルム䞊にドクタヌブレヌドで塗垃
し、自然也燥しお厚さΌの電荷発生局を圢成
した。䞀方、・−ビス−ゞ゚チルアミノ
プニル−・・−オキサゞアゟヌル重
量郚、ポリカヌボネヌト暹脂パンラむト垝
人化成株匏䌚瀟補重量郚およびテトラヒドロ
フラン46重量郚を混合しお溶液ずし、これを前蚘
電荷発生局䞊にドクタヌブレヌドで塗垃し、120
℃で10分間也燥しお厚さ10Όの電荷搬送局を圢
成せしめ、比范甚感光䜓No.3を䜜成した。 比范䟋  ポリ゚ステル暹脂デナポン瀟補、ポリ゚ステ
ルアドヒヌシブ49000重量郚、トリプニル
アミン系顔料である・4′・4″−トリス〔−ヒ
ドロキシ−−・−ゞメトキシプニルカ
ルバモむル−−ナフチルアゟ〕トリプニル
アミン重量郚及びテトラヒドロフラン26重量郹
をボヌルミル䞭で粉砕混合し、埗られた分散液を
アルミニりム蒞着したポリ゚ステルフむルム䞊に
ドクタヌブレヌドを甚いお塗垃し100℃で10分間
也燥しお厚さΌの感光局を有する比范甚感光
䜓No.4を埗た。 以䞊のようにしお䜜成した感光䜓No.1〜No.4
及び比范甚感光䜓No.1〜No.4に぀いお、静電耇
写玙詊隓装眮(æ ª)川口電機補䜜所補、SP428型
を甚いお、−あるいは6KVのコロナ攟電を20秒
間行な぀お負あるいは正に垯電せしめた埌、20秒
間暗所に攟眮し、その時の衚面電䜍Vpovolt
を枬定し、次いでタングステンランプによ぀おそ
の衚面が照床20 luxになるようにしお光を照射し
その衚面電䜍がVpoの1/2になるたでの時間
秒を求め、露光量1/2lux・secを算出し
た。 たた各感光䜓に぀いお長波長の光に察する感床
を調べるために以䞋の枬定を行な぀た。 たず各感光䜓を暗所でコロナ攟電により垯電
し、぀いでその䞊にモノクロメヌタヌを甚いお
800nに分光したΌw/cm2の単色光を照射し
た。次いでその衚面電䜍が1/2に枛衰するたでの
時間secを求めこの時暗枛衰による衚面電
䜍の枛衰分は補正した、曎に露光量Όw・sce/
cm2を求めお光枛衰速床volt・cm2・Ό-1・
sec-1を算出した。これらの結果を衚−に瀺
す。
[Table] Next, the present invention will be explained in more detail. FIG. 1 is an enlarged sectional view of an electrophotographic photoreceptor showing an embodiment of the present invention. This photoreceptor is constructed such that a charge generation layer 22 and a charge transport layer 33 are provided on a conductive support 11 to form a photosensitive layer 44 . The conductive support used in the present invention includes a metal plate, metal drum, or metal foil made of aluminum, nickel, chromium, etc.;
Plastic films provided with a thin layer of tin oxide, indium oxide, chromium, palladium, etc., and paper or plastic films coated with or impregnated with a conductive substance are used. The charge generation layer is made by making fine particles of the specific trisazo pigment represented by the formula (1) shown above by means such as a ball mill, and dispersing them in a suitable solvent, or dissolving a binder resin therein as necessary. The resulting dispersion is coated onto a conductive support, and if necessary, the surface may be finished by buffing or the like, and the film thickness may be adjusted. The thickness of this charge generation layer is 0.01 to 5 ÎŒm, preferably 0.05 to 2 ÎŒm, and the proportion of trisazo pigment in the charge generation layer is 10 to 100% by weight, preferably 30% by weight.
~95% by weight. Charge generation layer thickness is 0.01ÎŒm
If the diameter is less than 5 Όm, the sensitivity is poor, and if the diameter is 5 Όm or more, the potential cannot be maintained. Furthermore, if the proportion of the trisazo pigment in the charge generation layer is less than 10% by weight, the sensitivity is poor. The charge transport layer is formed by coating a solution of the hydrazone compound represented by the general formula (2) and a binder resin in a suitable solvent such as tetrahydrofuran on the charge generation layer. The proportion of the hydrazone compound contained in the charge transport layer is 10 to 80% by weight, preferably 25 to 75% by weight, and the film thickness is 2 to 100 Όm, preferably 5 to 40 Όm. If the proportion of the hydrazone compound contained in the charge transport layer is less than 10% by weight, the sensitivity will be poor, and if it is more than 80% by weight, the film will become brittle or crystals will precipitate and the charge transport layer will become cloudy, which is not preferable. Further, if the thickness of the charge transport layer is 5 Όm or less, the potential is not maintained well, and if the thickness is 40 Όm or more, the residual potential becomes high. Examples of binder resins for the charge generation layer used here include polyester resins, butyral resins, ethyl cellulose resins, epoxy resins, acrylic resins, vinylidene chloride resins, polystyrene resins, polybutadiene resins, and copolymers thereof. They can be used alone or in a mixture of two or more. Examples of binder resins for the charge transport layer include polycarbonate resins, polyester resins, polystyrene resins, polyurethane resins, epoxy resins, acrylic resins, silicone resins, and copolymers thereof, and these may be one or two types. It is used in a mixed state. Furthermore, various additives can be added to the charge transport layer for the purpose of improving flexibility or durability. Additives used for this purpose include halogenated paraffins, dialkyl phthalates, silicone oils, and the like. In addition, in the photoreceptor of the present invention, a barrier layer may be provided between the conductive layer and the charge generation layer, an intermediate layer between the charge generation layer and the charge transport layer, and an overcoat layer on the charge transport layer, if necessary. can. The structure of the present invention is as described above, and as is clear from the Examples and Comparative Examples described later, the present invention is easier to manufacture than an electrophotographic photoreceptor having a photosensitive layer with a conventional laminated structure. It is an electrophotographic photoreceptor that has excellent properties such as stable characteristics even after repeated use and high sensitivity even in the semiconductor laser wavelength range (approximately 800 nm). EXAMPLES Next, the present invention will be specifically explained using Examples, but the embodiments of the present invention are not limited thereby. Example 1 1 part by weight of trisazo pigment (1), 19 parts by weight of tetrahydrofuran, and 6 parts by weight of a 5% by weight tetrahydrofuran solution of polyvinyl butyral resin (XYHL; manufactured by Union Carbide Plastics Company) were thoroughly ground in a ball mill. Next, this pulverized mixture was taken out and diluted with 104 parts by weight of tetrahydrofuran while stirring gently. This solution was applied onto a polyester film on which aluminum had been vapor-deposited using a doctor blade with a wet gap of 35 Όm and dried at 80° C. for 5 minutes to form a charge generation layer with a thickness of 0.8 Όm. In the charge generation layer, 10 parts by weight of a hydrazone compound represented by structural formula (2-5) and 10 parts by weight of polycarbonate resin (Panlite K-1300; manufactured by Teijin Kasei Ltd.) were added.
A solution containing 0.002 parts by weight of silicone oil (KF-50; manufactured by Shin-Etsu Chemical Co., Ltd.) and 80 parts by weight of tetrahydrofuran was applied using a doctor blade with a wet gap of 200 Όm, heated at 80°C for 2 minutes, and then heated at 100°C for 5 minutes. It was dried for a minute to form a charge transport layer with a thickness of 20 Όm, and photoreceptor No. 1 was prepared. Example 2 Example 1 except that hydrazone compound (2-5) in Example 1 was changed to hydrazone compound (2-8)
In exactly the same manner as above, photoreceptor No. 2 consisting of a charge generation layer with a thickness of 0.8 ÎŒm and a charge transport layer with a thickness of 17 ÎŒm was prepared. Example 3 A charge generation layer with a thickness of 0.8 ÎŒm and a charge generation layer with a thickness of 19 ÎŒm were prepared in the same manner as in Example 1 except that the hydrazone compound (2-5) was changed to the hydrazone compound (2-7). Photoreceptor No. 3 consisting of charge transport layer
It was created. Example 4 The same procedure as in Example 1 was carried out except that the polyvinyl butyral resin in Example 1 was changed to polyester resin (Vylon 200; manufactured by Toyobo Co., Ltd.).
Photoreceptor No. 4 was prepared, consisting of a charge generation layer with a thickness of 0.8 ÎŒm and a charge transport layer with a thickness of 20 ÎŒm. Comparative Example 1 N・N'-dimethylperylene-3,4,9,10-tetracarboxylic acid diimide was deposited as a charge generating substance on an aluminum plate at a vacuum level of 10 -5 mmHg, a deposition source temperature of 350°C, and a deposition time of 3 minutes. A charge generation layer was formed by vacuum evaporation under the following conditions. Next, on this charge generation layer, 5 parts by weight of 2,5-bis(4-diethylaminophenyl)-1,3,4-osadiazole, 5 parts by weight of polyester resin (manufactured by DuPont, Polyester Adhesive 49000), and Apply a solution consisting of 90 parts by weight of tetrahydrofuran,
It was dried at .degree. C. for 10 minutes to form a charge transport layer with a thickness of about 10 .mu.m, thereby producing comparative photoreceptor No. 1. Comparative Example 2 1.08 parts by weight of Chlordiane Blue, a benzidine-based pigment, as a charge generating substance was dissolved in 24.46 parts by weight of ethylenediamine, and 20.08 parts by weight of n-butylamine was added to this solution with stirring, followed by 54.36 parts by weight of tetrahydrofuran. A charge generation layer coating solution was prepared. Next, this coating solution was applied onto a polyester film coated with aluminum using a doctor blade, dried at 80℃ for 5 minutes, and the thickness was approx.
A charge generation layer of 0.5 ÎŒm was formed. 1-phenyl-3-(4-diethylaminostyryl)-5-(4-diethylaminophenyl) on the charge generation layer.
- 1 part by weight of pyrazoline, 1 part of polycarbonate resin (Panlite K-1300; manufactured by Teijin Kasei Ltd.)
A solution consisting of 1 part by weight and 8 parts by weight of tetrahydrofuran was applied with a doctor blade and heated at 80℃ for 2 hours.
minutes, then dried at 100℃ for 5 minutes to a thickness of approximately 20ÎŒm.
A charge transporting layer was formed on the photoreceptor No. 2 for comparison. Comparative Example 3 A triphenylamine pigment, 4,4',4''-tris[2-hydroxy-3
2 parts by weight of -(2-methoxyphenylcarbamoyl)-1-naphthylazo]triphenylamine and 98 parts by weight of tetrahydrofuran were pulverized and mixed in a ball mill, and the resulting dispersion was applied onto an aluminum-deposited polyester film using a doctor blade. , and air-dried to form a charge generation layer with a thickness of 1 ÎŒm. On the other hand, 2 parts by weight of 2,5-bis(4-diethylaminophenyl)-1,3,4-oxadiazole, 2 parts by weight of polycarbonate resin (Panlite L; manufactured by Teijin Kasei Ltd.) and 46 parts by weight of tetrahydrofuran were added. Mix to form a solution, apply this onto the charge generation layer with a doctor blade,
A charge transport layer having a thickness of 10 .mu.m was formed by drying at .degree. C. for 10 minutes to prepare comparative photoreceptor No. 3. Comparative Example 4 1 part by weight of polyester resin (manufactured by DuPont, Polyester Adhesive 49000), 4,4',4''-tris [2-hydroxy-3-(2,5-dimethoxyphene)], which is a triphenylamine pigment, 1 part by weight of (Nylcarbamoyl)-1-naphthylazo]triphenylamine and 26 parts by weight of tetrahydrofuran were pulverized and mixed in a ball mill, and the resulting dispersion was applied onto an aluminum-deposited polyester film using a doctor blade and heated at 100°C. Comparative photoreceptor No. 4 having a photosensitive layer with a thickness of 7 Όm was obtained by drying for 10 minutes. Photoreceptor No. 1 to No. 4 prepared as described above
And for comparison photoreceptors No. 1 to No. 4, an electrostatic copying paper tester (manufactured by Kawaguchi Electric Seisakusho Co., Ltd., SP428 type)
After applying corona discharge of - or +6KV for 20 seconds to charge it negatively or positively using
Then, the surface is irradiated with light using a tungsten lamp at an illuminance of 20 lux, and the time (seconds) until the surface potential becomes 1/2 of Vpo is determined, and the exposure amount E1/2 is determined. (lux・sec) was calculated. In addition, the following measurements were performed to examine the sensitivity of each photoreceptor to long wavelength light. First, each photoreceptor was charged by corona discharge in a dark place, and then a monochromator was used to charge the photoreceptor.
Monochromatic light of 1 ÎŒw/cm 2 with a wavelength of 800 nm was irradiated. Next, calculate the time (sec) until the surface potential attenuates to 1/2 (at this time, the attenuation of the surface potential due to dark decay was corrected), and then calculate the exposure amount (ÎŒw・sce/
cm 2 ) and the light attenuation rate (volt・cm 2・Ό -1・
sec -1 ) was calculated. These results are shown in Table-2.

【衚】【table】

【衚】 衚−の結果から明らかのように本発明の積局
型感光䜓は、比范甚感光䜓No.1〜No.4に比べ可
芖域の感床が高いず共に半導䜓レヌザヌの波長域
800nにおいおはきわめお優れた感床を有し
おいるこずが刀る。たた、その補造においお比范
甚感光䜓No.2を䜜成する際に甚いた有機アミン
を甚いる必芁がないため、補造䞊も有利なもので
ある。さらに本発明感光䜓No.1〜No.4をそれぞ
れ電子写真耇写機株匏䌚瀟リコヌ補FT−
4700に装着し、画像出しを10000回くり返し
た。その結果、いずれの感光䜓からも鮮明な画像
が埗られた。 このこずにより、本発明の感光䜓が耐久性にお
いおもきわめおすぐれたものであるこずが理解で
きるであろう。
[Table] As is clear from the results in Table 2, the laminated photoreceptor of the present invention has higher sensitivity in the visible range than comparative photoreceptors No. 1 to No. 4, and has a higher sensitivity in the semiconductor laser wavelength range (800 nm). It can be seen that it has extremely excellent sensitivity. Further, in its production, it is not necessary to use the organic amine used in producing Comparative Photoreceptor No. 2, which is advantageous in terms of production. Furthermore, photoreceptors No. 1 to No. 4 of the present invention were used in an electrophotographic copying machine (FT- manufactured by Ricoh Co., Ltd.).
4700), and image output was repeated 10,000 times. As a result, clear images were obtained from all photoreceptors. From this, it can be understood that the photoreceptor of the present invention has extremely excellent durability.

【図面の簡単な説明】[Brief explanation of the drawing]

第図は本発明の䞀実斜䟋を瀺す電子写真感光
䜓の拡倧断面図。   導電性支持䜓、  電荷発生局、
  電荷搬送局、  感光局。
FIG. 1 is an enlarged sectional view of an electrophotographic photoreceptor showing an embodiment of the present invention. 11... Conductive support, 22... Charge generation layer,
33... Charge transport layer, 44... Photosensitive layer.

Claims (1)

【特蚱請求の範囲】  導電性支持䜓䞊に電荷発生局及び電荷搬送局
を蚭けた積局型の電子写真感光䜓においお、電荷
発生局が匏(1) で瀺されるトリスアゟ顔料を含み、䞔぀電荷搬送
局が䞀般匏(2) 〔匏䞭、R1はメチル基、゚チル基、−ヒドロキ
シ゚チル基、又は−クロル゚チル基を衚わし、
R2はメチル基、゚チル基、ベンゞル基又はプ
ニル基を衚わし、R3は氎玠、塩玠、臭玠、炭玠
数〜のアルキル基、炭玠数〜のアルコキ
シ基、ゞアルキルアミノ基又はニトロ基を衚わ
す。〕で瀺されるヒドラゟン化合物を含むこずを
特城ずする電子写真感光䜓。
[Claims] 1. In a laminated electrophotographic photoreceptor in which a charge generation layer and a charge transport layer are provided on a conductive support, the charge generation layer has the formula (1). contains a trisazo pigment represented by the formula (2), and the charge transport layer has the general formula (2). [In the formula, R 1 represents a methyl group, an ethyl group, a 2-hydroxyethyl group, or a 2-chloroethyl group,
R 2 represents a methyl group, ethyl group, benzyl group, or phenyl group, and R 3 represents hydrogen, chlorine, bromine, an alkyl group having 1 to 4 carbon atoms, an alkoxy group having 1 to 4 carbon atoms, a dialkylamino group, or a nitro group. represents. ] An electrophotographic photoreceptor comprising a hydrazone compound represented by the following.
JP8015281A 1981-05-28 1981-05-28 Electrophotographic receptor Granted JPS57196244A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP8015281A JPS57196244A (en) 1981-05-28 1981-05-28 Electrophotographic receptor
US06/379,686 US4436800A (en) 1981-05-28 1982-05-19 Multilayer electrophotographic element containing a trisazo charge carrier generating substance and a hydrazone charge carrier transfer substance
DE3220010A DE3220010C2 (en) 1981-05-28 1982-05-27 Electrophotographic recording material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8015281A JPS57196244A (en) 1981-05-28 1981-05-28 Electrophotographic receptor

Publications (2)

Publication Number Publication Date
JPS57196244A JPS57196244A (en) 1982-12-02
JPS6136225B2 true JPS6136225B2 (en) 1986-08-16

Family

ID=13710312

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8015281A Granted JPS57196244A (en) 1981-05-28 1981-05-28 Electrophotographic receptor

Country Status (1)

Country Link
JP (1) JPS57196244A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5986292A (en) * 1982-11-09 1984-05-18 日本電気株匏䌚瀟 Method of producing ceramic multilayer circuit board

Also Published As

Publication number Publication date
JPS57196244A (en) 1982-12-02

Similar Documents

Publication Publication Date Title
US4390608A (en) Layered charge generator/transport electrophotographic photoconductor uses bisazo pigment
US4400455A (en) Layered organic electrophotographic photoconductor element comprising bisazo generating and hydrazone transport layers
JPH0518105B2 (en)
US4481271A (en) Layered electrophotographic photoconductor containing a hydrazone
JPH061385B2 (en) Electrophotographic photoreceptor
JPS61124949A (en) Electrophotographic sensitive body
JPS6338945A (en) Electrophotographic sensitive body
JPS6136225B2 (en)
JPH0243174B2 (en)
JPS6136224B2 (en)
JP3982868B2 (en) Electrophotographic photoreceptor
JPH08320581A (en) Electrophotographic photoreceptor
JP2944717B2 (en) Dichlorotin phthalocyanine and electrophotographic photoreceptor using the same
JPH0546939B2 (en)
JP2789701B2 (en) Electrophotographic photoreceptor
JPS60123848A (en) Electrophotographic sensitive body
JPS59127050A (en) Electrophotographic sensitive body
JP2658201B2 (en) Electrophotographic photoreceptor
JPH0336223B2 (en)
JPH0422268B2 (en)
JPH10260543A (en) Electrophotographic photoreceptor
JPH0422264B2 (en)
JPS58122546A (en) Electrophotographic receptor
JPS59218450A (en) Electrophotographic sensitive body
JPH0314173B2 (en)