JPH0336223B2 - - Google Patents

Info

Publication number
JPH0336223B2
JPH0336223B2 JP8619082A JP8619082A JPH0336223B2 JP H0336223 B2 JPH0336223 B2 JP H0336223B2 JP 8619082 A JP8619082 A JP 8619082A JP 8619082 A JP8619082 A JP 8619082A JP H0336223 B2 JPH0336223 B2 JP H0336223B2
Authority
JP
Japan
Prior art keywords
photoreceptor
charge
layer
weight
charge generation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP8619082A
Other languages
Japanese (ja)
Other versions
JPS58202451A (en
Inventor
Mitsuru Hashimoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP8619082A priority Critical patent/JPS58202451A/en
Priority to US06/493,913 priority patent/US4486522A/en
Priority to DE3318510A priority patent/DE3318510C2/en
Priority to GB08314007A priority patent/GB2122211B/en
Publication of JPS58202451A publication Critical patent/JPS58202451A/en
Publication of JPH0336223B2 publication Critical patent/JPH0336223B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/06Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being organic

Description

【発明の詳现な説明】[Detailed description of the invention]

本発明の電子写真甚の感光䜓に関し、曎に詳し
くは、光を照射したずき電荷担䜓を発生する物質
以䞋、電荷発生物質ずいうを含む局以䞋、
電荷発生局ずいうず、電荷発生局が発生した電
荷担䜓を受け入れこれを搬送する物質以䞋、電
荷搬送物質ずいうを含む局以䞋、電荷搬送局
ずいうずからなる積局型の電子写真感光䜓に関
する。 埓来、電子写真甚の感光䜓ずしお、無機物系の
ものではセレン及びその合金を甚いたもの、ある
いは色玠増感した酞化亜鉛を結着暹脂䞭に分散し
た感光䜓などがあり、たた有機物系のものでは、
−トリニトロ−−フルオレノン以
䞋、TNFずいうずポリ−−ビニルカルバゟ
ヌル以䞋、PVKずいうずの電荷移動錯䜓を
甚いたものなどが代衚的なものである。しかし、
これらの感光䜓は倚くの長所を持぀おいるず同時
に、さたざたな欠点を持぀おいるこずも事実であ
る。䟋えば、珟圚広く甚いられおいるセレン感光
䜓は補造する条件がむずかしく、補造コストが高
か぀たり、可撓性がないためにベルト状に加工す
るこずがむずかしく、たた熱や機械的な衝撃に鋭
敏なため取扱いに泚意を芁する。酞化亜鉛感光䜓
は安䟡な酞化亜鉛を甚いお支持䜓ぞの塗垃で補造
するこずが出来るためコストは䜎いが、䞀般に感
床が䜎か぀たり、衚面の平滑性、硬床、匕぀匵り
匷床、耐摩擊性などの機械的な欠点があり、通垞
反埩しお䜿甚する普通玙耇写甚の感光䜓ずしおは
耐久性などに問題が倚い。たた、TNFずPVKず
の電荷移動錯䜓を甚いた感光䜓は感床が䜎く、高
速耇写機甚の感光䜓ずしおは䞍適圓である。 近幎、これらの感光䜓の欠点を排陀するために
広範な研究が進められ、特に有機物系のさたざた
な感光䜓が提案されおいる。䞭でも、有機顔料の
薄膜を導電性支持䜓䞊に圢成し電荷発生局、
この䞊に電荷搬送物質を䞻䜓ずする局電荷搬送
局を圢成した積局型の感光䜓が埓来の有機物系
の感光䜓に比べ、䞀般に感床が高く垯電性が安定
しおいるこずなどの点から普通玙耇写機甚の感光
䜓ずしお泚目されおおり、䞀郚実甚に䟛されおい
るものがある。 この皮の埓来の積局型の感光䜓ずしお、 (1) 電荷発生局ずしおペリレン誘導䜓を真空蒞着
した薄局を甚い、電荷搬送局にオキサゞアゟヌ
ル誘導䜓を甚いたもの米囜特蚱第3871882号
公報参照、 (2) 電荷発生局ずしおクロルダむアンブルヌの有
機アミン溶液を塗垃しお圢成した薄局を甚い、
電荷搬送局にヒドラゟン化合物を甚いたもの
特公昭55−42380号公報参照、 (3) 電荷発生局ずしおゞスチリルベンれン系ゞス
アゟ化合物の有機溶媒分散液を塗垃しお圢成し
た薄局を甚い、電荷搬送局にヒドラゟン化合物
を甚いたもの特開昭55−84943号公報参照 などが知られおいる。 しかしながら、この皮の積局型の感光䜓におい
おも埓来のものは倚くの長所を持぀おいるず同時
にさたざたな欠点を持぀おいるこずも事実であ
る。 即ち (1)で瀺したペリレン誘導䜓ずオキサゞアゟヌル
誘導䜓ずを甚いた感光䜓は、その電荷発生局を真
空蒞着により圢成するため補造コストが高く、た
た、実甚䞊問題はないずしおも、より高速な耇写
機甚の感光䜓ずしおは感床が䞍足しおいるなどの
問題点がある。 (2)で瀺したクロルダむアンブルヌずヒドラゟン
化合物ずを甚いた感光䜓は、感床は良いが、電荷
発生局を圢成するための塗垃溶剀ずしお、䞀般に
取り扱いにくい有機アミンたずえば゚チレンゞ
アミンを甚いる必芁があり、感光䜓䜜成䞊の欠
点が倚い。たた、その可芖域の感光波長域がおよ
そ450〜660nに亘぀おいるため、赀色原皿の画
像再珟性が悪い。そのため、実際に耇写機に実装
する堎合は赀色光をカツトするフむルタヌが必芁
であり、耇写機蚭蚈䞊の䞍利がある。 (3)で瀺したゞスチリルベンれン系ゞスアゟ化合
物ずヒドラゟン化合物ずを甚いた感光䜓は、ゞス
アゟ化合物の分散液の塗垃により容易に電荷発生
局を圢成できるこずから補造䞊は倧倉有利なもの
であるが、(2)の感光䜓ず同様に、その感光波長域
がおよそ450〜700nに亘぀おいるため赀色原皿
の画像再珟性が悪いずいう欠点を有しおいる。 等である。 本発明者は、以䞊の欠点に鑑み、容易に補造で
き、高感床で、しかもその感光波長域が短波長領
域にあるすなわち、赀色原皿の画像再珟性にす
ぐれた積局型の感光䜓を開発するこずを目的ず
しお鋭意怜蚎を重ねた結果、ある特定のゞスアゟ
化合物を電荷発生物質ずしお甚いお電荷発生局を
構成した積局型の感光䜓が䞊蚘目的を達成しうる
ずいうこずを知芋し、本発明を完成したものであ
る。 すなわち、本発明の電子写真感光䜓は、導電性
支持䜓䞊に電荷発生局および電荷搬送局を蚭けた
積局型の電子写真感光䜓においお、前蚘電荷発生
局が䞀般匏 匏䞭、は眮換もしくは無眮換の芳銙環たたは
ヘテロ環を瀺し、Arは眮換もしくは無眮換の芳
銙環たたはヘテロ環を瀺す。 で衚わされるゞスアゟ化合物を含む局からなるこ
ずを特城ずしおいる。 䞀般匏のにおける芳銙環の具䜓䟋ずし
おはベンれン環、ナフタレン環などが挙げられ、
ヘテロ環の具䜓䟋ずしおはむンドヌル環、カルバ
ゟヌル環、ベンゟフラン環などが挙げられる。た
た、Arにおける芳銙環の具䜓䟋ずしおはベンれ
ン環、ナフタレン環などが挙げられ、ヘテロ環の
具䜓䟋ずしおはゞベンゟフラン環、カルバゟヌル
環などが挙げられる。たた、芳銙環たたはヘテロ
環における眮換基ずしおは、メチル基、゚チル
基、プロピル基、ブチル基などの䜎玚アルキル
基、メトキシ基、゚トキシ基、プロポキシ基、ブ
トキシ基などの䜎玚アルコキシ基、フツ玠、塩
玠、臭玠、ペり玠などのハロゲン原子、トリフル
オロメチル基などのハロメチル基、カルボキシル
基たたはその゚チル゚ステルなどの䜎玚アルキル
゚ステルカルボキシル基、ゞメチルアミノ基、ゞ
゚チルアミノ基などの䜎玚アルキルアミノ基、シ
アノ基、ニトロ基、スルホン酞−SO3Na基
などが挙げられる。 本発明の積局型感光䜓は、その補造が容易であ
り、高感床で、しかも、その感光波長領域が短波
長領域450〜600nにあるので、耇写機甚の
感光䜓ずしおすぐれたものである。 以䞋、本発明に぀いおさらに詳现に説明する。 たず、本発明で電荷眰性局に甚いられ電荷発生
物質、すなわち前蚘䞀般匏で衚わされるゞ
スアゟ化合物の具䜓䟋を瀺せば次の通りである。
Regarding the photoreceptor for electrophotography of the present invention, more specifically, a layer containing a substance that generates charge carriers (hereinafter referred to as a charge-generating substance) when irradiated with light (hereinafter referred to as a charge-generating substance)
A multilayer electrophotographic photosensitive layer consisting of a charge generation layer) and a layer containing a substance (hereinafter referred to as a charge transport material) that receives and transports charge carriers generated by the charge generation layer (hereinafter referred to as a charge transport layer). Regarding the body. Conventionally, there have been inorganic photoreceptors for electrophotography, such as those using selenium and its alloys, or photoreceptors with dye-sensitized zinc oxide dispersed in a binder resin, and organic photoreceptors. So,
A typical example is one using a charge transfer complex of 2,4,7-trinitro-9-fluorenone (hereinafter referred to as TNF) and poly-N-vinylcarbazole (hereinafter referred to as PVK). but,
Although these photoreceptors have many advantages, it is also true that they also have various disadvantages. For example, the currently widely used selenium photoreceptor has difficult manufacturing conditions and high manufacturing costs, is difficult to process into a belt shape due to its lack of flexibility, and is sensitive to heat and mechanical shock. Therefore, care must be taken when handling it. Zinc oxide photoreceptors are low in cost because they can be manufactured by applying inexpensive zinc oxide to a support, but they generally have low sensitivity and poor surface smoothness, hardness, tensile strength, and abrasion resistance. It has mechanical drawbacks such as durability, and as a photoreceptor for plain paper copying that is normally used repeatedly, there are many problems such as durability. Furthermore, a photoreceptor using a charge transfer complex of TNF and PVK has low sensitivity and is unsuitable as a photoreceptor for high-speed copying machines. In recent years, extensive research has been carried out to eliminate the drawbacks of these photoreceptors, and in particular, various organic photoreceptors have been proposed. Among them, a thin film of organic pigment is formed on a conductive support (charge generation layer),
Laminated photoreceptors, in which a layer mainly composed of a charge transporting material (charge transport layer) is formed, generally have higher sensitivity and stable chargeability compared to conventional organic photoreceptors. Since then, it has been attracting attention as a photoreceptor for plain paper copying machines, and some are in practical use. Conventional laminated photoreceptors of this type include: (1) one in which a thin layer of a perylene derivative vacuum-deposited is used as a charge generation layer and an oxadiazole derivative is used as a charge transport layer (see U.S. Pat. No. 3,871,882); ), (2) Using a thin layer formed by coating an organic amine solution of chlordian blue as the charge generation layer,
(3) A thin layer formed by coating an organic solvent dispersion of a distyrylbenzene-based disazo compound as a charge generation layer, One in which a hydrazone compound is used in the charge transport layer (see Japanese Patent Application Laid-open No. 84943/1983) is known. However, it is true that conventional laminated photoreceptors of this type have many advantages, but also have various drawbacks. That is, the photoreceptor using the perylene derivative and oxadiazole derivative shown in (1) has a high manufacturing cost because its charge generation layer is formed by vacuum evaporation, and even if there is no practical problem, it is faster to manufacture. There are problems such as insufficient sensitivity as a photoreceptor for copying machines. The photoreceptor using chlordiane blue and a hydrazone compound shown in (2) has good sensitivity, but requires the use of organic amines (e.g. ethylenediamine), which are generally difficult to handle, as a coating solvent to form the charge generation layer. Yes, there are many drawbacks in making photoreceptors. Furthermore, since the visible wavelength range extends from approximately 450 to 660 nm, image reproducibility of red originals is poor. Therefore, when actually implemented in a copying machine, a filter is required to cut out red light, which is disadvantageous in the design of the copying machine. The photoreceptor using a distyrylbenzene-based disazo compound and a hydrazone compound shown in (3) is very advantageous in terms of manufacturing because a charge generation layer can be easily formed by coating a dispersion of the disazo compound. , (2), its photosensitive wavelength range extends from approximately 450 to 700 nm, so it has the disadvantage of poor image reproducibility for red originals. etc. In view of the above drawbacks, the present inventor has developed a laminated photoreceptor that is easy to manufacture, has high sensitivity, and has a photosensitive wavelength range in the short wavelength range (that is, has excellent image reproducibility for red originals). As a result of extensive research with the aim of developing a photoreceptor, we discovered that a laminated photoreceptor in which the charge generation layer was constructed using a specific disazo compound as a charge generation substance could achieve the above objectives. It is a completed invention. That is, the electrophotographic photoreceptor of the present invention is a laminated electrophotographic photoreceptor in which a charge generation layer and a charge transport layer are provided on a conductive support, wherein the charge generation layer has the general formula (). (In the formula, X represents a substituted or unsubstituted aromatic ring or heterocycle, and Ar represents a substituted or unsubstituted aromatic ring or heterocycle.) . Specific examples of the aromatic ring in X in general formula () include benzene ring, naphthalene ring, etc.
Specific examples of the heterocycle include an indole ring, a carbazole ring, and a benzofuran ring. Further, specific examples of the aromatic ring in Ar include a benzene ring, a naphthalene ring, etc., and specific examples of the hetero ring include a dibenzofuran ring, a carbazole ring, etc. Substituents on the aromatic ring or heterocycle include lower alkyl groups such as methyl, ethyl, propyl, and butyl; lower alkoxy groups such as methoxy, ethoxy, propoxy, and butoxy; fluorine; Halogen atoms such as chlorine, bromine, and iodine, halomethyl groups such as trifluoromethyl, carboxyl groups or lower alkyl esters such as ethyl ester thereof, lower alkylamino groups such as dimethylamino and diethylamino groups, cyano groups, nitro group, sulfonic acid (-SO 3 Na) group, and the like. The laminated photoreceptor of the present invention is easy to manufacture, has high sensitivity, and has a sensitive wavelength range in the short wavelength range (450 to 600 nm), making it an excellent photoreceptor for copying machines. be. The present invention will be explained in more detail below. First, specific examples of the charge-generating substance used in the charge-punching layer in the present invention, that is, the disazo compound represented by the general formula () above, are as follows.

【衚】【table】

【衚】【table】

【衚】【table】

【衚】【table】

【衚】 これらのゞスアゟ化合物は、文献小田良平
ら工業化孊雑誌42第895〜903頁1939日本化
孊䌚発行に蚘茉の方法に準じお合成するこずの
できる−ゞアミノアントラキノンを垞法に
よりゞアゟ化しお埗られるテトラゟニりム塩ず、
察応するカツプラヌナフトヌルAS類ずを適
圓な有機溶媒、たずえば−ゞメチルホルム
アミドDMF䞭で塩基を䜜甚させおカツプリ
ング反応を行なうこずによ぀お容易に補造するこ
ずができる。その䟋ずしお、以䞋に前蚘No.―13
のゞスアゟ化合物の補造䟋を瀺すが、他のゞスア
ゟ化合物もカツプラヌを倉える他はこの補造䟋に
したが぀お容易に補造するこずができる。 補造䟋 −ゞアミノアントラキノン4.76に36
HCl34mlを加え、この混合物を−℃たで冷华
し、これに、97亜硝酞ナトリりム3.0を氎10
mlに溶解した溶液を玄15分間かけお滎䞋した。滎
䞋終了埌、玄℃でさらに20分間撹拌したのち、
反応混合物を200mlの冷氎䞭に泚入し䞍溶郚を
別した。続いお、液に42ホりフツ化氎玠酞10
mlを加え、析出しお来る沈柱を取し、メタノヌ
ルで掗浄したのち枛圧䞋に也燥しお、淡耐色の結
晶ずしおアントラキノン−−ビスゞアゟニ
りムビステトラフルオロボレヌト4.5652.3
を埗た。このものの赀倖線吞収スペクトル
KBr錠剀法は  N2 2275cm-1 VCO 1690cm-1 のずおりであ぀た。 䞊蚘のようにしお埗たテトラゟニりム塩2.18
および−ヒドロキシ−−プニルカルバモむ
ルナフタレンナフトヌルAS3.63を
DMF300mlに溶解し、これに酢酞ナトリりム1.64
を氎14mlに溶解した溶液を宀枩玄20℃にお
玄分間で滎䞋した。滎䞋終了埌同枩床でさらに
時間撹拌しおから析出しおいる結晶を取し
た。次に、この結晶に300mlのDMFを加え80℃で
時間撹拌した埌、再び結晶を取し、さらにこ
の操䜜を回繰り返した。その埌、結晶を氎掗
し、枛圧䞋に80℃で也燥した。玫赀色の粉末ずし
お2.7570.0のゞスアゟ化合物No.−13を
埗た。 このゞスアゟ化合物No.−13の物性等は䞋蚘の
ずおりであ぀た。 (ã‚€) 融点300℃以䞊 (ロ) 元玠分析結果
[Table] These disazo compounds are 2,7-diaminoanthraquinones that can be synthesized according to the method described in the literature (Ryohei Oda, Industrial Chemistry Magazine 42, pp. 895-903 (1939) published by the Chemical Society of Japan). A tetrazonium salt obtained by diazotizing by a conventional method,
The corresponding couplers (naphthol ASs) can be easily produced by carrying out a coupling reaction with a base in a suitable organic solvent such as N,N-dimethylformamide (DMF). As an example, below is the above No. 1-13.
An example of the production of a disazo compound is shown below, but other disazo compounds can also be easily produced according to this production example, except for changing the coupler. Production example: 36% in 4.76g of 2,7-diaminoanthraquinone
Add 34 ml of HCl, cool the mixture to -5°C, add 3.0 g of 97% sodium nitrite to 10 ml of water.
ml solution was added dropwise over about 15 minutes. After the dropwise addition was completed, the mixture was stirred for another 20 minutes at approximately 0°C, and then
The reaction mixture was poured into 200 ml of cold water and the insoluble portion was separated. Subsequently, add 42% hydroborofluoric acid to the solution 10
ml of anthraquinone-2,7-bisdiazonium bistetrafluoroborate was collected as a precipitate, washed with methanol, and dried under reduced pressure to obtain 4.56 g (52.3
%) was obtained. The infrared absorption spectrum (KBr tablet method) of this product was as follows: V N2 2275 cm -1 V CO 1690 cm -1 . 2.18 g of tetrazonium salt obtained as above
and 3.63 g of 2-hydroxy-3-phenylcarbamoylnaphthalene (naphthol AS).
Dissolve in 300ml of DMF and add 1.64ml of sodium acetate to this.
A solution prepared by dissolving G in 14 ml of water was added dropwise at room temperature (about 20°C) over about 5 minutes. After the dropwise addition was completed, the mixture was further stirred at the same temperature for 2 hours, and then precipitated crystals were collected. Next, 300 ml of DMF was added to the crystals and stirred at 80°C for 2 hours, then the crystals were collected again and this operation was repeated twice. Thereafter, the crystals were washed with water and dried at 80°C under reduced pressure. 2.75 g (70.0%) of disazo compound No. 1-13 was obtained as a purple-red powder. The physical properties of this disazo compound No. 1-13 were as follows. (a) Melting point; 300℃ or higher (b) Elemental analysis results;

【衚】 (ハ) 赀倖線吞収スペクトルKBr錠剀法 VNH第アミド 3250cm-1 VCO 1675cm-1 ぀ぎに、本発明で電荷搬送局に甚いられる電荷
搬送物質の具䜓䟋を瀺せば次の通りである。
[Table] (c) Infrared absorption spectrum (KBr tablet method); V NH (secondary amide) 3250 cm -1 V CO 1675 cm -1 Next, show specific examples of charge transport substances used in the charge transport layer in the present invention. The example is as follows.

【衚】【table】

【衚】【table】

【衚】【table】

【衚】【table】

【衚】【table】

【衚】【table】

【衚】【table】

【衚】【table】

【衚】【table】

【衚】【table】

【衚】【table】

【衚】【table】

【衚】【table】

【衚】【table】

【衚】【table】

【衚】【table】

【衚】【table】

【衚】【table】

【衚】【table】

【衚】【table】

【衚】【table】

【衚】【table】

【衚】【table】

【衚】【table】

【衚】【table】

【衚】【table】

【衚】【table】

【衚】【table】

【衚】【table】

【衚】【table】

【衚】【table】

【衚】【table】

【衚】【table】

【衚】【table】

【衚】【table】

【衚】 䞊蚘の䟋瀺化合物の他、高分子物質ではポリ−
−ビニルカルバゟヌル、ハロゲン化−ポリ−
−ビニルカルバゟヌル、ポリビニルピレン、ある
いはブロムピレン−ホルムアルデヒド瞮合暹脂、
−゚チルカルバゟヌル−ホルムアルデヒド瞮合
暹脂などの瞮合暹脂、たた、䜎分子物質ではオキ
サゟヌル誘導䜓、オキサゞアゟヌル誘導䜓、フル
オレノンのニトロ誘導䜓などの既知の電荷搬送物
質のいずれもが有効である。 第図は本発明の実斜態様を瀺す電子写真甚感
光䜓の拡倧断面図である。この感光䜓は導電性支
持䜓䞊に電荷発生局、電荷搬送局を
蚭けお感光局を圢成するように構成されおい
る。 本発明で甚いられる導電性支持䜓ずしおは、ア
ルミニりム、ニツケル、クロムなどからなる金属
板、金属ドラム又は金属箔、及びアルミニりム、
酞化スズ、酞化むンゞりム、クロム、パラゞりム
などの薄局を蚭けたプラスチツクフむルム及び導
電性物質を塗垃又は含浞させた玙又はプラスチツ
クフむルムなどが甚いられる。 電荷発生局は先に瀺した䞀般匏で衚
わされる特定のゞスアゟ化合物をボヌルミルなど
の手段により埮现粒子ずし、適圓な溶剀䞭に分散
した液、又は必芁に応じおこれに結合剀暹脂を溶
解した分散液を導電性支持䜓䞊に塗垃圢成し
たものであり、さらに必芁によ぀お、䟋えばパフ
研磚などの方法により衚面仕䞊げをしたり、膜厚
の調敎をしたものである。 この電荷発生局の厚さは0.01〜5Ό、奜た
しくは0.05〜2Όであり、電荷発生局䞭のゞ
スアゟ化合物の割合は10〜100重量、奜たしく
は30〜95重量である。電荷発生局の膜厚が
0.01Ό以䞋では感床が悪く、5Ό以䞊では電䜍
の保持が悪い。たた電荷発生局䞭のゞスアゟ顔料
の割合が10重量以䞋では感床が悪い。 電荷搬送局は前述した各皮の電荷搬送物質
ず結合剀暹脂ずを適圓な溶剀䟋えばテトラヒドロ
フランなどに溶解した溶液を前蚘電荷発生局䞊に
塗垃するこずにより圢成される。ここで、電荷搬
送局に含有される電荷搬送物質の割合は10〜
80重量、奜たしくは25〜75重量であり、その
膜厚は〜100Ό、奜たしくは〜40Όであ
る。電荷搬送局に含有される電荷搬送物質の
割合が10重量以䞋では感床が悪く、80重量以
䞊では膜が脆くな぀たり、結晶が析出し電荷搬送
局が癜濁しお奜たしくない。たた、電荷搬送
局の厚さが2Ό以䞋では電䜍の保持が悪く、
100Ό以䞊では残留電䜍が高くなる。 ここで䜿甚される電荷発生局甚の結合剀暹
脂ずしおは、ポリ゚ステル暹脂、ブチラヌル暹
脂、゚チルセルロヌス暹脂、゚ポキシ暹脂、アク
リル暹脂、塩化ビニリデン暹脂、ポリスチレン、
ポリブタゞ゚ン、及びそれらのモノマヌの少なく
ずも぀を含有する共重合䜓などがあげられ、そ
れらは単独で又は皮以䞊の混合状態で甚いられ
る。 たた、電荷搬送局甚の結合剀暹脂ずしお
は、ポリカヌボネヌト暹脂、ポリ゚ステル暹脂、
ポリスチレン、ポリりレタン暹脂、゚ポキシ暹
脂、アクリル暹脂、シリコン暹脂及びそれらのモ
ノマヌの少なくずも぀を含む共重合䜓などがあ
げられ、それらは単独で又は皮以䞊の混合状態
で甚いられる。 たた、電荷搬送局には可撓性の向䞊あるい
は耐久性の向䞊などを目的ずしお各皮の添加剀を
加えるこずができる。この目的に䜿甚される添加
剀ずしおは、ハロゲン化パラフむン、ゞアルキル
フタレヌト、シリコンオむル等があげられ、たた
本発明の感光䜓においおは、必芁により導電性支
持䜓ず電荷発生局ずの䞭間にバリダ局、
電荷発生局ず電荷搬送局ずの䞭間に䞭間
局、たた電荷搬送局䞊にオヌバコヌト局を蚭
けるこずもできる。 たた、本発明にかかわる前蚘䞀般匏のゞ
スアゟ化合物は、結着剀暹脂必芁により、電荷
搬送物質を加えおも良い䞭に、埮现粒子ずしお
分散するこずにより分散型の感光䜓ずしお甚いる
こずもできる。 本発明の構成は以䞊であり、埌述する実斜䟋お
よび比范䟋からも明らかな劂く、本発明の電子写
真甚感光䜓は埓来の積局型の感光䜓に比范しお補
造が容易であり、たた、感光波長域が短波長域
およそ450〜600nにあり、高感床でしかも
感光䜓の反埩䜿甚に察しおも特性が安定である等
の優れた性質を有しおいる。 次に本発明を実斜䟋により具䜓的に説明する
が、これにより本発明の実斜の態様が限定される
ものではない。 実斜䟋  ゞスアゟ化合物No.−13を76重量郚、ポリ゚ス
テル暹脂バむロン200、(æ ª)東掋玡瞟補のテト
ラヒドロフラン溶液固圢分濃床1260重量
郚、およびテトラヒドロフラン3700重量郚をボヌ
ルミル䞭で粉砕混合し、埗られた分散液をアルミ
ニりム蒞着したポリ゚ステルベヌス導電性支持
䜓のアルミ面䞊にドクタヌブレヌドを甚いお塗
垃し、自然也燥しお、厚さ玄1Όの電荷発生局
を圢成した。䞀方、電荷搬送物質No.−327を
重量郚、ポリカヌボネヌト暹脂パンラむト
K1300、(æ ª)垝人補重量郚およびテトラヒドロ
フラン16重量郚を混合溶解しお溶液ずしたのち、
これを前蚘電荷発生局䞊にドクタヌブレヌドで塗
垃し80℃で分間次いで100℃で分間也燥しお
厚さ玄20Όの電荷搬送局を圢成せしめ、第図
に瀺した積局型の感光䜓No.を䜜成した。 実斜䟋〜39 実斜䟋で甚いたゞスアゟ化合物No.−13およ
び電荷搬送物質No.−327の代りに、埌蚘の衚−
に瀺すゞスアゟ化合物および電荷搬送物質を甚
いた以倖は実斜䟋ず同様にしお感光䜓No.〜39
を䜜成した。 これらの感光䜓No.〜39に぀いお、静電耇写玙
詊隓装眮(æ ª)川口電機補䜜所補、SP 428型を
甚いお、−6KVのコロナ攟電を20秒間行な぀お負
に垯電せしめた埌、20秒間暗所に攟眮し、その時
の衚面電䜍Vpoを枬定し、次いでタングス
テンランプによ぀おその衚面が照床4.5ルツクス
になるようにしお光を照射しその衚面電䜍がVpo
の1/2になるたでの時間秒を求め、露光量
ルツクス・秒を算出した。その結果を衚
−に瀺す。
[Table] In addition to the above-mentioned exemplified compounds, polymer substances such as poly-
N-vinylcarbazole, halogenated-poly-N
- vinyl carbazole, polyvinylpyrene, or bromopyrene-formaldehyde condensation resin,
Condensation resins such as N-ethylcarbazole-formaldehyde condensation resin, and low molecular weight substances such as oxazole derivatives, oxadiazole derivatives, and nitro derivatives of fluorenone are all effective. FIG. 1 is an enlarged sectional view of an electrophotographic photoreceptor showing an embodiment of the present invention. This photoreceptor is constructed such that a charge generation layer 22 and a charge transport layer 33 are provided on a conductive support 11 to form a photosensitive layer 44 . The conductive support used in the present invention includes a metal plate, metal drum, or metal foil made of aluminum, nickel, chromium, etc.;
Plastic films provided with a thin layer of tin oxide, indium oxide, chromium, palladium, etc., and paper or plastic films coated with or impregnated with a conductive substance are used. The charge generation layer 22 is made of a liquid in which a specific disazo compound represented by the general formula () shown above is made into fine particles by means such as a ball mill, and dispersed in a suitable solvent, or if necessary, a binder resin is added thereto. A dissolved dispersion liquid is coated onto a conductive support 11, and if necessary, the surface is finished by a method such as puff polishing, and the film thickness is adjusted. The thickness of the charge generation layer 22 is 0.01 to 5 ÎŒm, preferably 0.05 to 2 ÎŒm, and the proportion of the disazo compound in the charge generation layer 22 is 10 to 100% by weight, preferably 30 to 95% by weight. The thickness of the charge generation layer 22 is
If it is 0.01 ÎŒm or less, the sensitivity is poor, and if it is 5 ÎŒm or more, the potential retention is poor. Furthermore, if the proportion of the disazo pigment in the charge generation layer is less than 10% by weight, the sensitivity is poor. The charge transport layer 33 is formed by coating the charge generation layer with a solution in which the various charge transport substances described above and a binder resin are dissolved in a suitable solvent such as tetrahydrofuran. Here, the ratio of the charge transport substance contained in the charge transport layer 33 is 10 to
The amount is 80% by weight, preferably 25 to 75% by weight, and the film thickness is 2 to 100 ÎŒm, preferably 5 to 40 ÎŒm. If the proportion of the charge transport substance contained in the charge transport layer 33 is less than 10% by weight, the sensitivity will be poor, and if it is more than 80% by weight, the film will become brittle or crystals will precipitate, making the charge transport layer 33 cloudy, which is undesirable. Furthermore, if the thickness of the charge transport layer 33 is 2 ÎŒm or less, the potential is not maintained well;
If the thickness is 100 ÎŒm or more, the residual potential becomes high. Examples of the binder resin for the charge generation layer 22 used here include polyester resin, butyral resin, ethyl cellulose resin, epoxy resin, acrylic resin, vinylidene chloride resin, polystyrene,
Examples include polybutadiene and copolymers containing at least one of these monomers, which may be used alone or in a mixture of two or more. Further, as the binder resin for the charge transport layer 33, polycarbonate resin, polyester resin,
Examples include polystyrene, polyurethane resin, epoxy resin, acrylic resin, silicone resin, and copolymers containing at least one of these monomers, which may be used alone or in a mixture of two or more. Furthermore, various additives can be added to the charge transport layer 33 for the purpose of improving flexibility or durability. Examples of additives used for this purpose include halogenated paraffin, dialkyl phthalate, and silicone oil. barrier layer,
An intermediate layer may be provided between the charge generation layer 22 and the charge transport layer 33, and an overcoat layer may be provided on the charge transport layer 33. Further, the disazo compound of the general formula () according to the present invention can be used as a dispersed photoreceptor by dispersing it as fine particles in a binder resin (a charge transporting substance may be added if necessary). You can also do that. The structure of the present invention is as described above, and as is clear from the Examples and Comparative Examples described later, the electrophotographic photoreceptor of the present invention is easier to manufacture than the conventional laminated type photoreceptor, and The photosensitive wavelength range is in the short wavelength range (approximately 450 to 600 nm), and it has excellent properties such as high sensitivity and stable characteristics even when the photoreceptor is used repeatedly. EXAMPLES Next, the present invention will be specifically explained using Examples, but the embodiments of the present invention are not limited thereby. Example 1 76 parts by weight of disazo compound No. 1-13, 1260 parts by weight of a tetrahydrofuran solution (solid content concentration 2%) of polyester resin (Vylon 200, manufactured by Toyobo Co., Ltd.), and 3700 parts by weight of tetrahydrofuran were placed in a ball mill. The resulting dispersion was applied using a doctor blade onto the aluminum surface of an aluminum-deposited polyester base (conductive support) and air-dried to form a charge generation layer with a thickness of about 1 ÎŒm. did. On the other hand, charge transport material No. 2-327 was
Part by weight, polycarbonate resin (Panlite
After mixing and dissolving 2 parts by weight of K1300 (manufactured by Teijin Ltd.) and 16 parts by weight of tetrahydrofuran to form a solution,
This was applied onto the charge generation layer using a doctor blade and dried at 80°C for 2 minutes and then at 100°C for 5 minutes to form a charge transport layer with a thickness of about 20 Όm, and the laminated photoreceptor shown in FIG. Created No.1. Examples 2 to 39 In place of disazo compound No. 1-13 and charge transport substance No. 2-327 used in Example 1, the following table-
Photoreceptors Nos. 2 to 39 were prepared in the same manner as in Example 1 except that the disazo compound and charge transport substance shown in Example 1 were used.
It was created. These photoconductors No. 1 to 39 were negatively charged by performing -6KV corona discharge for 20 seconds using an electrostatic copying paper testing device (manufactured by Kawaguchi Electric Seisakusho Co., Ltd., model SP 428). After that, the surface potential was left in a dark place for 20 seconds, and the surface potential Vpo (V) was measured. Then, the surface was irradiated with light using a tungsten lamp at an illuminance of 4.5 lux, and the surface potential was determined to be Vpo.
Find the time (seconds) it takes for the exposure to become 1/2 of E.
1/2 (lux·sec) was calculated. The results are shown in Table-1.

【衚】【table】

【衚】 比范䟋  米囜特蚱第3871882号公報に蚘茉の、電荷発生
局ずしおペリレン誘導䜓を甚い、電荷搬送局にオ
キサゞアゟヌル誘導䜓を甚いた積局型の感光䜓を
䞋蚘のように䜜成した。 電荷発生物質ずしおN′−ゞメチルペリレ
ン−10−テトラカルボン酞ゞむミド
をアルミニりム板䞊に、真空床10-5mm、蒞着
源枩床350℃、蒞着時間分間の条件䞋に真空蒞
着し、電荷発生局を圢成した。次いでこの電荷発
生局䞊に、−ビス−ゞ゚チルアミノフ
゚ニル−−オキサゞアゟヌル重量
郚、ポリ゚ステル暹脂デナポン瀟補、ポリ゚ス
テルアドヒヌスむブ49000重量郚及びテトラ
ヒドロフラン90重量郚からなる溶液を塗垃し、
120℃で10分間也燥しお、厚さ玄10Όの電荷搬
送局を圢成し、比范感光䜓No.を䜜成した。 比范䟋  特公昭55−42380号公報に蚘茉されおいる、電
荷発生局ずしおクロルダむアンブルヌを甚い電荷
搬送局にヒドラゟン化合物を甚いた積局型の感光
䜓を䞋蚘のようにしお䜜成した。 クロルダむアンブルヌ25重量郚、゚チレンゞア
ミン1240重量郚、−ブチルアミン990重量郚お
よびテトラヒドロフラン2740重量郚からなる溶液
を、アルミ蒞着したポリ゚ステルベヌスのアルミ
面䞊にり゚ツトギダツプ25Όでドクタヌブレヌ
ドを甚いお塗垃、也燥し、電荷発生局を圢成し
た。぀いで、この電荷発生局䞊に、−ゞ゚チル
アミノベンズアルデヒド−ゞプニルヒド
ラゟン10重量郚、ポリカヌボネヌト暹脂実斜䟋
で甚いた暹脂ず同じもの10重量郚およびテト
ラヒドロフラン80重量郚よりなる溶液を、ドクタ
ヌブレヌドを甚いお塗垃し、也燥しお厚さ玄18ÎŒ
の電荷搬送局を圢成し、積局型の比范感光䜓No.
を䜜成した。 比范䟋  特開昭55−84943号公報に蚘茉されおいる、電
荷発生局ずしおゞスチリルベンれン系ゞスアゟ化
合物を甚い、電荷搬送局にヒドラゟン化合物を甚
いた積局型の感光䜓を䞋蚘のように䜜成した。 4′4″−ビス〔−ヒドロキシ−−
−ゞメチルプニルカルバモむル−−ナフチ
ルアゟ〕−−ゞスチリルベンれン20重量郚、
ポリビニルブチラヌルデンカブチラヌル4000
−、東京電気化孊(æ ª)補重量郚、ポリメチル
メタアクリレヌトダむダナヌルBR−80、䞉菱
レヌペン(æ ª)補重量郚およびテトラヒドロフラ
ン300重量郚を、ボヌルミル䞭で時間ミリング
し、この分散液をテトラヒドロフラン2700重量郹
で垌釈した埌、アルミ蒞着したポリ゚ステルベヌ
ス導電性支持䜓のアルミ面䞊にドクタヌブレ
ヌドを甚いお塗垃、也燥し、厚さ玄0.3Όの電荷
発生局を圢成した。぀いで、この電荷発生局䞊
に、−゚チルカルバゟヌル−−アルデヒド−
−メチル−−プニルヒドラゟン10重量郚、
ポリカヌボネヌト暹脂実斜䟋で甚いた暹脂ず
同じもの10重量郚およびテトラヒドロフラン80
重量郚よりなる溶液を、ドクタヌブレヌドを甚い
お塗垃し、也燥しお厚さ玄13Όの電荷搬送局を
圢成し、積局型の比范感光䜓No.を䜜成した。 これら比范感光䜓No.〜および本発明の感光
䜓No.10およびNo.19に぀いお、その感光波長域を調
べるために、次の枬定手順によ぀お分光感床の枬
定を行な぀た。 たず、感光䜓を暗所でコロナ攟電によりその衚
面電䜍を−800ボルト以䞊に垯電し、その衚面電
䜍が−800ボルトになるたで暗枛衰させ、衚面電
䜍が−800ボルトにな぀たずきにモノクロメヌタ
ヌを甚いお分光した感光䜓面で1ÎŒWcm2の単色
光を感光䜓に照射した。そしお、その衚面電䜍が
−400Vに枛衰するたでの時間秒を求め、半
枛露光量ΌW・seccm2を算出した。䞀方、露
光によ぀お埗られる芋掛け䞊の電䜍差400ボルト
から暗枛衰による電䜍の枛衰分を差匕いた露光に
より実際に埗られおいる電䜍差を求め、この電䜍
差ず䞊蚘の半枛露光量ずから光枛衰速床
Volt・cm2・ΌW-1・sec-1を算出し、感床ずし
た。この結果を第図に瀺した。なお、第図に
おいお、○はNo.10の本発明感光䜓、◎はNo.19の本
発明感光䜓、×は比范感光䜓No.、
[Table] Comparative Example 1 A laminated photoreceptor described in US Pat. No. 3,871,882 using a perylene derivative as a charge generation layer and an oxadiazole derivative as a charge transport layer was prepared as follows. N,N'-dimethylperylene-3,4,9,10-tetracarboxylic acid diimide as a charge generating substance was deposited on an aluminum plate under the conditions of a vacuum degree of 10 -5 mmHg, a deposition source temperature of 350°C, and a deposition time of 3 minutes. A charge generation layer was formed by vacuum evaporation. Next, on this charge generation layer, 5 parts by weight of 2,5-bis(4-diethylaminophenyl)-1,3,4-oxadiazole and 5 parts by weight of polyester resin (manufactured by DuPont, Polyester Adhesive 49000) were added. and a solution consisting of 90 parts by weight of tetrahydrofuran,
It was dried at 120° C. for 10 minutes to form a charge transport layer with a thickness of about 10 Όm, thereby producing Comparative Photoreceptor No. 1. Comparative Example 2 A laminated photoreceptor described in Japanese Patent Publication No. 55-42380, using chlordiane blue as the charge generation layer and a hydrazone compound as the charge transport layer, was prepared as follows. A solution consisting of 25 parts by weight of Chlordiane blue, 1240 parts by weight of ethylenediamine, 990 parts by weight of n-butylamine and 2740 parts by weight of tetrahydrofuran was applied onto the aluminum surface of the aluminum-deposited polyester base with a wet gap of 25 Όm using a doctor blade and dried. , a charge generation layer was formed. Next, a solution consisting of 10 parts by weight of 4-diethylaminobenzaldehyde 1,1-diphenylhydrazone, 10 parts by weight of polycarbonate resin (the same resin used in Example 1), and 80 parts by weight of tetrahydrofuran was then applied onto the charge generating layer. , applied using a doctor blade and dried to a thickness of approximately 18Ό
Comparative laminated photoreceptor No.
2 was created. Comparative Example 3 A laminated photoreceptor described in JP-A-55-84943 using a distyrylbenzene-based disazo compound as the charge generation layer and a hydrazone compound as the charge transport layer was prepared as follows. did. 4′,4″-bis[2-hydroxy-3-(2,4
-dimethylphenylcarbamoyl)-1-naphthylazo]-1,4-distyrylbenzene 20 parts by weight,
Polyvinyl butyral (Denka Butyral #4000
-1, manufactured by Tokyo Denki Kagaku Co., Ltd.), 7 parts by weight of polymethyl methacrylate (Dyanal BR-80, manufactured by Mitsubishi Rayon Co., Ltd.), and 300 parts by weight of tetrahydrofuran were milled in a ball mill for 3 hours. After diluting this dispersion with 2,700 parts by weight of tetrahydrofuran, it was applied onto the aluminum surface of an aluminum-deposited polyester base (conductive support) using a doctor blade and dried to form a charge generation layer with a thickness of approximately 0.3 ÎŒm. Formed. Then, 9-ethylcarbazole-3-aldehyde-
10 parts by weight of 1-methyl-1-phenylhydrazone,
10 parts by weight of polycarbonate resin (same resin used in Example 1) and 80 parts by weight of tetrahydrofuran
A solution consisting of parts by weight was applied using a doctor blade and dried to form a charge transport layer having a thickness of about 13 ÎŒm, thereby producing a laminated comparative photoreceptor No. 3. The spectral sensitivities of these comparative photoreceptors Nos. 1 to 3 and photoreceptors No. 10 and No. 19 of the present invention were measured in accordance with the following measurement procedure in order to examine their sensitive wavelength ranges. First, the photoreceptor is charged to a surface potential of -800 volts or more by corona discharge in a dark place, dark decayed until the surface potential reaches -800 volts, and when the surface potential reaches -800 volts, the monochromator The photoreceptor was irradiated with monochromatic light of 1 ÎŒW/cm 2 using a spectrophotometer. Then, the time (seconds) until the surface potential attenuated to -400V was determined, and the half-reduced exposure amount (ÎŒW·sec/cm 2 ) was calculated. On the other hand, the potential difference actually obtained by exposure is determined by subtracting the potential attenuation due to dark decay from the apparent potential difference of 400 volts obtained by exposure, and the light decay rate is calculated from this potential difference and the above-mentioned halved exposure amount. (Volt・cm 2・ΌW −1・sec −1 ) was calculated and defined as the sensitivity. The results are shown in FIG. In FIG. 2, ○ indicates photoconductor No. 10 of the present invention, ◎ indicates photoconductor No. 19 of the present invention, × indicates comparative photoconductor No. 1,

【衚】 は比范感光䜓No.、▲は比范感光䜓No.を衚わし
おいる。 前蚘衚−および第図の結果により、本発明
の感光䜓が高感床で、たた、その感光波長域がお
よそ460〜600nであるこずが刀る。 たた、本発明の電子写真甚感光䜓の補造におい
おは、比范感光䜓No.を䜜成する際に甚いた真空
蒞着法、あるいは、比范感光䜓No.を䜜成する際
に甚いた有機アミンを䜿甚する必芁がないため、
補造䞊も有利である。 さらに、本発明の感光䜓No.10およびNo.19を(æ ª)リ
コヌ補耇写機コピヌ−500に装着しお画像出し
を10000回繰り返した。その結果、いずれの感光
䜓からも鮮明な画像が埗られた。このこずによ
り、本発明の感光䜓が耐久性においおも極めお優
れたものであるこずが理解できる。
[Table] represents comparative photoreceptor No. 2, and ▲ represents comparative photoreceptor No. 3. From the results shown in Table 1 and FIG. 2, it can be seen that the photoreceptor of the present invention has high sensitivity, and its sensitive wavelength range is about 460 to 600 nm. In addition, in producing the electrophotographic photoreceptor of the present invention, the vacuum evaporation method used in producing comparative photoreceptor No. 1 or the organic amine used in producing comparative photoreceptor No. 2 was used. Since there is no need to use
It is also advantageous in terms of manufacturing. Further, photoconductors No. 10 and No. 19 of the present invention were installed in a copier P-500 manufactured by Ricoh Co., Ltd., and image production was repeated 10,000 times. As a result, clear images were obtained from all photoreceptors. From this, it can be understood that the photoreceptor of the present invention has extremely excellent durability.

【図面の簡単な説明】[Brief explanation of drawings]

第図は本発明の電子写真感光䜓の構成䟋を瀺
す拡倧断面図である。第図は本発明の感光䜓お
よび比范感光䜓の分光感床特性を衚わすグラフで
ある。   導電性支持䜓、  電荷発生局、
  電荷搬送局、  感光局。
FIG. 1 is an enlarged sectional view showing an example of the structure of the electrophotographic photoreceptor of the present invention. FIG. 2 is a graph showing the spectral sensitivity characteristics of the photoreceptor of the present invention and a comparative photoreceptor. 11... Conductive support, 22... Charge generation layer,
33... Charge transport layer, 44... Photosensitive layer.

Claims (1)

【特蚱請求の範囲】  導電性支持䜓䞊に電荷発生局及び電荷搬送局
よりなる積局の感光局が蚭けられたものであ぀
お、前蚘電荷発生局が䞋蚘䞀般匏 匏䞭、は眮換もしくは無眮換の芳銙環又はヘ
テロ環を瀺し、Arは眮換もしくは無眮換の芳銙
環又はヘテロ環を瀺す。 で衚わされるゞスアゟ化合物を含む局であるこず
を特城ずする電子写真甚感光䜓。
[Scope of Claims] 1. A laminated photosensitive layer comprising a charge generation layer and a charge transport layer is provided on a conductive support, the charge generation layer having the following general formula: (In the formula, X represents a substituted or unsubstituted aromatic ring or heterocycle, and Ar represents a substituted or unsubstituted aromatic ring or heterocycle.) Photoreceptor for electrophotography.
JP8619082A 1982-05-20 1982-05-20 Electrophotographic receptor Granted JPS58202451A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP8619082A JPS58202451A (en) 1982-05-20 1982-05-20 Electrophotographic receptor
US06/493,913 US4486522A (en) 1982-05-20 1983-05-12 Tetrazonium salt, novel disazo compound, method of preparing same and electrophotographic element using same
DE3318510A DE3318510C2 (en) 1982-05-20 1983-05-20 Bisazo compound, process for the preparation thereof and electrophotographic recording material containing the bisazo compound
GB08314007A GB2122211B (en) 1982-05-20 1983-05-20 Disazo compounds and electrophotographic elements containing them

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8619082A JPS58202451A (en) 1982-05-20 1982-05-20 Electrophotographic receptor

Publications (2)

Publication Number Publication Date
JPS58202451A JPS58202451A (en) 1983-11-25
JPH0336223B2 true JPH0336223B2 (en) 1991-05-30

Family

ID=13879848

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8619082A Granted JPS58202451A (en) 1982-05-20 1982-05-20 Electrophotographic receptor

Country Status (1)

Country Link
JP (1) JPS58202451A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6278561A (en) * 1985-10-02 1987-04-10 Canon Inc Electrophotographic sensitive body

Also Published As

Publication number Publication date
JPS58202451A (en) 1983-11-25

Similar Documents

Publication Publication Date Title
US4390608A (en) Layered charge generator/transport electrophotographic photoconductor uses bisazo pigment
JPH0260174B2 (en)
JPH065389B2 (en) Electrophotographic photoconductor
EP0743561B1 (en) Electrophotographic photosensitive member, process cartridge, and electrophotographic apparatus
JPS6338945A (en) Electrophotographic sensitive body
JPH0424698B2 (en)
JPH0243174B2 (en)
JPH061385B2 (en) Electrophotographic photoreceptor
JPH0336223B2 (en)
JP2678311B2 (en) Electrophotographic photoreceptor
JPH0823699B2 (en) Electrophotographic photoreceptor
JPH0422262B2 (en)
JP2615805B2 (en) Photoconductor
JPH0422264B2 (en)
JP2895162B2 (en) Electrophotographic photoreceptor
JP2604858B2 (en) Electrophotographic photoreceptor
JPH0260173B2 (en)
JP2612368B2 (en) Electrophotographic photoreceptor
JP2969810B2 (en) Photoconductor
JPH0422265B2 (en)
JPH0934149A (en) Electrophotographic photoreceptor, process cartridge with the same and electrophotographic device
JPH0627706A (en) Electrophotographic photosensitive material
JP2676630B2 (en) Electrophotographic photoreceptor
JP2895178B2 (en) Electrophotographic photoreceptor
JPS6136224B2 (en)