JPH0243174B2 - - Google Patents

Info

Publication number
JPH0243174B2
JPH0243174B2 JP8784681A JP8784681A JPH0243174B2 JP H0243174 B2 JPH0243174 B2 JP H0243174B2 JP 8784681 A JP8784681 A JP 8784681A JP 8784681 A JP8784681 A JP 8784681A JP H0243174 B2 JPH0243174 B2 JP H0243174B2
Authority
JP
Japan
Prior art keywords
photoreceptor
charge
charge generation
weight
generation layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP8784681A
Other languages
Japanese (ja)
Other versions
JPS57202545A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP8784681A priority Critical patent/JPS57202545A/en
Priority to US06/385,341 priority patent/US4440845A/en
Priority to DE3249395A priority patent/DE3249395C2/de
Priority to DE3221642A priority patent/DE3221642C2/en
Publication of JPS57202545A publication Critical patent/JPS57202545A/en
Priority to US06/537,774 priority patent/US4555567A/en
Publication of JPH0243174B2 publication Critical patent/JPH0243174B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/06Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being organic
    • G03G5/0664Dyes
    • G03G5/0675Azo dyes
    • G03G5/0679Disazo dyes
    • G03G5/0683Disazo dyes containing polymethine or anthraquinone groups

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は電子写真用の感光体に関し、更に詳し
くは光を照射したとき電荷担体を発生する物質
(以下、電荷発生物質と言う。)を含む層(以下、
電荷発生層と言う。)と電荷発生層が発生した電
荷担体を受け入れ、これを搬送する物質(以下、
電荷搬送物質と言う。)を含む層(以下、電荷搬
送層と言う。)からなる積層型の電子写真感光体
に関する。 従来、電子写真用の感光体として、無機物系の
ものではセレンおよびその合金を用いたもの、あ
るいは色素増感した酸化亜鉛を結着樹脂中に分散
した感光体などがあり、また有機系のものでは、
2,4,7−トリニトロ−9−フルオレノン(以
下、TNFと言う。)とポリ−N−ビニルカルバゾ
ール(以下、PVKと言う。)との電荷移動錯体を
用いたものなどが代表的なものである。しかし、
これらの感光体は多くの長所を持つていると同時
に、さまざまな欠点を持つていることも事実であ
る。例えば、現在広く用いられているセレン感光
体は製造する条件がむかしく、製造コストが高か
つたり、可撓性がないためにベルト状に加工する
ことがむずかしく、また熱や機械的な衝撃に鋭敏
なため取扱いに注意を要する。また酸化亜鉛感光
体は安価に酸化亜鉛を用いて支持体への塗布で製
造することが出来るためコストは低いが、一般に
感度が低かつたり、表面の平滑性、硬度、引り張
り強度、耐摩擦性などの機械的な欠点があり、通
常反復して使用する普通紙複写機用の感光体とし
ては耐久性などに問題が多い。また、TNFと
PVKの電荷移動錯体を用いた感光体は感度が低
く、高速複写機用の感光体としては不適当であ
る。 近年、これらの感光体の欠点を排除するために
広範な研究が進められ、特に有機物系のさまざま
な感光体が提案されている。中でも有機顔料の薄
膜を導電性支持体上に形成し(電荷発生層)、こ
の上に電荷搬送物質を主体とする層(電荷搬送
層)を形成した積層型の感光体が従来の有機物系
の感光体に比べ、一般に感光が高く帯電性が安定
していることなどの点から普通紙複写機用の感光
体として注目されており、一部実用に供されてい
るものがある。 この種の従来の積層型の感光体として、 (1) 電荷発生層としてペリレン誘導体を真空蒸着
した薄層を用い、電荷搬送層にオキサジアゾー
ル誘導体を用いたもの(米国特許第3871882号
公報参照)、 (2) 電荷発生層としてクロルダイアンブルーの有
機アミン溶液を塗布して形成した薄層を用い、
電荷搬送層にヒドラゾン化合物を用いたもの
(特公昭55−42380号公報参照)、 (3) 電荷発生層としてジスチリルベンゼン系ジス
アゾ化合物の有機溶媒分散液を塗布して形成し
た薄層を用い、電荷搬送層にヒドラゾン化合物
を用いたもの(特開昭55−84943号公報参照) などが知られている。 しかしながら、この種の積層型の感光体におい
ても従来のものは多くの長所を持つていると同時
にさまざまな欠点を持つていることも事実であ
る。 (1)で示したペリレン誘導体とオキサジアゾール
誘導体を用いた感光体は、その電荷発生層を真空
蒸着により形成するため製造コストが高く、ま
た、実用上問題はないとしても、より高速な複写
機用の感光体としては感度が不足しているなどの
問題がある。 (2)で示したクロルダイアンブルーとヒドラゾン
化合物を用いた感光体は、感度は良いが、電荷発
生層を形成するための塗布溶剤として、一般に取
り扱いにくい有機アミン(たとえばエチレンジア
ミン)を用いる必要があり、感光体作成上の欠点
が多い。また、その可視域の感光波長域がおよそ
450〜660nmに亘つているため、赤色原稿の画像
再現性が悪かつた。そのため、実際に複写機に実
装する場合は赤色光をカツトするフイルターが必
要であり、複写機設計上の不利がある。 (3)で示したジスチリルベンゼン系ジスアゾ化合
物とヒドラゾン化合物を用いた感光体は、ジスア
ゾ化合物の分散液の塗布により容易に電荷発生層
を形成できることから製造上は大変有利なもので
あるが、(2)の感光体と同様に、その感光波長域が
およそ450〜700nmに亘つているため赤色原稿の
画像再現性が悪いという欠点を有している。 本発明者は、以上の欠点に鑑み、容易に製造で
き、高感度で、しかもその感光波長域が短波長領
域にある(すなわち、赤色原稿の画像再現性にす
ぐれた)積層型の感光体を開発することを目的と
して鋭意検討を重ねた結果、ある特定のジスアゾ
化合物を電荷発生物質として用いて電荷発生層を
構成した積層型の感光体が上記目的を達成しうる
ということを知見し、本発明を完成したものであ
る。 すなわち、本発明の電子写真感光体は、導電性
支持体上に電荷発生層および電荷搬送層を有する
積層型の電子写真感光体において、前記電荷発生
層が下記一般式(1)で表わされるジスアゾ化合物を
含む層からなることを特徴とする電子写真感光体
である。 一般式(1) 〔式中Aは、
The present invention relates to a photoreceptor for electrophotography, and more specifically, a layer containing a substance (hereinafter referred to as a charge-generating substance) that generates charge carriers when irradiated with light (hereinafter referred to as a charge-generating substance).
This is called the charge generation layer. ) and the charge generation layer accepts the generated charge carriers and transports them (hereinafter referred to as
It is called a charge transport material. ) (hereinafter referred to as a charge transport layer). Conventionally, photoconductors for electrophotography include inorganic photoconductors that use selenium and its alloys, photoconductors that have dye-sensitized zinc oxide dispersed in a binder resin, and organic photoconductors. So,
A typical example is one using a charge transfer complex of 2,4,7-trinitro-9-fluorenone (hereinafter referred to as TNF) and poly-N-vinylcarbazole (hereinafter referred to as PVK). be. but,
Although these photoreceptors have many advantages, it is also true that they also have various disadvantages. For example, the currently widely used selenium photoreceptor has difficult manufacturing conditions and high manufacturing costs, is difficult to process into a belt due to its lack of flexibility, and is susceptible to heat and mechanical shock. It is sensitive and must be handled with care. In addition, zinc oxide photoreceptors are low in cost because they can be manufactured by coating zinc oxide onto a support, but they generally have low sensitivity, poor surface smoothness, hardness, tensile strength, and durability. It has mechanical drawbacks such as abrasion, and as a photoreceptor for plain paper copying machines, which is normally used repeatedly, there are many problems with durability. Also, TNF and
Photoreceptors using PVK charge transfer complexes have low sensitivity and are unsuitable as photoreceptors for high-speed copying machines. In recent years, extensive research has been carried out to eliminate the drawbacks of these photoreceptors, and in particular, various organic photoreceptors have been proposed. Among them, a laminated photoreceptor in which a thin film of organic pigment is formed on a conductive support (charge generation layer), and a layer mainly composed of a charge transport substance (charge transport layer) is formed on top of this, is different from conventional organic-based photoreceptors. Compared to photoconductors, photoconductors are attracting attention as photoconductors for plain paper copying machines because they generally have higher photosensitivity and stable chargeability, and some of them are in practical use. Conventional laminated photoreceptors of this type include: (1) one in which a thin layer of a perylene derivative vacuum-deposited is used as a charge generation layer and an oxadiazole derivative is used as a charge transport layer (see U.S. Pat. No. 3,871,882); ), (2) Using a thin layer formed by coating an organic amine solution of chlordian blue as the charge generation layer,
(3) A thin layer formed by coating an organic solvent dispersion of a distyrylbenzene-based disazo compound as a charge generation layer, One in which a hydrazone compound is used in the charge transport layer (see Japanese Unexamined Patent Publication No. 84943/1983) is known. However, it is true that conventional laminated photoreceptors of this type have many advantages, but also have various drawbacks. Photoreceptors using perylene derivatives and oxadiazole derivatives shown in (1) have high manufacturing costs because their charge generation layer is formed by vacuum deposition, and even if there are no practical problems, they can be used for faster copying. There are problems such as insufficient sensitivity as a photoreceptor for machines. The photoreceptor using chlordiane blue and hydrazone compound shown in (2) has good sensitivity, but requires the use of organic amines (e.g. ethylenediamine), which are generally difficult to handle, as a coating solvent to form the charge generation layer. , there are many drawbacks in the production of photoreceptors. In addition, the visible wavelength range is approximately
Since the wavelength ranged from 450 to 660 nm, image reproducibility of red originals was poor. Therefore, when actually implemented in a copying machine, a filter is required to cut out red light, which is disadvantageous in the design of the copying machine. The photoreceptor using a distyrylbenzene-based disazo compound and a hydrazone compound shown in (3) is very advantageous in terms of manufacturing because a charge generation layer can be easily formed by coating a dispersion of the disazo compound. Like the photoreceptor (2), its photosensitive wavelength range extends from approximately 450 to 700 nm, so it has the disadvantage of poor image reproducibility for red originals. In view of the above drawbacks, the present inventor has developed a laminated photoreceptor that is easy to manufacture, has high sensitivity, and has a photosensitive wavelength range in the short wavelength range (that is, has excellent image reproducibility for red originals). As a result of extensive research with the aim of developing a photoreceptor, we discovered that a laminated photoreceptor in which the charge generation layer was constructed using a specific disazo compound as a charge generation substance could achieve the above objectives. It is a completed invention. That is, the electrophotographic photoreceptor of the present invention is a laminated electrophotographic photoreceptor having a charge generation layer and a charge transport layer on a conductive support, wherein the charge generation layer is a disazo compound represented by the following general formula (1). This is an electrophotographic photoreceptor characterized by comprising a layer containing a compound. General formula (1) [In the formula, A is

【式】【formula】

【式】 または、 (ここで、Rは、臭素原子、NO2またはCN基を
表わす。) である。〕 本発明の積層型感光体は、その製造が容易であ
り、感光度で、しかも、その感光波長領域が短波
長領域(450〜660nm)にあるので、複写機用の
感光体としてすぐれたものである。 以下、本発明についてさらに詳細に説明する。 まず、本発明で電荷発生層に用いられ電荷発生
物質、すなわち前記一般式(1)で表わされるジスア
ゾ化合物の具体例を示せば次の通りである。
[Formula] Or, (Here, R represents a bromine atom, NO 2 or a CN group.) ] The laminated photoreceptor of the present invention is easy to manufacture, has high photosensitivity, and has a short wavelength range (450 to 660 nm), so it is excellent as a photoreceptor for copying machines. It is. The present invention will be explained in more detail below. First, specific examples of the charge generating substance used in the charge generating layer in the present invention, that is, the disazo compound represented by the general formula (1) above, are as follows.

【表】【table】

【表】 上記のジスアゾ化合物は市販の2,6−ジアミ
ノアントラキノン(Aldrich ChemicalCo.,
Milwankee)を常法によりジアゾ化して得られ
るテトラゾニウム塩と、対応するカツプラー(ナ
フトールAS類)とを適当な有機溶媒、たとえば
N,N−ジメチルホルムアミド(DMF)中で塩
基を作用させてカツプリング反応を行なうことに
よつて容易に製造することができる。その例とし
て、以下に前記No.1−1のジスアゾ化合物の製造
例を示すが、他のジスアゾ化合物もカツプラーを
変える他はこの製造例にしたがつて容易に製造す
ることができる。 製造例 2,6−ジアミノアントラキノン14.3gに35%
HCl155mlを加えこの混合物を−5℃まで冷却し、
これに、97%亜硝酸ナトリウム9.0gを水30mlに溶
解した溶液を約20分間で滴下した。滴下終了後−
5〜0℃でさらに2時間撹拌して反応混合物を3
の冷水中に注入し、若干の不溶物を別し、こ
れに42%ホウフツ化水素酸40mlを加え、析出した
沈澱を取し、メタノールで洗浄し、ついで減圧
下に乾燥して、淡褐色の結晶としてアントラキノ
ン−2,6−ビスジアゾニウムビステトラフルオ
ロボレート22.6g(86.3%)を得た。 νN2 2310cm-1 νC=0 1695cm-1 上記のようにして得たテトラゾニウム塩2.18g
および2−ヒドロキシ−3−(m−ブロムフエニ
ルカルバモイル)ナフタレン3.42gをDMF 300ml
に溶解し、これに酢酸ナトリウム1.64gを水14ml
に溶解した溶液を室温(約20℃)にて約5分間で
滴下した。滴下終了後同温度でさらに2時間撹拌
してから析出している結晶を取した。次に、こ
の結晶に300mlのDMFを加え80℃で2時間撹拌し
た後、再び結晶を取し、さらにこの操作を2回
繰り返した。その後、結晶を水洗し、減圧下に80
℃で乾燥した。紫赤色の粉末として3.22g(68.2
%)のジスアゾ化合物No.1−1を得た。 融点;300℃以上 元素分析結果; 実測値 計算値 C(%) 60.92 61.03 H(%) 2.83 2.99 N(%) 8.74 8.90 赤外線吸収スペクトル(KBr錠剤法): νNH(第2アミド) 3250cm-1 νCO 1670cm-1 つぎに、本発明で電荷発生層に用いられる電荷
搬送物質の具体例を示せば次の通りである。
[Table] The above disazo compound is commercially available 2,6-diaminoanthraquinone (Aldrich Chemical Co., Ltd.,
A coupling reaction is carried out by reacting a tetrazonium salt obtained by diazotizing (Milwankee) and the corresponding coupler (naphthol AS) with a base in a suitable organic solvent, such as N,N-dimethylformamide (DMF). It can be easily manufactured by carrying out the following steps. As an example, the production example of the disazo compound No. 1-1 is shown below, but other disazo compounds can also be easily produced according to this production example, except for changing the coupler. Production example: 35% in 14.3g of 2,6-diaminoanthraquinone
155 ml of HCl was added and the mixture was cooled to -5°C.
A solution of 9.0 g of 97% sodium nitrite dissolved in 30 ml of water was added dropwise to this over about 20 minutes. After finishing dropping -
The reaction mixture was stirred for an additional 2 hours at 5-0°C.
After pouring it into cold water, some insoluble matter was separated, and 40 ml of 42% hydroborofluoric acid was added to it. The precipitate was collected, washed with methanol, and then dried under reduced pressure to give a pale brown color. 22.6 g (86.3%) of anthraquinone-2,6-bisdiazonium bistetrafluoroborate was obtained as crystals. νN 2 2310cm -1 νC=0 1695cm -1 2.18g of tetrazonium salt obtained as above
and 3.42 g of 2-hydroxy-3-(m-bromphenylcarbamoyl)naphthalene in 300 ml of DMF.
Dissolve 1.64 g of sodium acetate in 14 ml of water.
was added dropwise over a period of about 5 minutes at room temperature (about 20°C). After the dropwise addition was completed, the mixture was further stirred at the same temperature for 2 hours, and then precipitated crystals were collected. Next, 300 ml of DMF was added to the crystals and stirred at 80°C for 2 hours, then the crystals were collected again and this operation was repeated twice. Then, the crystals were washed with water and placed under reduced pressure for 80 min.
Dry at °C. 3.22g (68.2g) as a purple-red powder
%) of disazo compound No. 1-1 was obtained. Melting point: 300℃ or higher Elemental analysis results: Actual value Calculated value C (%) 60.92 61.03 H (%) 2.83 2.99 N (%) 8.74 8.90 Infrared absorption spectrum (KBr tablet method): νNH (secondary amide) 3250cm -1 νCO 1670cm -1 Next, specific examples of the charge transporting substance used in the charge generation layer in the present invention are as follows.

【表】【table】

【表】【table】

【表】


CH


【table】
\

CH3


【表】【table】

【表】【table】

【表】【table】

【表】 \

CH

【table】 \

C 2 H 5

【表】【table】

【表】【table】

【表】 \
CH
【table】 \
C 2 H 5

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】 \

CH

【table】 \

CH
3

【表】【table】

【表】【table】

【表】【table】

【表】 / /
2−331 1 −N −N
\ \
CH CH
上記の例示化合物の他、高分子物質ではポリ−
N−ビニルカルバゾール、ハロゲン化−ポリ−N
−ビニルカルバゾール、ポリビニルピレン、ある
いはブロムピレン−ホルムアルデヒド縮合樹脂、
N−エチルカルバゾール−ホルムアルデヒド縮合
樹脂などの縮合樹脂、また、低分子物質ではオキ
サゾール誘導体、オキサジアゾール誘導体、フル
オレノンのニトロ誘導体などの既知の電荷搬送物
質のいずれもが有効である。 第1図は本発明の実施態様を示す電子写真感光
体の拡大断面図である。この感光体は導電性支持
体11上に電荷発生層22、電荷搬送層33を設
けて感光層44を形成するように構成されてい
る。 本発明で用いられる導電性支持体としては、ア
ルミニウム、ニツケル、クロムなどからなる金属
板、金属ドラム又は金属箔、およびアルミニウ
ム、酸化スズ、酸化インジウム、クロム、パラジ
ウムなどの薄層を設けたプラスチツクフイルムお
よび導電性物質を塗布又は含浸させた紙又はプラ
スチツクフイルムなどが用いられる。 電荷発生層は先に示した一般式(1)で表わされる
特定のジスアゾ化合物をボールミルなどの手段に
より微細粒子とし、適当な溶剤中に分散した液、
又は必要に応じてこれに結合剤樹脂を溶解した分
散液を導電性支持体上に塗布形成したものであり
さらに必要によつて、例えばバフ研磨などの方法
により表面仕上げをしたり、膜厚の調整をしたも
のである。 この電荷発生層の厚さは0.01〜5μm、好ましく
は0.05〜2μmであり、電荷発生層中のジスアゾ化
合物の割合は10〜100重量%、好ましくは30〜95
重量%である。電荷発生層の膜厚が0.01μm以下
では感度が悪く、5μm以下では電位の保持が悪
い。また電荷発生層中のジスアゾ顔料の割合が10
重量%以下では感度が悪い。 電荷搬送層は前述した各種の電荷搬送物質と結
合剤樹脂とを適当な溶剤例えばテトラヒドロフラ
ンなどに溶解した溶液を前記電荷発生層上に塗布
することにより形成される。ここで電荷搬送層に
含有される電荷搬送物質の割合は10〜80重量%、
好ましくは25〜75重量%であり、その膜厚は2〜
100μm、好ましくは5〜40μmである。電荷搬送
層に含有される電荷搬送物質の割合が10重量%以
下では感度が悪く、80重量%以上では膜が脆くな
つたり、結晶が析出し電荷搬送層が白濁し、好ま
しくない。また電荷搬送層の厚さが5μm以下では
電位の保持が悪く、40μm以上では残留電位が高
くなる。 ここで使用される電荷発生層用の結合剤樹脂と
しては、ポリエステル樹脂、ブチラール樹脂、エ
チルセルロース樹脂、エポキシ樹脂、アクリル樹
脂、塩化ビニリデン樹脂、ポリスチレン、ポリブ
タジエン、およびそれらの共重合体などがあげら
れ、それらは1種又は2種以上の混合状態で用い
られる。 また電荷搬送層用の結合剤樹脂としては、ポリ
カーボネート樹脂、ポリエステル樹脂、ポリスチ
レン樹脂、ポリウレタン樹脂、エポキシ樹脂、ア
クリル樹脂、シリコン樹脂、およびそれらの共重
合体などがあげられ、それらは1種又は2種以上
の混合状態で用いられる。 また、電荷搬送層には可撓性の向上あるいは耐
久性の向上などを目的として各種の添加剤を加え
ることができる。この目的に使用される添加剤と
しては、ハロゲン化パラフイン、ジアルキルフタ
レート、シリコンオイル等があげられまた本発明
の感光体においては、必要により導電層と電荷発
生層との中間にバリヤ層、電荷発生層と電荷搬送
層の中間に中間層、また電荷搬送層上にオーバー
コート層を設けることもできる。 また、本発明にかかわる前記一般式(1)のジスア
ゾ化合物は、結着剤樹脂(必要により、電荷搬送
物質を加えても良い)中に、微細粒子として分散
することにより分散型の感光体として用いること
もできる。 本発明の構成は以上であり、後述する実施例お
よび比較例からも明らかな如く、本発明の電子写
真感光体は従来の積層型の感光体に比較して製造
が容易であり、また、感光波長域が短波長域(お
よそ450〜600nm)にあり、高感度でしかも感光
体の反復使用に対しても特性が安定である等の優
れた性質を有する。 次に本発明を実施例により具体的に説明する
が、これにより本発明の実施の態様が限定される
ものではない。 実施例 1 ジスアゾ化合物No.1−1を76重量物、ポリエス
テル樹脂(バイロン200株式会社車洋紡績製)の
テトラヒドロフラン溶液(固形分濃度2%)1260
重量部、およびテトラヒドロフラン3700重量部を
ボールミル中で粉砕混合し、得られた分散液をア
ルミニウム蒸着したポリエステルベース(導電性
支持体)のアルミ面上にドクターブレードを用い
て塗布し、自然乾燥して、厚さ約1μmの電荷発生
層を形成した。一方、電荷搬送物質No.2−5を2
重量部、ポリカーボネート樹脂(パンライト
K1300,株式会社帝人製)2重量部、およびテト
ラヒドロフラン16重量部を混合溶解して溶液とし
たのち、これを前記電荷発生層上にドクターブレ
ードで塗布し80℃で2分間、次いで100℃で5分
間乾燥して厚さ約20μmの電荷移動層を形成せし
め、第1図に示した積層型の感光体No.1を作成し
た。 実施例 2〜9 実施例1で用いたジスアゾ化合物No.1−1およ
び電荷搬送物質2−5の代りに、後記の表−1に
示すジスアゾ化合物および電荷搬送物質を用いた
以外は実施例1と同様にして感光体No.2〜9を作
成した。 これらの感光体No.1〜9について、静電複写紙
試験装置((株)川口電機製作所,SP428型)を用い
て、−6KVのコロナ放電を20秒間行なつて負に帯
電せしめた後、20秒間暗所に放置し、その時の表
面電位Vpo(V)を測定し、次いでタングステン
ランプによつてその表面が照度20ルツクスになる
ようにして光を照射しその表面電位がVpoの1/
2になるまでの時間(秒)を求め、露光量E1/2
(ルツクス・秒)を算出した。その結果を表−1
に示す。
【table】 / /
2−331 1 −N −N
\ \
CH 3 CH 3
In addition to the above-mentioned exemplified compounds, among polymer substances, poly-
N-vinylcarbazole, halogenated-poly-N
- vinyl carbazole, polyvinylpyrene, or bromopyrene-formaldehyde condensation resin,
Condensation resins such as N-ethylcarbazole-formaldehyde condensation resin, and low molecular weight substances such as oxazole derivatives, oxadiazole derivatives, and nitro derivatives of fluorenone are all effective. FIG. 1 is an enlarged sectional view of an electrophotographic photoreceptor showing an embodiment of the present invention. This photoreceptor is constructed such that a charge generation layer 22 and a charge transport layer 33 are provided on a conductive support 11 to form a photosensitive layer 44 . The conductive supports used in the present invention include metal plates, metal drums, or metal foils made of aluminum, nickel, chromium, etc., and plastic films provided with thin layers of aluminum, tin oxide, indium oxide, chromium, palladium, etc. Paper or plastic film coated with or impregnated with a conductive substance is also used. The charge generation layer is made of a liquid in which a specific disazo compound represented by the general formula (1) shown above is made into fine particles by means such as a ball mill, and dispersed in an appropriate solvent.
Alternatively, if necessary, a dispersion in which a binder resin is dissolved is coated on a conductive support, and if necessary, the surface may be finished by a method such as buffing, or the film thickness may be changed. It has been adjusted. The thickness of this charge generation layer is 0.01 to 5 μm, preferably 0.05 to 2 μm, and the proportion of the disazo compound in the charge generation layer is 10 to 100% by weight, preferably 30 to 95% by weight.
Weight%. If the thickness of the charge generation layer is 0.01 μm or less, sensitivity is poor, and if it is 5 μm or less, potential retention is poor. In addition, the proportion of disazo pigment in the charge generation layer is 10
Sensitivity is poor below % by weight. The charge transport layer is formed by applying a solution of the various charge transport materials described above and a binder resin dissolved in a suitable solvent such as tetrahydrofuran onto the charge generation layer. Here, the proportion of the charge transport substance contained in the charge transport layer is 10 to 80% by weight,
Preferably it is 25 to 75% by weight, and the film thickness is 2 to 75% by weight.
It is 100 μm, preferably 5 to 40 μm. If the proportion of the charge transport substance contained in the charge transport layer is less than 10% by weight, the sensitivity will be poor, and if it is more than 80% by weight, the film will become brittle or crystals will precipitate and the charge transport layer will become cloudy, which is not preferable. Further, if the thickness of the charge transport layer is 5 μm or less, the potential is not maintained well, and if the thickness is 40 μm or more, the residual potential becomes high. Examples of binder resins for the charge generation layer used herein include polyester resins, butyral resins, ethyl cellulose resins, epoxy resins, acrylic resins, vinylidene chloride resins, polystyrene, polybutadiene, and copolymers thereof. They may be used alone or in a mixture of two or more. Examples of binder resins for the charge transport layer include polycarbonate resins, polyester resins, polystyrene resins, polyurethane resins, epoxy resins, acrylic resins, silicone resins, and copolymers thereof. It is used in a mixture of more than one species. Furthermore, various additives can be added to the charge transport layer for the purpose of improving flexibility or durability. Examples of additives used for this purpose include halogenated paraffin, dialkyl phthalate, silicone oil, etc. In the photoreceptor of the present invention, if necessary, a barrier layer is provided between the conductive layer and the charge generation layer. An intermediate layer may be provided between the layer and the charge transport layer, and an overcoat layer may be provided on the charge transport layer. Further, the disazo compound of the general formula (1) according to the present invention can be used as a dispersed photoreceptor by dispersing it as fine particles in a binder resin (a charge transporting substance may be added if necessary). It can also be used. The structure of the present invention is as described above, and as is clear from the Examples and Comparative Examples described later, the electrophotographic photoreceptor of the present invention is easier to manufacture than the conventional laminated type photoreceptor, and The wavelength range is in the short wavelength range (approximately 450 to 600 nm), and it has excellent properties such as high sensitivity and stable characteristics even when the photoreceptor is used repeatedly. EXAMPLES Next, the present invention will be specifically explained using Examples, but the embodiments of the present invention are not limited thereby. Example 1 A tetrahydrofuran solution (solid content concentration 2%) of polyester resin (Byron 200 manufactured by Chayobo Co., Ltd.) containing 76% of disazo compound No. 1-1 (solid content concentration 2%) 1260% by weight
parts by weight and 3,700 parts by weight of tetrahydrofuran were pulverized and mixed in a ball mill, and the resulting dispersion was applied onto the aluminum surface of an aluminum-deposited polyester base (conductive support) using a doctor blade, and air-dried. , a charge generation layer with a thickness of about 1 μm was formed. On the other hand, charge transport material No. 2-5 was
Part by weight, polycarbonate resin (Panlite
After mixing and dissolving 2 parts by weight of K1300 (manufactured by Teijin Ltd.) and 16 parts by weight of tetrahydrofuran to form a solution, this was applied onto the charge generation layer with a doctor blade at 80°C for 2 minutes, then at 100°C for 5 minutes. A charge transfer layer having a thickness of about 20 μm was formed by drying for a minute, and a laminated photoreceptor No. 1 as shown in FIG. 1 was prepared. Examples 2 to 9 Example 1 except that the disazo compound and charge transport substance shown in Table 1 below were used instead of disazo compound No. 1-1 and charge transport substance 2-5 used in Example 1. Photoreceptors Nos. 2 to 9 were prepared in the same manner as described above. These photoreceptors No. 1 to 9 were negatively charged by performing -6KV corona discharge for 20 seconds using an electrostatic copying paper testing device (Kawaguchi Electric Seisakusho Co., Ltd., model SP428). Leave it in the dark for 20 seconds, measure the surface potential Vpo (V) at that time, then irradiate the surface with light using a tungsten lamp at an illumination intensity of 20 lux until the surface potential is 1/1 of Vpo.
Find the time (seconds) until it becomes 2, and calculate the exposure amount E1/2
(lux/second) was calculated. Table 1 shows the results.
Shown below.

【表】 比較例 1 米国特許第3871882号公報に記載の、電荷発生
層としてペリレン誘導体を用い、電荷搬送層にオ
キサジアゾール誘導体を用いた積層型の感光体を
下記のように作成した。 電荷発生層としてN,N′−ジメチルペリレン
−3,4,9,10−テトラカルボン酸ジイミドを
アルミニウム板上に、真空度10-5mmHg、蒸着源
温度350℃、蒸着時間3分間の条件下に真空蒸着
し、電荷発生層を形成した。次いでこの電荷発生
層上に、2,5−ビス(4−ジエチルアミノフエ
ニル)−1,3,4−オキサジアゾール5重量部、
ポリエステル樹脂(デユポン社製、ポリエステル
アドヒースイブ49000)、5重量部およびテトラヒ
ドロフラン90重量部からなる溶液を塗布し、120
℃で10分間乾燥して、厚さ約10μmの電荷搬送層
を形成し、比較感光体No.1を作成した。 比較例 2 特公昭55−42380号公報に記載されている、電
荷発生層としてクロルダイアンブルーを用い電荷
搬送層にヒドラゾン化合物を用いた積層型の感光
体を下記のようにして作成した。 クロルダイアンブルー25重量部、エチレンジア
ミン1240重量部、n−ブチルアミン990重量部お
よびテトラヒドロフラン2740重量部からなる溶液
を、アルミ蒸着したポリエステルベースのアルミ
面上にウエツトギヤツプ25μでドクターブレード
を用いて塗布、乾燥し、電荷発生層を形成した。
ついで、この電荷発生層上に、4−ジエチルアミ
ノベンズアルデヒド1,1−ジフエニルヒドラゾ
ン10重量部、ポリカーボネート樹脂(実施例1で
用いた樹脂と同じもの)10重量部およびテトラヒ
ドロフラン80重量部よりなる溶液を、ドクターブ
レードを用いて塗布し、乾燥して厚さ約18μの電
荷搬送層を形成し、積層型の比較感光体No.2を作
成した。 比較例 3 特開昭55−84943号公報に記載されている、電
荷発生層としてジスチリルベンゼン系ジスアゾ化
合物を用い、電荷搬送層にヒドラゾン化合物を用
いた積層型の感光体を下記のように作成した。 4′,4″−ビス〔2−ヒドロキシ−3−(2,4
−ジメチルフエニルカルバモイル)−1−ナフチ
ルアゾ〕−1,4−ジスチリルベンゼン20重量部、
ポリビニルブチラール(デンカブチラール#4000
−1、東京電気化学(株)製)3重量部、ポリメチル
メタアクリレート(ダイヤナールBR−80、三菱
レーヨン(株)製)7重量部およびテトラヒドロフラ
ン300重量部を、ボールミル中で3時間ミリング
し、この分散液をテトラヒドロフラン2700重量部
で希釈した後、アルミ蒸着したポリエステルベー
ス(導電性支持体)のアルミ面上にドクターブレ
ードを用いて塗布、乾燥し、厚さ約0.3μの電荷発
生層を形成した。ついで、この電荷発生層上に、
9−エチルカルバゾール−3−アルデヒド 1−
メチル−1−フエニルヒドラゾン10重量部、ポリ
カーボネート樹脂(実施例1で用いた樹脂と同じ
もの)10重量部およびテトラヒドロフラン80重量
部よりなる溶液を、ドクターブレードを用いて塗
布し、乾燥して厚さ約13μの電荷搬送層を形成
し、積層型の比較感光体No.3を作成した。 これら比較感光体No.1〜3および本発明の感光
体No.3,6,9について、その感光波長域を調べ
るために、次の測定手順によつて分光感度の測定
を行なつた。 まず、感光体を暗所でコロナ放電によりその表
面電位を−800ボルト以上に帯電し、その表面電
位が−800ボルトになるまで暗減衰させ、表面電
位が−800ボルトになつたときにモノクロメータ
ーを用いて分光した感光体面で1μW/cm2の単色
光を感光体に照射した。そして、その表面電位が
−400ボルトに減衰するまでの時間(秒)を求め、
半減露光量(μW・sec/cm2)を算出した。一方、
露光によつて得られる見掛け上の電位差400ボル
トから暗減衰による電位の減衰分を差引いた露光
により実際に得られている電位差を求め、この電
位差と上記の半減露光量とから光減衰速度
(Volt・cm2・μW-1・sec-1)を算出し、感度とし
た。 この結果を第2図〜第5図に示した。 第2図:感光体No.3 第3図:感光体No.6 第4図:感光体No.9 第5図 □・:比較感光体No.1 ○・:比較感光体No.2 △・:比較感光体No.3 前記表−1および第2図〜第5図の結果によ
り、本発明の感光体が高感度で、また、その感光
波長域がおよそ460〜600nmであることが判る。 また、本発明の電子写真感光体の製造において
は、比較感光体No.1を作成する際に用いた真空蒸
着法、あるいは、比較感光体No.2を作成する際に
用いた有機アミンを使用する必要がないため、製
造上も有利である。 参考例 1〜3 実施例1において、電荷搬送物質として2−5
を用い、電荷発生物質として本願一般式(1)の置換
Aが次の3種の置換を有する化合物をそれぞれ用
いた他は同様にして、参考例1〜3の感光体を作
成した。 この参考例1〜3のVo,E1/2特性を測定した
ところ、表−2に示す結果が得られた。表−1お
よび表−2の結果から、本願発明感光体の感度は
比較例感光体に比し、著しく優れていることが判
つた。
[Table] Comparative Example 1 A laminated photoreceptor described in US Pat. No. 3,871,882 using a perylene derivative as a charge generation layer and an oxadiazole derivative as a charge transport layer was prepared as follows. As a charge generation layer, N,N'-dimethylperylene-3,4,9,10-tetracarboxylic acid diimide was deposited on an aluminum plate under conditions of a vacuum degree of 10 -5 mmHg, a deposition source temperature of 350°C, and a deposition time of 3 minutes. A charge generation layer was formed by vacuum evaporation. Next, 5 parts by weight of 2,5-bis(4-diethylaminophenyl)-1,3,4-oxadiazole,
A solution consisting of 5 parts by weight of polyester resin (manufactured by DuPont, Polyester Adhesive 49000) and 90 parts by weight of tetrahydrofuran was applied,
It was dried at ℃ for 10 minutes to form a charge transport layer with a thickness of about 10 μm, and Comparative Photoreceptor No. 1 was prepared. Comparative Example 2 A laminated photoreceptor described in Japanese Patent Publication No. 55-42380, using chlordiane blue as the charge generation layer and a hydrazone compound as the charge transport layer, was prepared as follows. A solution consisting of 25 parts by weight of Chlordiane Blue, 1240 parts by weight of ethylenediamine, 990 parts by weight of n-butylamine and 2740 parts by weight of tetrahydrofuran was applied onto the aluminum surface of the aluminum-deposited polyester base using a doctor blade with a wet gap of 25μ, and dried. , a charge generation layer was formed.
Next, a solution consisting of 10 parts by weight of 4-diethylaminobenzaldehyde 1,1-diphenylhydrazone, 10 parts by weight of polycarbonate resin (the same resin used in Example 1), and 80 parts by weight of tetrahydrofuran was then applied onto the charge generating layer. A charge transport layer having a thickness of about 18 μm was formed by applying the coating using a doctor blade and drying to form a laminated comparative photoreceptor No. 2. Comparative Example 3 A laminated photoreceptor described in JP-A-55-84943 using a distyrylbenzene-based disazo compound as the charge generation layer and a hydrazone compound as the charge transport layer was prepared as follows. did. 4′,4″-bis[2-hydroxy-3-(2,4
-dimethylphenylcarbamoyl)-1-naphthylazo]-1,4-distyrylbenzene 20 parts by weight,
Polyvinyl butyral (Denka Butyral #4000
-1, manufactured by Tokyo Denki Kagaku Co., Ltd.), 7 parts by weight of polymethyl methacrylate (Dyanal BR-80, manufactured by Mitsubishi Rayon Co., Ltd.), and 300 parts by weight of tetrahydrofuran were milled in a ball mill for 3 hours. After diluting this dispersion with 2,700 parts by weight of tetrahydrofuran, it was applied onto the aluminum surface of an aluminum-deposited polyester base (conductive support) using a doctor blade and dried to form a charge generation layer with a thickness of about 0.3μ. Formed. Then, on this charge generation layer,
9-ethylcarbazole-3-aldehyde 1-
A solution consisting of 10 parts by weight of methyl-1-phenylhydrazone, 10 parts by weight of polycarbonate resin (the same resin used in Example 1) and 80 parts by weight of tetrahydrofuran was applied using a doctor blade, dried and thickened. A charge transport layer having a thickness of approximately 13 μm was formed to prepare a laminated comparative photoreceptor No. 3. The spectral sensitivities of these comparative photoreceptors Nos. 1 to 3 and photoreceptors Nos. 3, 6, and 9 of the present invention were measured in accordance with the following measurement procedure in order to examine their sensitive wavelength ranges. First, the photoreceptor is charged to a surface potential of -800 volts or more by corona discharge in a dark place, dark decayed until the surface potential reaches -800 volts, and when the surface potential reaches -800 volts, the monochromator The photoreceptor was irradiated with monochromatic light of 1 μW/cm 2 using a spectrophotometer. Then, find the time (seconds) until the surface potential decays to -400 volts,
The half-reduced exposure amount (μW·sec/cm 2 ) was calculated. on the other hand,
The potential difference actually obtained by exposure is obtained by subtracting the potential attenuation due to dark decay from the apparent potential difference of 400 volts obtained by exposure, and the light decay rate (Volt・cm 2・μW -1・sec -1 ) was calculated and used as the sensitivity. The results are shown in FIGS. 2 to 5. Fig. 2: Photoconductor No. 3 Fig. 3: Photoconductor No. 6 Fig. 4: Photoconductor No. 9 Fig. 5 □・: Comparative photoconductor No. 1 ○・: Comparative photoconductor No. 2 △・: Comparative Photoreceptor No. 3 The results shown in Table 1 and FIGS. 2 to 5 show that the photoreceptor of the present invention has high sensitivity and its sensitive wavelength range is about 460 to 600 nm. In addition, in manufacturing the electrophotographic photoreceptor of the present invention, the vacuum evaporation method used to create Comparative Photoreceptor No. 1 or the organic amine used to create Comparative Photoreceptor No. 2 was used. Since there is no need to do this, it is also advantageous in terms of manufacturing. Reference Examples 1-3 In Example 1, 2-5 as the charge transport substance
Photoreceptors of Reference Examples 1 to 3 were prepared in the same manner as above, except that compounds having the following three types of substitutions as substitution A in general formula (1) of the present application were used as charge generating substances. When the Vo and E1/2 characteristics of Reference Examples 1 to 3 were measured, the results shown in Table 2 were obtained. From the results in Tables 1 and 2, it was found that the sensitivity of the photoreceptor of the present invention was significantly superior to that of the comparative photoreceptor.

【表】 さらに、本発明の感光体No.3,6,9を株式会
社リコー製複写機リコピーP−500に装着して画
像出しを10000回繰り返した。その結果、いずれ
の感光体からも鮮明な画像が得られた。このこと
により、本発明の感光体が耐久性においても極め
て優れたものであることが理解できるであろう。
[Table] Further, photoreceptors Nos. 3, 6, and 9 of the present invention were installed in a copying machine Ricopy P-500 manufactured by Ricoh Co., Ltd., and image production was repeated 10,000 times. As a result, clear images were obtained from all photoreceptors. From this, it can be understood that the photoreceptor of the present invention has extremely excellent durability.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の電子写真感光体の構成例を示
す拡大断面図である。第2図〜第5図は本発明の
感光体および比較感光体の分光感度特性を表わす
グラフである。 11……導電性支持体、22……電荷発生層、
33……電荷搬送層、44……感光層。
FIG. 1 is an enlarged sectional view showing an example of the structure of the electrophotographic photoreceptor of the present invention. 2 to 5 are graphs showing the spectral sensitivity characteristics of the photoreceptor of the present invention and a comparative photoreceptor. 11... Conductive support, 22... Charge generation layer,
33... Charge transport layer, 44... Photosensitive layer.

Claims (1)

【特許請求の範囲】 1 導電性支持体上に電荷発生層および電荷搬送
層を有する積層型の電子写真感光体において、前
記電荷発生層が下記一般式(1)で表わされるジスア
ゾ化合物を含む層からなることを特徴とする電子
写真感光体。 一般式(1) 〔式中Aは、 【式】 【式】 または、 (ここで、Rは、臭素原子、NO2またはCN基を
表わす。) である。〕
[Scope of Claims] 1. A layered electrophotographic photoreceptor having a charge generation layer and a charge transport layer on a conductive support, wherein the charge generation layer contains a disazo compound represented by the following general formula (1). An electrophotographic photoreceptor comprising: General formula (1) [In the formula, A is [Formula] [Formula] or, (Here, R represents a bromine atom, NO 2 or a CN group.) ]
JP8784681A 1981-06-08 1981-06-08 Electrophotographic receptor Granted JPS57202545A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP8784681A JPS57202545A (en) 1981-06-08 1981-06-08 Electrophotographic receptor
US06/385,341 US4440845A (en) 1981-06-08 1982-06-04 Disazo compound, method of making same and electrophotographic element using same
DE3249395A DE3249395C2 (en) 1981-06-08 1982-06-08
DE3221642A DE3221642C2 (en) 1981-06-08 1982-06-08 New bisazo compounds, processes for their preparation and their use in electrophotographic recording materials
US06/537,774 US4555567A (en) 1981-06-08 1983-09-30 2,6-Disazo anthraquinone compounds

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8784681A JPS57202545A (en) 1981-06-08 1981-06-08 Electrophotographic receptor

Publications (2)

Publication Number Publication Date
JPS57202545A JPS57202545A (en) 1982-12-11
JPH0243174B2 true JPH0243174B2 (en) 1990-09-27

Family

ID=13926250

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8784681A Granted JPS57202545A (en) 1981-06-08 1981-06-08 Electrophotographic receptor

Country Status (1)

Country Link
JP (1) JPS57202545A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006054805A1 (en) 2004-11-22 2006-05-26 Hodogaya Chemical Co., Ltd. Electrophotographic photosensitive body
KR101207139B1 (en) 2004-11-24 2012-11-30 호도가야 가가쿠 고교 가부시키가이샤 Electrophotographic Photosensitive Body
KR101367061B1 (en) 2007-01-25 2014-02-24 호도가야 가가쿠 고교 가부시키가이샤 Photoreceptor for electrophotography
KR20080107082A (en) * 2007-06-05 2008-12-10 삼성물산 주식회사 Pre-stressing system for width direction and length direction
JP2009128587A (en) * 2007-11-22 2009-06-11 Mitsubishi Chemicals Corp Electrophotographic photoreceptor, image forming apparatus and electrophotographic photoreceptor cartridge

Also Published As

Publication number Publication date
JPS57202545A (en) 1982-12-11

Similar Documents

Publication Publication Date Title
US4390608A (en) Layered charge generator/transport electrophotographic photoconductor uses bisazo pigment
JPS6129498B2 (en)
JPS61241763A (en) Electrophotographic sensitive body
JPH0243174B2 (en)
JPS61215556A (en) Electrophotographic sensitive body
JPS6243175B2 (en)
JPS6338945A (en) Electrophotographic sensitive body
JPH061385B2 (en) Electrophotographic photoreceptor
JPH0422262B2 (en)
JP2678311B2 (en) Electrophotographic photoreceptor
JPH0422264B2 (en)
JPH0336223B2 (en)
JPH0422265B2 (en)
JP2615805B2 (en) Photoconductor
JP2606702B2 (en) Electrophotographic photoreceptor
JP2604858B2 (en) Electrophotographic photoreceptor
JP2612368B2 (en) Electrophotographic photoreceptor
JP2895162B2 (en) Electrophotographic photoreceptor
JP2633961B2 (en) Electrophotographic photoreceptor
JP2895178B2 (en) Electrophotographic photoreceptor
JP2654240B2 (en) Electrophotographic photoreceptor
JPS61121058A (en) Electrophotographic sensitive body
JPS6219734B2 (en)
JPS6136224B2 (en)
JPH07331103A (en) Composite pigment, preparation thereof, and electrophotographic photoreceptor using the pigment