JPS6136046B2 - - Google Patents
Info
- Publication number
- JPS6136046B2 JPS6136046B2 JP56177034A JP17703481A JPS6136046B2 JP S6136046 B2 JPS6136046 B2 JP S6136046B2 JP 56177034 A JP56177034 A JP 56177034A JP 17703481 A JP17703481 A JP 17703481A JP S6136046 B2 JPS6136046 B2 JP S6136046B2
- Authority
- JP
- Japan
- Prior art keywords
- iron powder
- less
- apparent density
- particle size
- powder
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 104
- 239000002245 particle Substances 0.000 claims description 56
- 238000000137 annealing Methods 0.000 claims description 32
- 239000000843 powder Substances 0.000 claims description 24
- 230000002776 aggregation Effects 0.000 claims description 13
- 238000000034 method Methods 0.000 claims description 11
- 239000007788 liquid Substances 0.000 claims description 10
- 238000004663 powder metallurgy Methods 0.000 claims description 5
- 238000004220 aggregation Methods 0.000 claims description 4
- 238000004519 manufacturing process Methods 0.000 claims description 4
- 230000005415 magnetization Effects 0.000 claims description 2
- 238000002156 mixing Methods 0.000 claims description 2
- 229910052760 oxygen Inorganic materials 0.000 claims description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims 1
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 claims 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 claims 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 claims 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 claims 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims 1
- 229910052799 carbon Inorganic materials 0.000 claims 1
- 229910052748 manganese Inorganic materials 0.000 claims 1
- 239000011572 manganese Substances 0.000 claims 1
- 229910052757 nitrogen Inorganic materials 0.000 claims 1
- 239000001301 oxygen Substances 0.000 claims 1
- 229910052698 phosphorus Inorganic materials 0.000 claims 1
- 239000011574 phosphorus Substances 0.000 claims 1
- 229910052710 silicon Inorganic materials 0.000 claims 1
- 239000010703 silicon Substances 0.000 claims 1
- 229910052717 sulfur Inorganic materials 0.000 claims 1
- 239000011593 sulfur Substances 0.000 claims 1
- 239000000463 material Substances 0.000 description 12
- 229910052742 iron Inorganic materials 0.000 description 10
- 238000005054 agglomeration Methods 0.000 description 9
- 238000005245 sintering Methods 0.000 description 9
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 6
- 230000001788 irregular Effects 0.000 description 5
- 239000002994 raw material Substances 0.000 description 5
- 239000007921 spray Substances 0.000 description 5
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 4
- 230000000052 comparative effect Effects 0.000 description 4
- 238000007873 sieving Methods 0.000 description 4
- 229910021529 ammonia Inorganic materials 0.000 description 2
- 230000001186 cumulative effect Effects 0.000 description 2
- 238000000354 decomposition reaction Methods 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000012467 final product Substances 0.000 description 2
- 238000002347 injection Methods 0.000 description 2
- 239000007924 injection Substances 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000011812 mixed powder Substances 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- 238000002791 soaking Methods 0.000 description 2
- 238000005482 strain hardening Methods 0.000 description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 1
- 238000000889 atomisation Methods 0.000 description 1
- 239000011362 coarse particle Substances 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000005261 decarburization Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- ZEKANFGSDXODPD-UHFFFAOYSA-N glyphosate-isopropylammonium Chemical compound CC(C)N.OC(=O)CNCP(O)(O)=O ZEKANFGSDXODPD-UHFFFAOYSA-N 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 239000006148 magnetic separator Substances 0.000 description 1
- 230000005389 magnetism Effects 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 150000002894 organic compounds Chemical class 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 238000010298 pulverizing process Methods 0.000 description 1
- 238000001953 recrystallisation Methods 0.000 description 1
- 238000010405 reoxidation reaction Methods 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
- XOOUIPVCVHRTMJ-UHFFFAOYSA-L zinc stearate Chemical compound [Zn+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O XOOUIPVCVHRTMJ-UHFFFAOYSA-L 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F1/00—Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
- B22F1/14—Treatment of metallic powder
- B22F1/148—Agglomerating
Landscapes
- Manufacture Of Metal Powder And Suspensions Thereof (AREA)
- Powder Metallurgy (AREA)
Description
この発明は、成形性に優れ、見掛密度の低い粉
末冶金用噴霧鉄粉の製造方法に関し、とくに、液
体噴霧法による生鉄粉の粒形すなわち見掛密度を
規定し、またはさらにその粒子相互の凝集を促進
させる処理を施した上で還元焼鈍することによ
り、粒子相互の焼結・凝集を高め、ことにその焼
結ケーキを粉砕解粒(以下“解砕”と記す)する
衝撃力を限定することによつて、成形性に優れ見
掛密度の低い粉末冶金用噴霧鉄粉の有利な製造方
法を提案しようとするものである。
一般に粉末冶金用の水噴霧鉄粉は、見掛密度が
通常2.80〜3.20g/cm3程度に高く圧縮性に優れる
ため、高密度鉄系焼結材用の原料鉄粉として適用
されているが、ラトラー値や圧粉体抗折力で評価
される成形性はむしろ悪く、高密度の割に焼結材
の機械的強度も弱いため、中、低密度鉄系焼結材
への適用は不如意であつて、上記用途に限定され
ているのが現状である。
こゝに良好な圧縮性を保持したまま、優れた成
形性をも兼ね備える噴霧鉄粉が要望され、成形性
を高めるべく開発が進められている。
例えば、特開昭54−114467号公報に記載されて
いる如く、高圧水の逆円錐状噴射角度を80〜120
゜とし、20〜204gf/cm2の負圧状態で雰囲気を
吸引し逆噴射を防止し乍ら噴霧して生鉄粉中の微
粉量を増加させ、1000〜1200℃の温度の還元雰囲
気中で焼鈍したのち、生鉄粉の粒度分布に比べよ
り大きい粒度分布になるよう焼結ケーキを解砕す
る方法が提案されている。また、特開昭50−
115161号公報によれば、粒度分布をPSC値すなわ
ち米国規格による100,200,230および325メツシ
ユの各篩につき粒子の篩上の累積量と受皿量とを
計測して各累積重量割合を合計し、1/100を乗じ
た値が1.0〜2.7の範囲である水噴霧生鉄粉を、
760〜1149℃の温度で還元焼鈍しその焼結ケーキ
をミルギヤツプ0.245〜2.45mm、回転数200〜
5000r.p.mのデイスクミルで解砕して、見掛密度
が2.80g/cm3以下の鉄粉を製造する方法も提案さ
れている。
しかしこれらはいずれも、ただ単に生鉄粉中の
微粉量割合を高くして、還元焼鈍時に粒子相互を
焼結凝集させ、その焼結ケーキを比較的軽い(低
い)負荷で解砕して低見掛密度化と成形性の改善
を図るものである。
一般に、水噴霧鉄粉の微粉量を増す程、また還
元焼鈍温度を高くする程、粒子相互の焼結が促進
するため、解砕した鉄粉の見掛密度は低下する。
従つて成形性の向上を図れるわけであるが、次の
様な技術的問題が伴われる。
すなわち、還元焼鈍温度が1100℃を超えて高過
ぎると、その焼結ケーキは解砕され難く、高負荷
解砕して生産性を上げようとすると、加工を受け
ることによりかえつて見掛密度が高くなり成形性
の向上が計れないばかりでなく、圧縮性も劣化
し、また還元焼鈍温度が1100℃以下の場合でも、
最終製品鉄粉の見掛密度に対応して相応に低い見
掛密度の生鉄粉を用いないと、成形性の向上が計
れないばかりでなく、安定した性状の低見掛密度
鉄粉の製造が困難である。なお還元焼鈍温度が
800℃未満のように低く過ぎると、脱酸、脱炭、
焼鈍および再結晶が不十分で十分な圧縮性を確保
することができない。
そこでこの発明の目的は、噴霧鉄粉生来の優れ
た圧縮性を備えるほか、とくに中、低密度鉄系焼
結材への適用を拡大すべく、還元鉄粉(ミルスケ
ール還元鉄粉、鉱石還元鉄粉)と同等の2.00〜
2.60g/cm3の見掛密度でしかも流動性に富み、還
元鉄粉よりも良好な成形性をあわせ有する噴霧鉄
粉を安価に提供するところにある。
この発明は、最終製品である噴霧鉄粉の見掛密
度に対応した相応の低い見掛密度の噴霧生鉄粉、
または、さらに低見掛密度化と成形性の向上を計
るため粒子相互の凝集を促進する処理を施した噴
霧生鉄粉を原料に用いること、十分な還元焼鈍と
粒子相互の焼結凝集を達成する還元焼鈍温度範囲
にすること、および焼結ケーキの解砕において、
鉄粉が液体噴霧生来の不規則粒形と焼結凝集した
集合不規則粒形とを保つ衝撃力によることの諸条
件の適合により上記目的を有利に充足し得ること
を究明したものである。
さて第1図に示すように、水噴霧生鉄粉の見掛
密度;x〔g/cm3〕と、その単一粒径;di〔μ
m〕との間には、
150μmを超える粒径においてx=ほぼ一定、
150μm以下の粒径においては、di=ae-bxここ
にa,b;粒径定数、eは自然対数の底
なる関係があり、そしてこの関係は還元焼鈍し
た焼結ケーキを、とくに1×105Kgf・m/sec2
以下の衝撃力で解砕した水噴霧鉄粉においても同
様に成立することを発見者らは知見した。
この知見によれば噴霧生鉄粉の見掛密度によつ
て、還元焼鈍した鉄粉の見掛密度が限定される。
すなわち、150μmを超える粒径において、還
元焼鈍した鉄粉の見掛密度を噴霧生鉄粉の見掛密
度よりも低くすることは困難であり、強解砕する
程、高見掛密度化することになる。一方150μm
以下の粒径において、還元焼鈍した鉄粉の見掛密
度は、粒子相互が焼結凝集して集合不規則粒形と
なるため噴霧生鉄粉の見掛密度より低くなるが、
粒形定数;bは正の値を持ち、負の工業的実現は
困難である。
よつて、還元焼鈍して見掛密度が2.60g/cm3以
下の噴霧鉄粉を製造するためには、150μmを超
える粒径において見掛密度(g/cm3),x≦
2.60,150μm以下の粒径においてdi=ae-bxただ
しdi;タイラー標準篩の2つの篩目の平均径(di
=d1+d2/2)(μm),a,b;粒径定数でb≧
1.5
の関係を満足する噴霧生鉄粉を原料に用いなけれ
ばならないわけである。
150μm以下の粒径において、粒子相互を焼結
凝集して集合不規則粒形となし一段と低見掛密度
化を促進せしめるには粒度別と、液体の混合と、
帯磁が何れも次のような理由のもとで有効である
ことを見い出した。
噴霧生鉄粉は、まず粒度別に篩分けすることに
より、微粉相互の焼結凝集による集合粗粒化を効
率よくでき、篩分作業性を考慮すると、200メツ
シユを境にするのが実際的で、必要に応じ還元焼
鈍後ブレンドするとよい。
噴霧生鉄粉充填層の粒子間空隙を満した液体は
気化蒸発するにつれ、液面が移動してその表面張
力により粒子を移動せしめ、とくに粗粉の周囲に
微粉を凝集する作用があり、ここに混合する液体
として、水や油、アルコール等の有機化合物およ
びそれらの混合物が用いられる。2〜20重量%の
範囲が効果的で実用的である。
液体噴霧生鉄粉は高圧液体により急冷され格子
が歪んでいるため容易に帯磁して残留磁気を持
ち、とくに水噴霧生鉄粉において著しく、このた
め粒子相互が吸引し合つて凝集するからである。
次に還元、脱炭性雰囲気中での還元焼鈍温度
と、焼結ケーキの解砕衝撃力とは解砕鉄粉の見掛
密度を決定する重要な要因である。
還元焼鈍温度が800℃より低い場合、還元、焼
鈍、粒子相互の焼結凝集が不十分で、見掛密度の
低下と圧縮性の確保ができない。
還元焼鈍温度が1100℃より高い場合、解砕が困
難となり、強引に高負荷をかけて解砕すると、平
滑多面粒となり高見掛密度化し、同時に加工硬化
を受けて圧縮性を劣化する。
よつて還元焼鈍温度は800〜1100℃の範囲が適
当でありただ保持均熱する時間は、上記熱処理に
十分な時間を適宜選定すれば良くとくに限定の必
要はない。
焼結ケーキの解砕機としては、粒子を切断した
り、粒子表面を平坦な多面体化あるいは平板体化
したり、丸めつぶす様な機械は避けるべきで、例
えば反発式あるいは衝撃式のハンマーミル、デイ
スインテグレーター(デージミル)などの機械を
採用する。
その衝撃力と解砕された鉄粉の見掛密度の関係
について調べた結果、衝撃力の増加にともない粒
度全域に渡つて見掛密度は高くなり、105Kgf・
m/sec2を超えると原料噴霧生鉄粉の見掛密度よ
り高くなつてしまう。よつて、衝撃力は105Kg
f・m/sec2を上限とする。なお、例えばハンマ
ーミルに取り付けるロストル間隙あるいはスクリ
ーン穴径は液体噴霧生鉄粉生来の不規則状と焼結
凝集による集合不規則状を失うことのない様、配
慮する必要があるが、見掛密度へおよぼす要因寄
与率は小さいので限定する必要はない。
この発明による噴霧鉄粉の化学組成について
は、還元鉄粉(ミルスケール還元鉄粉、鉱石還元
鉄粉)と同等以上すなわち、1−Zn・St(ステ
アリン酸亜鉛)−99重量%Fe混合粉において5t/
cm2の成形圧力における圧粉密度が6.70g/cm3以上
の確保は最低限必要であり、この観点から、重量
%で、O:0.25以下、C;0.05以下、N;0.01以
下、Si;0.10以下、Mn;0.40以下、P;0.05以
下、S;0.10以下、Sn;0.50以下で、かつ残部が
実質的に鉄とより成るものにつき、もちろん不可
避的に混入する不純物は許容される。
また粒度については鉄系焼結材において粗粒が
多過ぎると、不規則状粗大空孔が多くなり機械的
強度の脆化を招き、したがつて粉末冶金用鉄粉の
一般的範囲、すなわち150μm以下の粒度を80重
量%以上含む鉄粉に限定される。
次に、実施例に基ずき本発明を詳細に説明す
る。
特許第892659号に係る特公昭52−19540号公報
に記載された溶解金属の霧化粉砕装置により、複
数のジエツト衝流の集束角度αと、ガイドで複数
のジエツト衝流を偏向した膜状流の集束角度βと
の角度差を0゜≦(α−β)≦6゜および(α−
β)>6゜、水圧を40〜180Kgf/cm2Gの範囲、溶
湯ノズル口径を8〜14mmφの範囲でそれぞれ適宜
調整し、かつ水量が230/minの水噴霧条件
で、第1図中の記号;,およびで示す、見
掛密度;x〔g/cm3〕と単一粒径;di=d1+d2/
2
〔μm〕の関係を有する3種類の水噴霧生鉄粉を
製造した。
次に、タイラー標準篩で−80#とし、アンモニ
ア分解ガス中で700〜1150℃の温度で10〜120分間
均熱して還元焼鈍を行ない、大気中で再酸化を生
じない温度、すなわち180℃以下に炉中冷却した
後、大気中に取り出した焼結ケーキをハンマーミ
ルにより解砕し、80#篩で篩分した。
また、第1図中の記号:で示す見掛密度と単
一粒径の関係を有する水噴霧生鉄粉については、
10重量%の水の混合、最大磁力1300ガウスの磁選
機による帯磁、および80〜200メツシユと−200メ
ツシユとに篩分た2粒度別の処理をそれぞれ施し
て、上記と同様の条件で還元焼鈍し、解砕して粒
子相互の焼結凝集効果を調べた。
焼結ケーキの解砕は回転数:2800r.p.m.、主シ
ヤフト軸からハンマー先端までの距離;150mm、
ハンマーの数;20本、ハンマーの単重;500grf
の機械仕様のハンマーミルにより、先ず3mmφの
穴径スクリーンを取り付けて解砕し、80メツシユ
篩により篩分けた。
次に、この+80メツシユ鉄粉について1mmφの
穴径のスクリーンを取り付けて解砕し、80メツシ
ユ篩により篩分けた。
同様にして順次0.5mmφ,0.3mmφの穴径のスク
リーンを取り付けて解砕−篩分を繰返し、計4回
分の−80メツシユ鉄粉をそれぞれブレンドした。
なお、80〜200メツシユと−200メツシユの2粒
度別に還元焼鈍した焼結ケーキはそれぞれ上記と
同様の条件および手順で計4回解砕−篩分して一
旦ブレンドし、水噴霧生鉄粉の80〜200メツシユ
と−200メツシユの粒度割合、すなわち80〜200メ
ツシユを3/10、−200メツシユを7/10の割合で再ブ
レンドした。
以上に記述した水噴霧生鉄粉の粉体特性、還元
焼鈍した鉄粉の粉体特性および圧粉体特性を粒子
凝集処理および還元焼鈍条件を付して、一括して
第1表に示す。
The present invention relates to a method for producing atomized iron powder for powder metallurgy with excellent formability and low apparent density, and in particular, to define the grain shape, that is, the apparent density, of raw iron powder by a liquid spray method, or to further improve the mutual interaction of the particles. By applying treatment to promote agglomeration and then reduction annealing, it increases the mutual sintering and agglomeration of particles, and in particular reduces the impact force that crushes and disintegrates the sintered cake (hereinafter referred to as "disintegration"). By limiting the above, the purpose is to propose an advantageous method for producing atomized iron powder for powder metallurgy that has excellent formability and low apparent density. In general, water-sprayed iron powder for powder metallurgy has a high apparent density of about 2.80 to 3.20 g/cm 3 and has excellent compressibility, so it is used as a raw material iron powder for high-density iron-based sintered materials. , the formability evaluated by Rattler value and compact transverse rupture strength is rather poor, and the mechanical strength of the sintered material is weak despite its high density, so it is difficult to apply it to medium- to low-density iron-based sintered materials. However, at present, it is limited to the above-mentioned uses. There is therefore a demand for atomized iron powder that has excellent formability while maintaining good compressibility, and development efforts are underway to improve the formability. For example, as described in Japanese Patent Application Laid-Open No. 114467/1983, the inverted conical injection angle of high pressure water is set to 80 to 120.
°, the atmosphere is suctioned under a negative pressure of 20 to 204 gf/cm 2 to prevent back injection, and the amount of fine powder in the raw iron powder is increased by spraying, in a reducing atmosphere at a temperature of 1000 to 1200 °C. A method has been proposed in which, after annealing, the sintered cake is crushed so as to have a particle size distribution larger than that of raw iron powder. In addition, JP-A-1987-
According to Publication No. 115161, the particle size distribution is determined by measuring the cumulative amount of particles on the sieve and the receiving tray for each sieve of 100, 200, 230, and 325 mesh according to the American standard, and summing each cumulative weight ratio. , water spray raw iron powder whose value multiplied by 1/100 is in the range of 1.0 to 2.7,
Reduction annealing is performed at a temperature of 760 to 1149℃, and the sintered cake is milled with a mill gap of 0.245 to 2.45 mm and a rotation speed of 200 to 200.
A method of producing iron powder with an apparent density of 2.80 g/cm 3 or less by crushing with a disc mill at 5000 rpm has also been proposed. However, all of these methods simply increase the proportion of fine powder in the raw iron powder, cause the particles to sinter and agglomerate each other during reduction annealing, and then crush the sintered cake under a relatively light (low) load. This aims to increase apparent density and improve moldability. Generally, as the amount of fine powder in the water-sprayed iron powder increases, and as the reduction annealing temperature increases, sintering between particles is promoted, and the apparent density of the crushed iron powder decreases.
Therefore, although the moldability can be improved, the following technical problems are involved. In other words, if the reduction annealing temperature is too high (over 1100°C), the sintered cake will be difficult to crush, and if you attempt to increase productivity by crushing under high load, the apparent density will increase due to processing. Not only does it become impossible to improve formability, but compressibility also deteriorates, and even when the reduction annealing temperature is below 1100℃,
Unless raw iron powder is used with a correspondingly low apparent density corresponding to the apparent density of the final product iron powder, it will not only be impossible to improve formability, but also produce low apparent density iron powder with stable properties. is difficult. Note that the reduction annealing temperature is
If the temperature is too low, such as below 800℃, deoxidation, decarburization,
Annealing and recrystallization are insufficient and sufficient compressibility cannot be secured. Therefore, the purpose of this invention is to provide reduced iron powder (mill scale reduced iron powder, ore reduced iron powder, 2.00~ equivalent to iron powder)
The purpose of the present invention is to provide atomized iron powder at a low cost, which has an apparent density of 2.60 g/cm 3 , high fluidity, and better formability than reduced iron powder. This invention provides sprayed raw iron powder with a correspondingly low apparent density corresponding to the apparent density of the sprayed iron powder that is the final product,
Alternatively, in order to further reduce the apparent density and improve formability, atomized raw iron powder that has been treated to promote mutual agglomeration of particles can be used as a raw material, and sufficient reduction annealing and sintering agglomeration of mutual particles can be achieved. In reducing annealing temperature range and crushing sintered cake,
It has been found that the above object can be advantageously achieved by adjusting the conditions such that the iron powder maintains the irregular grain shape inherent in the liquid spray and the aggregated irregular grain shape formed by sintering and agglomeration. Now, as shown in Figure 1, the apparent density of water-sprayed raw iron powder; x [g/cm 3 ] and its single particle diameter; di [μ
m], x = almost constant for grain sizes exceeding 150 μm, di = ae - bx for grain sizes of 150 μm or less, where a, b: grain size constant, e is the base of the natural logarithm. And this relationship holds true for reduction annealed sintered cakes, especially 1×10 5 Kgf・m/sec 2
The discoverers found that the same holds true for water-sprayed iron powder crushed by the impact force below. According to this knowledge, the apparent density of reduction-annealed iron powder is limited by the apparent density of atomized raw iron powder. In other words, for particle sizes exceeding 150 μm, it is difficult to make the apparent density of reduction-annealed iron powder lower than the apparent density of atomized raw iron powder, and the stronger the crushing, the higher the apparent density. Become. On the other hand, 150μm
For the following particle sizes, the apparent density of reduction-annealed iron powder is lower than that of atomized raw iron powder because the particles sinter and agglomerate each other to form irregular grain shapes.
Grain shape constant; b has a positive value, and industrial realization of a negative value is difficult. Therefore, in order to produce atomized iron powder with an apparent density of 2.60 g/cm 3 or less by reduction annealing, the apparent density (g/cm 3 ), x≦, is required for particle sizes exceeding 150 μm.
2.60, for particle sizes of 150 μm or less di = ae - bx where di; average diameter of two sieves of Tyler standard sieve (di
= d 1 + d 2 /2) (μm), a, b; particle size constant b≧
The raw material must be atomized raw iron powder that satisfies the relationship 1.5. In particle sizes of 150 μm or less, particles are sintered and agglomerated to form irregular grain shapes, and in order to further promote lower apparent density, it is possible to mix particles by particle size and liquid,
It has been discovered that magnetization is effective for the following reasons. By first sieving the sprayed raw iron powder according to particle size, it is possible to efficiently aggregate and coarsen the fine particles by sintering and agglomerating each other, and considering the workability of sieving, it is practical to use 200 mesh as the boundary. , if necessary, blending may be performed after reduction annealing. As the liquid filling the interparticle spaces of the atomized raw iron powder packed bed evaporates, the liquid level moves and the particles move due to its surface tension, which has the effect of agglomerating fine powder especially around coarse powder. As the liquid to be mixed with, water, oil, organic compounds such as alcohol, and mixtures thereof are used. A range of 2 to 20% by weight is effective and practical. Liquid-sprayed raw iron powder is rapidly cooled by high-pressure liquid and has a distorted lattice, so it is easily magnetized and has residual magnetism, which is especially noticeable in water-sprayed raw iron powder, which causes the particles to attract each other and coagulate. . Next, the reduction annealing temperature in a reducing and decarburizing atmosphere and the crushing impact force of the sintered cake are important factors that determine the apparent density of crushed iron powder. When the reduction annealing temperature is lower than 800°C, reduction, annealing, and mutual sintering and aggregation of particles are insufficient, resulting in a decrease in apparent density and failure to ensure compressibility. If the reduction annealing temperature is higher than 1100°C, it becomes difficult to crush, and if it is crushed under a high load, it becomes smooth polyhedral grains with high apparent density, and at the same time undergoes work hardening and deteriorates compressibility. Therefore, the reduction annealing temperature is suitably in the range of 800 to 1100°C, but the holding and soaking time does not need to be particularly limited as long as it is appropriately selected to be sufficient for the above heat treatment. As a crusher for sintered cakes, machines that cut the particles, make the particle surfaces into flat polyhedrons or plates, or crush them into balls should be avoided, such as repulsive or impact hammer mills, disk integrators, etc. Adopt machines such as (Dage Mill). As a result of investigating the relationship between the impact force and the apparent density of crushed iron powder, it was found that as the impact force increased, the apparent density increased over the entire particle size range, 10 5 Kgf・
If it exceeds m/sec 2 , the apparent density will be higher than the raw material sprayed raw iron powder. Therefore, the impact force is 10 5 Kg
The upper limit is f・m/sec 2 . For example, it is necessary to consider the diameter of the rostle gap or screen hole installed in a hammer mill so as not to lose the inherent irregularity of the liquid sprayed raw iron powder and the aggregated irregularity due to sintered agglomeration, but the apparent density There is no need to limit it because the contribution rate of factors to this is small. The chemical composition of the sprayed iron powder according to this invention is equal to or higher than that of reduced iron powder (mill scale reduced iron powder, ore reduced iron powder), that is, 1-Zn・St (zinc stearate) - 99 wt% Fe mixed powder. 5t/
It is minimum necessary to ensure a green density of 6.70 g/cm 3 or more at a molding pressure of cm 2 , and from this point of view, in weight %, O: 0.25 or less, C: 0.05 or less, N: 0.01 or less, Si; 0.10 or less, Mn: 0.40 or less, P: 0.05 or less, S: 0.10 or less, Sn: 0.50 or less, and the balance essentially consists of iron, of course unavoidable impurities are allowed. Regarding particle size, if there are too many coarse particles in iron-based sintered materials, there will be a large number of irregular coarse pores, leading to embrittlement of mechanical strength. Limited to iron powder containing 80% by weight or more of the following particle sizes: Next, the present invention will be explained in detail based on examples. The molten metal atomization and pulverization device described in Japanese Patent Publication No. 1952-19540 related to Patent No. 892659 has a convergence angle α of a plurality of jet impingement flows and a film-like flow in which the plurality of jet impulsion flows are deflected by a guide. The angle difference from the focusing angle β of 0°≦(α−β)≦6° and (α−
β) > 6°, water pressure in the range of 40 to 180 kgf/cm 2 G, molten metal nozzle diameter in the range of 8 to 14 mmφ, and water spray conditions of 230/min, as shown in Figure 1. Apparent density: x [g/cm 3 ] and single particle diameter: di=d 1 +d 2 /
Three types of water-sprayed raw iron powder having a relationship of 2 [μm] were manufactured. Next, it is sieved with a Tyler standard sieve to -80#, and soaked in ammonia decomposition gas for 10 to 120 minutes at a temperature of 700 to 1150°C to perform reduction annealing, at a temperature that does not cause reoxidation in the air, i.e., 180°C or less. After cooling in a furnace, the sintered cake was taken out into the atmosphere and crushed using a hammer mill, and sieved using an 80# sieve. In addition, for water-sprayed raw iron powder that has the relationship between apparent density and single particle size shown by the symbol : in Figure 1,
Mixed with 10% water, magnetized using a magnetic separator with a maximum magnetic force of 1300 gauss, and subjected to treatment for two different particle sizes by sieving into 80-200 mesh and -200 mesh, and reduction annealing under the same conditions as above. The particles were then crushed and the sintering agglomeration effect between the particles was investigated. For crushing the sintered cake, the rotation speed: 2800rpm, the distance from the main shaft axis to the hammer tip: 150mm,
Number of hammers: 20, unit weight of hammer: 500grf
First, the material was crushed using a hammer mill with mechanical specifications of 1, equipped with a hole diameter screen of 3 mmφ, and then sieved using an 80 mesh sieve. Next, this +80 mesh iron powder was crushed by attaching a screen with a hole diameter of 1 mm, and was sieved using an 80 mesh sieve. In the same manner, screens with hole diameters of 0.5 mmφ and 0.3 mmφ were sequentially attached and the crushing and sieving process was repeated, and a total of four times of -80 mesh iron powder was blended. The sintered cakes, which were reduced and annealed into two particle sizes of 80 to 200 mesh and -200 mesh, were crushed and sieved four times under the same conditions and procedures as above, and then blended once. The particle size ratio of 80-200 mesh and -200 mesh was reblended, ie, 80-200 mesh was 3/10 and -200 mesh was 7/10. The powder characteristics of the water-sprayed raw iron powder, the powder characteristics of the reduction annealed iron powder, and the green compact characteristics described above are shown in Table 1 together with the particle agglomeration treatment and reduction annealing conditions.
【表】【table】
【表】【table】
【表】
第1表に示した如く、第1図中の記号;、す
なわち150μmを超える粒径においてx=2.60,
150μm以下の粒径においてdi=6×103e-1.49xな
る関係を有する水噴霧生鉄粉を還元焼鈍した−80
メツシユの鉄粉(試験番号1)は、同表(2)のよう
に見掛密度が2.80g/cm3で、第1図中の記号;
aで示す如く、150μmを超える粒径においてx=
2.60、150μm以下の粒径においてdi=1.5×
107e-4.47xなる関係を有する程度までにしかなら
ず、粒子相互の焼結凝集による低見掛密度化には
限度があつて、2Cu−0.8C−1Zn・St−96.2重量
%Fe混合粉の成形性が比較材(ミルスケール還
元鉄粉)に比べ劣つていることがわかる。
一方、第1図中の記号;および、すなわち
150μmを超える粒径においてx≦2.60,150μm
以下の粒径においてdi=ae-bx,b1.5なる関係
を有する水噴霧生鉄粉をこの発明に従う適当な温
度で均熱して還元焼鈍した−80メツシユの鉄粉
(試験番号3,4,6,7,8,9および10)
は、同表(2)のように見掛密度が2.60g/cm3以下の
低い値を示し、2Cu−0.8C−1Zn・St−96.2重量
%Fe混合粉の圧縮性および成形性は比較材(ミ
ルスケール還元鉄粉;試験番号11,12)に比べ、
同等かもしくはそれらより優れていることがわか
る。
なお、記号;の噴霧生鉄粉に粒子凝集処理を
施して還元焼鈍した鉄粉(試験番号6,7および
8)は見掛密度がさらに低下し、成形性も向上し
ていることがわかる。
これらに対し、還元焼鈍温度が700℃のように
低温過ぎる場合(試験番号2)は、脱酸、焼鈍お
よび粒子相互の焼結が不十分なため、還元焼鈍し
た−80メツシユの鉄粉の見掛密度は低下しきれ
ず、圧縮性、成形性ともに比較材(ミルスケール
還元鉄粉;試験番号11,12)の水準に達していな
い。
また還元焼鈍温度が1150℃と高温過ぎる場合
(試験番号5)は、粒子相互の焼結が進み焼結ケ
ーキの解砕が困難なため、平滑な多面化粒子とな
り、還元焼鈍した鉄粉の見掛密度は、噴霧生鉄粉
より上昇し、解砕時に加工硬化して比較材(ミル
スケール還元鉄粉;試験番号11,12)に比べ、圧
縮性、成形性ともに劣化している。
第2図は第1図中の記号;の水噴霧生鉄粉を
アンモニア分解ガス中で950℃×45min均熱して
還元焼鈍した焼結ケーキをハンマーミルで解砕し
た時の衝撃力と−80メツシユ鉄粉の見掛密度の関
係を調べた結果である。これから明らかな様に、
衝撃力は解砕した鉄粉の見掛密度に影響をおよぼ
し、105Kgf・m/sec2を超えた衝撃力を採用す
ると噴霧生鉄粉の見掛密度よりも高くなつてしま
う。
以上の実施例では水噴霧生鉄粉を例にして説明
したが、噴霧媒に液体を用いて製造した還元ある
いは焼鈍を必要とする生鉄粉総てについてこの発
明を適用することができる。
以上のべたようにこの発明によつて、成形性に
優れ、見掛密度が2.00〜2.60g/cm3程度に低い粉
末冶金用噴霧鉄粉の製造技術が確立されたのであ
り、かような低見掛密度噴霧鉄粉は中、低密度鉄
系焼結材の原料として有利に適用でき、還元鉄粉
(ミルスケール還元鉄粉、鉱石還元鉄粉)との代
替が可能であるばかりでなく、高い圧縮性も確保
しているためもちろん高密度鉄系焼結材用として
も使用できる。[Table] As shown in Table 1, the symbols in Figure 1;
-80 Reduction annealing of water-sprayed raw iron powder with the relationship di=6×10 3 e -1 .49x for grain sizes of 150 μm or less
Metsuyu's iron powder (test number 1) has an apparent density of 2.80 g/cm 3 as shown in Table (2), and the symbols in Figure 1 are:
As shown in a , x=
2.60, di=1.5× for particle size below 150μm
10 7 e -4 . 47 It can be seen that the formability of the material is inferior to that of the comparative material (mill scale reduced iron powder). On the other hand, the symbols in FIG.
x≦2.60, 150μm for particle sizes exceeding 150μm
-80 mesh iron powder (Test No. 3 , 4, 6, 7, 8, 9 and 10)
As shown in Table (2), the apparent density is as low as 2.60 g/cm 3 or less, and the compressibility and moldability of the 2Cu-0.8C-1Zn・St-96.2 wt% Fe mixed powder are lower than that of the comparative material. (Mill scale reduced iron powder; test numbers 11 and 12),
It turns out that they are the same or better than them. It can be seen that the iron powders (test numbers 6, 7 and 8) obtained by subjecting the sprayed raw iron powder with the symbol; to particle agglomeration treatment and reduction annealing (test numbers 6, 7 and 8) have further decreased apparent density and improved formability. On the other hand, when the reduction annealing temperature is too low such as 700℃ (test number 2), deoxidation, annealing, and mutual sintering of the particles are insufficient, so the -80 mesh iron powder subjected to reduction annealing is The hanging density could not be lowered completely, and both compressibility and formability did not reach the level of the comparative materials (mill scale reduced iron powder; test numbers 11 and 12). In addition, when the reduction annealing temperature is too high (1150℃) (test number 5), sintering of the particles progresses and it is difficult to break up the sintered cake, resulting in smooth, multifaceted particles, and the appearance of reduction annealed iron powder. The hanging density is higher than that of the sprayed raw iron powder, and due to work hardening during crushing, both compressibility and formability are deteriorated compared to the comparative materials (mill scale reduced iron powder; test numbers 11 and 12). Figure 2 shows the impact force when the sintered cake obtained by soaking the water-sprayed raw iron powder with the symbol in Figure 1 in an ammonia decomposition gas for 950℃ x 45 minutes and crushing it with a hammer mill and -80 This is the result of investigating the relationship between the apparent density of mesh iron powder. As is clear from this,
The impact force affects the apparent density of the crushed iron powder, and if an impact force exceeding 10 5 Kgf·m/sec 2 is adopted, the apparent density will be higher than the apparent density of the atomized raw iron powder. Although the above embodiments have been explained using water-sprayed raw iron powder as an example, the present invention can be applied to any raw iron powder that is produced using a liquid as a spray medium and requires reduction or annealing. As described above, this invention has established a manufacturing technology for atomized iron powder for powder metallurgy that has excellent formability and has a low apparent density of about 2.00 to 2.60 g/cm 3 . Apparent density sprayed iron powder can be advantageously used as a raw material for medium to low density iron-based sintered materials, and can not only be used as a substitute for reduced iron powder (mill scale reduced iron powder, ore reduced iron powder), but also Since it also has high compressibility, it can also be used for high-density iron-based sintered materials.
第1図は水噴霧生鉄粉と還元焼鈍し解砕した製
品鉄粉の見掛密度と単一粒径の関係を示すグラ
フ、第2図は第1図中の記号;の水噴霧生鉄粉
を還元焼鈍した焼結ケーキをハンマーミルで解砕
した時のハンマー1ケの衝撃力と−80メツシユ製
品鉄粉の見掛密度の関係を示すグラフである。
Figure 1 is a graph showing the relationship between the apparent density and single particle size of water-sprayed raw iron powder and reduction-annealed and crushed product iron powder, and Figure 2 is a graph showing the relationship between water-sprayed raw iron with the symbol in Figure 1. It is a graph showing the relationship between the impact force of one hammer and the apparent density of -80 mesh product iron powder when a sintered cake obtained by reduction annealing of the powder is crushed with a hammer mill.
Claims (1)
2つの篩目d1,d2の算術平均di(μm)であらわ
した粒径との関係が、下記式(1),(2)の両条件を満
たす、液体噴霧法による生鉄粉を直接、または該
生鉄粉に粒子凝集処理を施したのち、還元、脱炭
性雰囲気中、800〜1100℃の範囲の温度で還元焼
鈍し、得られた焼結ケーキに1×105Kgf・m/
s2以下の衝撃力を加えて粉砕、解粒し、粒径150
μm以下の粒子を80重量%以上を含み見掛密度
2.00〜2.60g/cm3の鉄粉を得ることから成る、成
形性に優れ、見掛密度の低い粉末冶金用噴霧鉄粉
の製造方法。 粒子径150μmを超える粒子につき x≦2.60 ……(1) 粒子径150μm以下の粒子につき di=a・e-bx ……(2) こゝにa,b;粒形定数でb≧1.5 2 還元焼鈍に供する噴霧生鉄粉が、粒度別に予
め篩分けした分級粉である特許請求の範囲1記載
の方法。 3 焼結ケーキの粉砕、解粒のあと、ブレンドを
行う特許請求の範囲2記載の方法。 4 粒子凝集処理が、液体の添加、混合である特
許請求の範囲1,2または3記載の方法。 5 粒子凝集処理が、帯磁である特許請求の範囲
1,2または3記載の方法。 6 還元焼鈍を経た噴霧鉄粉が、重量%で酸素
0.25以下、炭素0.05以下、窒素0.01以下、けい素
0.10以下、マンガン0.40以下、りん0.05以下、お
よびいおう0.10以下、もしくはさらに錫0.50以下
を含有する組成である特許請求の範囲1,2,
3,4または5記載の方法。[Claims] 1. The relationship between the apparent density x (g/cm 3 ) and the particle size expressed as the arithmetic mean di (μm) of the two sieve openings d 1 and d 2 of the Tyler standard sieve is as follows: Raw iron powder that satisfies both the conditions of formulas (1) and (2) is heated directly at 800 to 1100°C in a reducing and decarburizing atmosphere, either directly or after particle aggregation treatment is applied to the raw iron powder. The resulting sintered cake was subjected to reduction annealing at a temperature in the range of 1×10 5 Kgf・m/
Pulverize and disintegrate by applying an impact force of s 2 or less to a particle size of 150
Contains 80% by weight or more of particles smaller than μm and has an apparent density
A method for producing atomized iron powder for powder metallurgy with excellent formability and low apparent density, which comprises obtaining iron powder of 2.00 to 2.60 g/cm 3 . For particles with a particle size of over 150 μm, x≦2.60 …(1) For particles with a particle size of 150 μm or less, di=a・e -bx …(2) Where a, b; particle shape constant b≧1.5 2 Reduction The method according to claim 1, wherein the atomized raw iron powder to be subjected to annealing is classified powder that has been sieved in advance according to particle size. 3. The method according to claim 2, wherein the sintered cake is pulverized and granulated, and then blended. 4. The method according to claim 1, 2 or 3, wherein the particle aggregation treatment is addition or mixing of a liquid. 5. The method according to claim 1, 2 or 3, wherein the particle aggregation treatment is magnetization. 6 The atomized iron powder that has undergone reduction annealing contains oxygen in weight%.
0.25 or less, carbon 0.05 or less, nitrogen 0.01 or less, silicon
0.10 or less, manganese 0.40 or less, phosphorus 0.05 or less, and sulfur 0.10 or less, or even tin 0.50 or less.
The method described in 3, 4 or 5.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP56177034A JPS5881901A (en) | 1981-11-06 | 1981-11-06 | Method of making atomized iron powder having excellent formability and low apparent density for use in powder metallurgy |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP56177034A JPS5881901A (en) | 1981-11-06 | 1981-11-06 | Method of making atomized iron powder having excellent formability and low apparent density for use in powder metallurgy |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5881901A JPS5881901A (en) | 1983-05-17 |
JPS6136046B2 true JPS6136046B2 (en) | 1986-08-16 |
Family
ID=16023984
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP56177034A Granted JPS5881901A (en) | 1981-11-06 | 1981-11-06 | Method of making atomized iron powder having excellent formability and low apparent density for use in powder metallurgy |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5881901A (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60138007A (en) * | 1983-12-26 | 1985-07-22 | Toyota Motor Corp | Manufacture of iron powder having stable apparent density |
JPH0653887B2 (en) * | 1986-11-26 | 1994-07-20 | 株式会社神戸製鋼所 | Method for producing highly compressible water atomized steel powder |
JP5208647B2 (en) * | 2008-09-29 | 2013-06-12 | 日立粉末冶金株式会社 | Manufacturing method of sintered valve guide |
-
1981
- 1981-11-06 JP JP56177034A patent/JPS5881901A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS5881901A (en) | 1983-05-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA2104605C (en) | Powder metal alloy process | |
US3325277A (en) | Method of making metal powder | |
JP2013519792A5 (en) | ||
US20200130065A1 (en) | Method for producing water-atomized prealloyed powder with high cold press formability | |
US3687654A (en) | Method of making alloy steel powder | |
WO2018143427A1 (en) | Magnetic flat powder and magnetic sheet containing same | |
JPS6136046B2 (en) | ||
CN109136788B (en) | High-carbon high-alloy amorphous pre-alloy powder and preparation method thereof | |
JP3184201B2 (en) | Flat Fe-Ni-based alloy fine powder and method for producing the same | |
CN113020605B (en) | Special in-situ toughening high-performance spherical tungsten powder for laser 3D printing and preparation method thereof | |
US3528081A (en) | Method of making steel powder | |
JPS642161B2 (en) | ||
JPH0211701A (en) | Production of fe-si alloy powder | |
US5352268A (en) | Fe-Ni alloy fine powder of flat shape | |
JPS5939333A (en) | Granulation of fine powdery coke in high efficiency | |
JPS6289802A (en) | Production of fe-ni alloy green compact magnetic core | |
CN1358593A (en) | Method for reducing atomized copper powder bulk loading density | |
JPS6229482B2 (en) | ||
JPH022810B2 (en) | ||
JPS6123702A (en) | Raw material powder of powder metallurgy for producing ferrous parts | |
US3418104A (en) | Producing pulverulent iron for powder metallurgy by compacting feed stocks | |
JPS60138007A (en) | Manufacture of iron powder having stable apparent density | |
JP4068857B2 (en) | Manufacturing method of sintered rare earth magnet alloy | |
RU2202445C1 (en) | Method for making iron base powder | |
JPS6056001A (en) | Atomized raw steel powder for powder metallurgy |