JPH022810B2 - - Google Patents

Info

Publication number
JPH022810B2
JPH022810B2 JP57078082A JP7808282A JPH022810B2 JP H022810 B2 JPH022810 B2 JP H022810B2 JP 57078082 A JP57078082 A JP 57078082A JP 7808282 A JP7808282 A JP 7808282A JP H022810 B2 JPH022810 B2 JP H022810B2
Authority
JP
Japan
Prior art keywords
ferromanganese
oxides
magnetic material
alloy
metal oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57078082A
Other languages
Japanese (ja)
Other versions
JPS58199721A (en
Inventor
Tadayoshi Karasawa
Katsumi Kono
Katsuji Uchama
Michio Yamazaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP57078082A priority Critical patent/JPS58199721A/en
Priority to US06/488,265 priority patent/US4543197A/en
Priority to NL8301491A priority patent/NL8301491A/en
Priority to DE19833315298 priority patent/DE3315298A1/en
Publication of JPS58199721A publication Critical patent/JPS58199721A/en
Publication of JPH022810B2 publication Critical patent/JPH022810B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Soft Magnetic Materials (AREA)
  • Compounds Of Iron (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 この発明は、湿式による酸化金属磁性体の製造
法に関するものである。 〔従来の技術〕 通常、軟磁性酸化物磁性体、すなわちフエライ
トは、M2+O・Fe2O3の基本式で表示されている。
ここにおいて、M2+はFe、Mn、Ni、Cu、Mg、
Zn、Co等で示され、その一部を他の金属で置換
することができる。また、これらの二価金属の組
み合わせで、それぞれの特徴ある磁気特性を示す
ものが生成するので、その用途に適合するように
適宜選択して製造される。 この基本形の磁性体を合成するために、上記金
属の酸化物又は酸化物と塩、塩と塩、或いは溶液
中での合成等が報告されている。 〔発明が解決しようとする課題〕 これら公知に属するフエライトの製造法に対
し、この発明ではフエロマンガン合金を用い、粉
粒化を容易、かつ、短時間で処理するとともに、
安定、かつ、廉価にフエライトを合成する新規な
手法を提案するものである。 すなわち、フエロマンガン又はフエロニツケル
をそのまま粉砕して、他の金属酸化物を添加して
も優良なフエライトを合成することは困難であ
る。それは、フエロマンガン又はフエロニツケル
の粉砕、又は合金の融体噴霧した物質等を酸化し
たものは活性度が低く、また偏析が生じたものと
なる。従つて、それによつて造られた磁性体は、
局部的に異方性が大となり、かつ、その不均一性
をも生ずる。その原因は、主としてフエロマンガ
ン合金の靭性、展延性など合金特有の性質により
適正な粉体が得られないためである。 この発明では、これら製造上の欠陥を排除し、
極めて廉価にフエライト磁性体の製造に成功し
た。 〔課題を解決するための手段〕 すなわち、この発明は、 フエロマンガン、フエロニツケルの一種以上
に対し、Fe、Mn、Ni、Cu、Mg、Coの酸化
物、又は加熱によつて該酸化物となる物質(金
属を除く)の一種以上の物質を添加、混和物を
調整するに際し、該混和物中のFe2O3としての
含有量を36〜60モル%、Mn、Ni、Cu、Mg、
Zn、Coの酸化物、又は加熱によつて該酸化物
となる物質の一種以上を、40〜64モル%の範囲
に調整添加し、酸化を伴う湿式粉砕、混合、脱
水の過程を経て800〜1450℃に加熱してなる酸
化金属磁性体の製造法。 第項記載の最終混和物を、700〜1250℃で
仮焼し再粉砕の後、800〜1450℃に加熱してな
る酸化金属磁性体の製造法。 第項記載の粉砕メデイアをフエロマンガ
ン、フエロニツケル、電解鉄、電解マンガンを
用い、該メデイアの摩耗した成分をそのまま成
分酸化物として用いる酸化金属磁性体の製造
法。 を提供するにある。 先ず、フエロアロイの代表例として、フエロマ
ンガン(これをフエロニツケルに置換しても以下
において同様の結果が生ずる。)の物質を考える
と、その製造法はマンガン鉱石に還元剤としてコ
ークス及びCao、SiO2等を適当なる比率で配合
し、電気炉で還元溶融してフエロマンガン合金と
する。この場合、JISに従つて製造された合金は、
高炭素C……7.5%以下、中炭素C……2%以下、
低炭素C……1%以下の3種類がある。これらの
フエロマンガンは、鉄分の増加及び炭素の減少の
方向に展延性が増加する。 通常、低炭素のフエロアロイ(フエロマンガ
ン、フエロニツケル)は高価で、高炭素系はその
半分の価格である。この発明では、フエライト化
の都合上、高炭素の脆い原料を用いて粉砕を容易
とし、併せて原価の低減を図つたものである。 すなわち、炭素は少なくとも3%以上、好まし
くは7〜10%の含有のものが使用される。当然の
ことながら、更に多い炭素量は破砕が更に容易と
なるので、粉砕費が軽減されることから、これを
拒む理由はない。しかし、この発明では、合金を
酸化する必要があること、低シリコンであるこ
と、及びマンガン含有量の低下及び合金の製造技
術上、出湯可能な範囲等を考慮すれば、炭素の含
有量は必然的に制約される。 第一の手法として、マンガン合金を粉砕する必
要がある。特に、マンガン合金は、その粉末の粒
度によつて著しく性能を劣化させるので、注意深
く調整する必要がある。粉砕は、ボールミル、振
動ミル、アトマイザー、衝撃柱粉砕その他数多く
の種類がある。ここでは振動ミル、ボールミル等
を用い、不活性ガス中で粉砕する。先ず、粉砕メ
デイアは被粉砕物と同質又は後に成分の補正可能
な物とし、その径は大中小の異なつたものを用
い、小なる径のメデイアの重量は40〜90%とと
し、バツチ又は連続式で分級装置付きを提案す
る。 このメデイア用合金鋼塊の大径は40〜20mm、中
径は10〜8mm、小径は5mm程度の鋼塊を用意す
る。ただし、これらの径の数値は、概数を示した
もので、各指定数値を上下するものを用いること
は差し支えない。また、一部に通常のスチールメ
デイアを併用することも差し支えない。該鋼塊
は、任意に割つた不定形の角のあるものでもメデ
イアとして使用できる。角付きメデイアは使用中
に損耗し、角がとれ、不規則な球形に近似したも
のとなる。更に、長時間の使用によつて、メデイ
アは径の不揃いのもの、或いは中径より小径、細
粒ともなり、後に補充した鋼塊によつて被砕物と
して粉末となる。このような粉砕過程を経た粉体
は、粒度分布が広くなる欠陥がある。これは、分
級装置を付加稼動することによつて解決できる。 〔作用〕 次に、作業上特に注意すべき事項を示すと、通
常金属粉の3μ、特に0.5μ以下の粉末は、常温で空
気中でも熱焼する。この現象は粉末の集落の場合
であつて、空気中に浮遊させた場合は、温度上昇
速度、圧の上昇率、空気の混合比等の総合条件で
爆発の状態を現わす。これは、高炭素フエロマン
ガンでも全く同様である。そこで、この問題を避
けるため粗粒のまま焙焼酸化すると、この発明の
目的とする酸化物としては不都合なものとなる。
その一例を次に示す。 すなわち、フエロマンガンの粒粉体を通常の加
熱法で1000℃まで昇温した粒子の酸化状態を、X
線マイクロアナライザーで測定した結果から考察
すると、第1図のようになる。先ず、炭素の一部
は、COガスとして揮散し、MnはMnOとなり、
表皮層を形成する。これに伴いFeは炭素により
活性化され、MnOの発生と共に遊離して合金の
内部に拡散移動し、残留した僅かなFeは、Fe3O4
となる。これらを第1図aに示す。ここにおいて
MはMnO、M″FはMnOとFe3O4の混成層、H・
FはFe金属濃度の最高値を示す線、F・Mはフ
エロマンガン層をそれぞれ示すモデル図である。 第二段階では、表皮層のMnOが僅かにMn3O4
となり、MnOの領域は合金の内部に拡大し、Fe
は前同様の過程を以つて、初期組成の合金層を包
囲して高Fe濃度層を形成する。第1図bにそれ
を示した。ここにおいて、MはMn3O4、M
FはMn3O4とFe3O4、M・FはMnOとFe3O4であ
るが、主としてMnOの層、H・F′はFe濃度の最
高量含有層、F・Mはフエロマンガン層をそれぞ
れ示すモデル図である。 このような酸化過程は、粉粒の大小にかかわら
ず同様な機構で進むが、粒径の大なる粉体の後期
酸化時には、一層高濃度のFe層が生じ、合金中
心部のFe濃度をも上昇する。第2図のFe2にそれ
を示す。ここにおいて、Fe1は第一段階の酸化時
における合金中のFe濃度の変化を示し、Fe2、
Fe3は第二、第三段階の酸化進行時のFe濃度の偏
差を示し、Mn、Fe等の酸化物は省略してある。 このように、偏析した粒子を酸化すると、Fe
濃度の偏析したまま酸化物となる。この酸化過程
を経たフエロマンガンの粉粒体を、必要とする組
成となるように成分調整を行ない、マンガンフエ
ライトに用いた場合の特性の一例を次に示す。
[Industrial Field of Application] The present invention relates to a method for producing a metal oxide magnetic material by a wet process. [Prior Art] Usually, a soft magnetic oxide magnetic material, ie, ferrite, is represented by the basic formula of M 2+ O.Fe 2 O 3 .
Here, M 2+ is Fe, Mn, Ni, Cu, Mg,
It is represented by Zn, Co, etc., and a part of it can be replaced with other metals. Furthermore, combinations of these divalent metals produce products exhibiting their own characteristic magnetic properties, so they are appropriately selected and manufactured to suit the intended use. In order to synthesize this basic type of magnetic material, methods such as synthesis using oxides of the above metals, oxides and salts, salts and salts, or synthesis in solutions have been reported. [Problems to be Solved by the Invention] In contrast to these known methods for producing ferrite, the present invention uses a ferromanganese alloy to easily and quickly process pulverization, and
This paper proposes a new method for stably and inexpensively synthesizing ferrite. That is, even if ferromanganese or ferronickel is ground as it is and other metal oxides are added, it is difficult to synthesize high-quality ferrite. Oxidized materials such as pulverized ferromanganese or ferronitkel or sprayed melts of alloys have low activity and also cause segregation. Therefore, the magnetic material made by it is
The anisotropy becomes locally large and also causes non-uniformity. The main reason for this is that proper powder cannot be obtained due to the characteristics peculiar to the ferromanganese alloy, such as its toughness and malleability. This invention eliminates these manufacturing defects and
We succeeded in producing ferrite magnetic material at an extremely low cost. [Means for Solving the Problems] That is, the present invention provides an oxide of Fe, Mn, Ni, Cu, Mg, Co, or a substance that becomes the oxide upon heating, for one or more of ferromanganese and ferronitkel. When preparing a mixture by adding one or more substances (excluding metals), the content as Fe 2 O 3 in the mixture should be 36 to 60 mol%, Mn, Ni, Cu, Mg,
Zn, Co oxides, or one or more substances that become the oxides when heated, are adjusted and added in a range of 40 to 64 mol%, and through the process of wet grinding, mixing, and dehydration accompanied by oxidation, A method for producing metal oxide magnetic material by heating it to 1450℃. A method for producing a metal oxide magnetic material by calcining the final mixture according to item 1 at 700 to 1250°C, re-pulverizing it, and then heating it to 800 to 1450°C. A method for producing a metal oxide magnetic material using ferromanganese, ferronickel, electrolytic iron, or electrolytic manganese as the crushing media described in item 1, and using the worn components of the media as they are as component oxides. is to provide. First, considering the substance ferromanganese (substituting it with ferronic acid will produce the same results below) as a representative example of ferroalloy, its manufacturing method involves adding coke, Cao, SiO 2 , etc. as a reducing agent to manganese ore. are mixed in an appropriate ratio and reduced and melted in an electric furnace to obtain a ferromanganese alloy. In this case, the alloy manufactured according to JIS is
High carbon C...7.5% or less, medium carbon C...2% or less,
Low carbon C... There are three types of 1% or less. The malleability of these ferromanganese increases as the iron content increases and the carbon content decreases. Usually, low-carbon ferroalloys (ferromanganese, ferronickel) are expensive, and high-carbon types are half the price. In this invention, for convenience of ferrite formation, a high-carbon, brittle raw material is used to facilitate pulverization and to reduce the cost. That is, carbon containing at least 3% or more, preferably 7 to 10%, is used. Naturally, there is no reason to reject this, since a higher carbon content makes crushing easier and thus reduces the crushing cost. However, in this invention, considering the need to oxidize the alloy, the low silicon content, the reduction in manganese content, and the range in which the alloy can be tapped due to the manufacturing technology, the carbon content is inevitably increased. limited. As a first method, it is necessary to crush the manganese alloy. In particular, the performance of manganese alloys significantly deteriorates depending on the particle size of the powder, so careful adjustment is required. There are many types of crushing, including ball mills, vibration mills, atomizers, impact column crushing, and others. Here, the material is ground in an inert gas using a vibration mill, a ball mill, or the like. First, the grinding media should be of the same quality as the material to be ground or one whose composition can be corrected later, and the diameters should be of different sizes (large, medium, and small), and the weight of the small diameter media should be 40 to 90%. We suggest that the model be equipped with a classification device. The large diameter of this alloy steel ingot for media is 40 to 20 mm, the medium diameter is 10 to 8 mm, and the small diameter is about 5 mm. However, these diameter values are approximate numbers, and there is no problem in using diameters that are higher or lower than each designated value. Moreover, it is also possible to use normal steel media in part. The steel ingot can also be used as a medium, even if it is arbitrarily cut and has an irregular shape. The angled media wears out during use and becomes rounded, resembling an irregular spherical shape. Further, after long-term use, the media becomes irregular in diameter, or becomes smaller in diameter than the medium diameter, or becomes fine particles, and is crushed into powder by the steel ingot that is replenished later. Powder that has undergone such a pulverization process has a defect in that the particle size distribution becomes wide. This can be solved by additionally operating a classifier. [Function] Next, there are matters to be especially careful about during work. Metal powders with a size of 3 μm or less, especially powders of 0.5 μm or less, are fired even in air at room temperature. This phenomenon occurs in the case of powder particles, and if they are suspended in the air, an explosive state will appear depending on overall conditions such as temperature rise rate, pressure rise rate, and air mixing ratio. This is exactly the same for high carbon ferromanganese. Therefore, if the coarse particles are roasted and oxidized in order to avoid this problem, the oxide that is the object of the present invention will be inconvenient.
An example is shown below. In other words, the oxidation state of the particles of ferromanganese powder heated to 1000℃ using the usual heating method is
Considering the results measured with a line microanalyzer, the results are as shown in Figure 1. First, some of the carbon evaporates as CO gas, and Mn becomes MnO.
Forms the epidermal layer. Along with this, Fe is activated by carbon, liberated with the generation of MnO, and diffused into the alloy, and the small amount of Fe that remains becomes Fe 3 O 4
becomes. These are shown in Figure 1a. Here, M is MnO, M″F is a mixed layer of MnO and Fe 3 O 4 , H.
F is a line showing the maximum value of Fe metal concentration, and F and M are model diagrams showing ferromanganese layers, respectively. In the second stage, the MnO in the epidermal layer is slightly reduced to Mn 3 O 4
, the MnO region expands inside the alloy and Fe
By the same process as before, a high Fe concentration layer is formed surrounding the alloy layer of the initial composition. This is shown in Figure 1b. Here, M is Mn 3 O 4 , M
F is Mn 3 O 4 and Fe 3 O 4 , M・F is MnO and Fe 3 O 4 , but mainly the MnO layer, H・F′ is the layer containing the highest Fe concentration, and F・M is the ferromanganese layer. It is a model diagram showing each. This oxidation process proceeds by the same mechanism regardless of the size of the powder, but in the later stage of oxidation of powder with a large particle size, a layer of higher concentration of Fe is generated, which exceeds the Fe concentration in the center of the alloy. Rise. This is shown in Fe2 in Figure 2. Here, Fe1 indicates the change in Fe concentration in the alloy during the first stage of oxidation, Fe2,
Fe3 indicates the deviation in Fe concentration during the progress of oxidation in the second and third stages, and oxides such as Mn and Fe are omitted. In this way, when the segregated particles are oxidized, Fe
It becomes an oxide with its concentration segregated. The following is an example of the characteristics when the ferromanganese powder that has undergone this oxidation process is used for manganese ferrite by adjusting the ingredients so that it has the required composition.

【表】【table】

〔実施例 1〕[Example 1]

高炭素フエロマンガン粗粒粉末30gに、
Fe2O3376g、ZnO3.5g、CaO0.05g、SiO20.01g
を秤取し、水を加えて50%スラリーとし、通気式
振動ミルで5Hr粉砕する。粉砕したスラリーを脱
水し、ペレツトになして1000℃で2Hr加熱仮焼
後、湿式粉砕で2Hr行なつた。次いで脱水し、若
干のバインダーを加えてドーナツ型に成形して
1280℃で3Hr加熱、O20.25%を含むN2気中で冷却
した。その試料の特性を次に示す。 μ0 Q tand/μ0 Bm 2150 45 1×10-5 5300 〔実施例 2〕 高炭素フエロマンガン粗粒粉300g、電解鉄粉
651g、CoO0.95gを秤取し、水等量とH2O2
100gを通気式振動ミルに入れて8Hr粉砕する。
次いで、H2O2水100gを追補し3Hr粉砕し、脱水
した後、実施例1と同様に処理する。 μ0 Q Bm 2450 60 5100 〔実施例 3〕 高炭素フエロマンガン300g、フレーク状フエ
ロニツケル3gに、FeSO4・7H2O25gを秤取し、
これらと等量の温水を加えて通気式ゴムライニン
グボールミルに投入し、フエロマンガンメデイア
を用いて水蒸気を含む温風を送入し、及び温水の
補給を行なつて10Hr粉砕する。これに、
Fe2O31495g、MgO170g、ZnO257.9g、
CaCO35g及び添加酸化物と等量の水を加えて
2Hr粉砕混合し、脱水の後ペレツトになし、1000
℃で2Hr仮焼する。その後10Hr粉砕し、0.8ト
ン/cm3の圧力でドーナツ型に成形し、1250℃で
4Hr空気中で放冷する。この試料の特性を次に示
す。 μ0;4500 ρ;1.25×107Ω―cm 〔発明の効果〕 この発明によると、「酸化を伴う湿式粉砕」に
よるものであるから、金属面の脆化並びに該部の
削り取りの繰返しによつて、粉粒化が極めて容
易、かつ、短時間で処理できる。しかも、1μ以
下の粉粒とすることができる。また、処理中には
粉じんは発生しない。そして、この発明において
は、「フエロアロイ(特に高炭素系のもの)」を用
いることと、上記のとおり処理時間が短いことと
が相まつて、その磁性体の生産性に富み、かつ、
頗る安価に提供できる。
30g of high carbon ferromanganese coarse powder,
Fe 2 O 3 376g, ZnO 3.5g, CaO 0.05g, SiO 2 0.01g
Weigh out the slurry, add water to make a 50% slurry, and grind for 5 hours in a vented vibration mill. The pulverized slurry was dehydrated, made into pellets, calcined at 1000°C for 2 hours, and then wet-pulverized for 2 hours. Then, dehydrate it, add some binder and shape it into a donut shape.
Heated at 1280°C for 3 hours and cooled in N2 atmosphere containing 0.25% O2 . The characteristics of the sample are shown below. μ 0 Q tand/μ 0 Bm 2150 45 1×10 -5 5300 [Example 2] High carbon ferromanganese coarse powder 300g, electrolytic iron powder
Weigh out 651 g and 0.95 g of CoO, and add equal amounts of water and H 2 O 2 water.
Put 100g into a vented vibration mill and grind for 8 hours.
Next, 100 g of H 2 O 2 water was added, the mixture was pulverized for 3 hours, dehydrated, and then treated in the same manner as in Example 1. μ 0 Q Bm 2450 60 5100 [Example 3] Weighed 25 g of FeSO 4 7H 2 O to 300 g of high carbon ferromanganese and 3 g of flaky ferronitkel,
Add an equal amount of hot water to these and put it into a vented rubber-lined ball mill, blow in hot air containing steam using a ferromanganese media, replenish hot water, and grind for 10 hours. to this,
Fe 2 O 3 1495g, MgO170g, ZnO257.9g,
Add 5g of CaCO 3 and the same amount of water as the added oxide.
Grind for 2 hours, mix and dehydrate into pellets, 1000
Calcinate at ℃ for 2 hours. After that, it was crushed for 10 hours, formed into a donut shape at a pressure of 0.8 tons/ cm3 , and heated at 1250℃.
Cool in air for 4 hours. The characteristics of this sample are shown below. μ 0 ; 4500 ρ; 1.25×10 7 Ω-cm [Effects of the Invention] According to this invention, since "wet grinding with oxidation" is used, embrittlement of the metal surface and repeated scraping of the part are caused. Therefore, it is extremely easy to pulverize and can be processed in a short time. Moreover, it can be made into powder particles with a size of 1μ or less. Additionally, no dust is generated during processing. In this invention, the use of "ferroalloy (particularly high carbon type material)" and the short processing time as described above combine to increase the productivity of the magnetic material, and
It can be provided at a very low price.

【図面の簡単な説明】[Brief explanation of drawings]

第1図aは、酸化途上におけるフエロマンガン
合金粒子の断面図、同じくbは、aの酸化が更に
進んだ粒子の断面図、第2図は、フエロマンガン
合金粒子を酸化した場合の、粒子の表面より中心
部までにおけるFe濃度の偏差を示す図、第3図
は、各種条件下における、フエロマンガン合金の
粉砕時間と粒径との関係図である。
Figure 1 a is a cross-sectional view of a ferromanganese alloy particle in the process of oxidation, b is a cross-sectional view of a particle in which the oxidation of a has further progressed, and figure 2 is a view from the surface of the ferromanganese alloy particle when it is oxidized. FIG. 3, which shows the deviation of the Fe concentration up to the center, is a diagram showing the relationship between the grinding time and particle size of the ferromanganese alloy under various conditions.

Claims (1)

【特許請求の範囲】 1 フエロマンガン、フエロニツケルの一種以上
に対し、Fe、Mn、Ni、Cu、Mg、Coの酸化物、
又は加熱によつて該酸化物となる物質(金属を除
く)の一種以上の物質を添加、混和物を調整する
に際し、該混和物中のFe2O3としての含有量を36
〜60モル%、Mn、Ni、Cu、Mg、Zn、Coの酸化
物、又は加熱によつて該酸化物となる物質の一種
以上を、40〜64モル%の範囲に調整添加し、酸化
を伴う湿式粉砕、混合、脱水の過程を経て800〜
1450℃に加熱してなる酸化金属磁性体の製造法。 2 特許請求の範囲第1項記載の最終混和物を、
700〜1250℃で仮焼し再粉砕の後、800〜1450℃に
加熱してなる酸化金属磁性体の製造法。 3 特許請求の範囲第1項記載の粉砕メデイアを
フエロマンガン、フエロニツケル、電解鉄、電解
マンガンを用い、該メデイアの摩耗した成分をそ
のまま成分酸化物として用いる酸化金属磁性体の
製造法。
[Claims] 1. Oxides of Fe, Mn, Ni, Cu, Mg, Co for one or more of ferromanganese and ferronitkel,
Or, when preparing a mixture by adding one or more substances (excluding metals) that become the oxide when heated, the content as Fe 2 O 3 in the mixture is reduced to 36
~60 mol%, oxides of Mn, Ni, Cu, Mg, Zn, Co, or one or more substances that become the oxides when heated are added in an adjusted range of 40 to 64 mol% to prevent oxidation. 800 ~ through the accompanying wet grinding, mixing, and dehydration process
A method for producing metal oxide magnetic material by heating it to 1450℃. 2. The final mixture according to claim 1,
A method for producing metal oxide magnetic material by calcining at 700-1250°C, re-grinding, and then heating to 800-1450°C. 3. A method for producing a metal oxide magnetic material using ferromanganese, ferronickel, electrolytic iron, or electrolytic manganese as the pulverizing media according to claim 1, and using the worn components of the media as they are as component oxides.
JP57078082A 1982-04-27 1982-05-12 Ferromagnetic oxide and its manufacture Granted JPS58199721A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP57078082A JPS58199721A (en) 1982-05-12 1982-05-12 Ferromagnetic oxide and its manufacture
US06/488,265 US4543197A (en) 1982-04-27 1983-04-25 Process for producing magnetic metallic oxide
NL8301491A NL8301491A (en) 1982-04-27 1983-04-27 METHOD FOR PRODUCING MAGNETIC METAL OXIDES
DE19833315298 DE3315298A1 (en) 1982-04-27 1983-04-27 METHOD FOR PRODUCING MAGNETIC METAL OXIDE

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57078082A JPS58199721A (en) 1982-05-12 1982-05-12 Ferromagnetic oxide and its manufacture

Publications (2)

Publication Number Publication Date
JPS58199721A JPS58199721A (en) 1983-11-21
JPH022810B2 true JPH022810B2 (en) 1990-01-19

Family

ID=13651917

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57078082A Granted JPS58199721A (en) 1982-04-27 1982-05-12 Ferromagnetic oxide and its manufacture

Country Status (1)

Country Link
JP (1) JPS58199721A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1242314A (en) * 1983-12-29 1988-09-27 Ralph W. Scheidecker Process for controlling ferrous iron content in manganese zinc ferrite
JPS60215529A (en) * 1984-04-10 1985-10-28 Japan Metals & Chem Co Ltd Production of ferrite raw material
JPS6164886A (en) * 1984-09-05 1986-04-03 Nichijiyuu Res Center:Kk Manufacture of magnetic material from low-grade substance containing mn
JPH0616451B2 (en) * 1986-05-06 1994-03-02 三菱電機株式会社 Low loss oxide magnetic material

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58140324A (en) * 1982-02-10 1983-08-20 Japan Metals & Chem Co Ltd Manufacture of ferrite as starting material

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58140324A (en) * 1982-02-10 1983-08-20 Japan Metals & Chem Co Ltd Manufacture of ferrite as starting material

Also Published As

Publication number Publication date
JPS58199721A (en) 1983-11-21

Similar Documents

Publication Publication Date Title
JPH0369962B2 (en)
JP2013519792A5 (en)
JPS61250084A (en) Composite whetstone particle for magnetic abrasion and production thereof
JPH022810B2 (en)
CA1041324A (en) Process for the production of high apparent density water atomized steel powders
JPH0867941A (en) Production of sendust type sintered alloy
JPH0475295B2 (en)
US4053578A (en) Process for oxidizing primarily nickel powders
JPH01294801A (en) Production of flat fine fe-ni alloy powder
US3419383A (en) Producing pulverulent iron for powder metallurgy by multistage reduction
US2110967A (en) Magnetic materials and methods of making such materials
JP3310019B2 (en) Method of manufacturing pellets with high strength of preheated pellets
EP0011981A1 (en) Method of manufacturing powder compacts
JPH01294802A (en) Production of flat fine fe-ni-al alloy powder
NL8301491A (en) METHOD FOR PRODUCING MAGNETIC METAL OXIDES
JPH07310101A (en) Reduced iron powder for sintered oilless bearing and its production
JPS58144401A (en) Preparation of tungsten alloy
US2200491A (en) Manufacture of magnetic materials
JPH0543248A (en) Method for controlling density of raw oxides for ferrite
US2140889A (en) Method for producing magnetic powder
JPS6136046B2 (en)
JPS5940787B2 (en) Method for producing ferrite raw material from mill scale
US3418104A (en) Producing pulverulent iron for powder metallurgy by compacting feed stocks
JPS58190826A (en) Ferromagnetic oxide and manufacture
JPS63166901A (en) Fe-si-a alloy powder