JPS58144401A - Preparation of tungsten alloy - Google Patents

Preparation of tungsten alloy

Info

Publication number
JPS58144401A
JPS58144401A JP2593282A JP2593282A JPS58144401A JP S58144401 A JPS58144401 A JP S58144401A JP 2593282 A JP2593282 A JP 2593282A JP 2593282 A JP2593282 A JP 2593282A JP S58144401 A JPS58144401 A JP S58144401A
Authority
JP
Japan
Prior art keywords
powder
inert gas
gas atmosphere
mixed
dry
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2593282A
Other languages
Japanese (ja)
Inventor
Motoo Kiyomiya
清宮 元男
Seiki Sato
佐藤 清喜
Isamu Koseki
小関 勇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Tokyo Shibaura Electric Co Ltd filed Critical Toshiba Corp
Priority to JP2593282A priority Critical patent/JPS58144401A/en
Publication of JPS58144401A publication Critical patent/JPS58144401A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/045Alloys based on refractory metals

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Powder Metallurgy (AREA)

Abstract

PURPOSE:To obtain a W-alloy with high specific gravity having the same quality as one prepared according to a doping process, by a method wherein a W-powder and two kinds or more of metal powders selected from Ni, Fe, Co and Cu are accommodated in a dry forcedly stirring crusher to be ground and mixed under an inert gas atmosphere by specific spheres as ginding mediums and the resulting mixture is molded and annealed. CONSTITUTION:A W-powder and two kinds or more of metal powders selected from Ni, Fe, Co and Cu are accommodated in a dry forcedly stirring crusher and ground and mixed by spheres of which tap densities are 15 times or more as compared to that of the resulting mixed powder and diameters are 8mm. or less as grinding mediums under an inert gas atmosphere. The obtained mixture is cooled in an inert gas atmosphere and molded and sintered to obtain a W-alloy.

Description

【発明の詳細な説明】 〔発明の技術分針〕 本発明は、比重の高いタングステン合金の製造方法、更
に詳しくは、そのための原料粉末の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Minute Hand of the Invention] The present invention relates to a method for manufacturing a tungsten alloy with a high specific gravity, and more particularly, to a method for manufacturing a raw material powder therefor.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

タングステンは比重が高い(理論密度:192P/cm
j)ので、その合金は放射線遮蔽材、重錘などの部材と
して広く用いられている。
Tungsten has a high specific gravity (theoretical density: 192P/cm
j) Therefore, the alloy is widely used as components for radiation shielding materials, weights, etc.

タングステン合金は一般に次のようにして製造されてい
る。すなわち、タングステン(W)粉末に相手の金属粉
末又はその化合物を所定鼠配合して混合し、得られた混
合粉末を所定形状に成形し、その成形体を例えば水素気
流中で予備焼結した後、本焼結するものである□ 上記工程群のうち、混合粉末の調製に力・かる工程は・
製造されるタングステン合金の比重に多大な影響を与え
るので、高比重タングステン合金の製造にとっては極め
て*要である〜この混合粉末の調製方法としては概ね次
の3つの方法が広く適用されている。
Tungsten alloys are generally manufactured as follows. That is, tungsten (W) powder is mixed with the other metal powder or its compound in a predetermined proportion, the obtained mixed powder is molded into a predetermined shape, and the molded body is pre-sintered in, for example, a hydrogen stream. , main sintering □ Among the above process groups, the process that takes effort to prepare the mixed powder is -
Since it has a great influence on the specific gravity of the tungsten alloy produced, it is extremely important for the production of high specific gravity tungsten alloys. Generally, the following three methods are widely applied as a method for preparing this mixed powder.

第1の方法は、二酸化タングステン(WO3)などのタ
ングステン酸化物の粉末に、鉄(Fe)、ニッケル(N
i) 、=rバルト(CO)、銅(Cu)17)塩類(
例えば、塩酸塩、硝酸塩)の2種類以上を所定に配合1
2、攪拌、加熱乾燥した後、例えば水素気流中で還元し
てW粉末の表面を上記した2種類量ヒの金属で被覆する
ものである。
The first method involves adding tungsten oxide powder such as tungsten dioxide (WO3) to iron (Fe) and nickel (N).
i) , =r Baltic (CO), copper (Cu) 17) Salts (
For example, two or more types of hydrochloride, nitrate) are mixed in a prescribed manner.
2. After stirring and drying by heating, the surface of the W powder is coated with the above-mentioned two kinds of metals in amounts A by reducing the powder in a hydrogen stream, for example.

第2の方法は、タングステン酸化物に代えてW粉末それ
自体を用いることを除いては、第1の方法と同様の処置
を施すものである。
The second method is similar to the first method, except that W powder itself is used instead of tungsten oxide.

これら第1の方法、第2の方法は、一般にドープ法と呼
ばれ高比重のタングステン合金の製造を11能とする1
゜ しかしながら、ドープ法にあっては、用いる塩類が通常
酸溶液なので、上記した加熱乾燥時に塩酸ガス、硝酸ガ
スなどの有害ガスの発生が避けられず、その結果、製造
設備の腐蝕、作業者への健康上の悪影梼などの事態がも
たらされる。そのための防護処置は、工程、装置の煩雑
さを招き、製品コストの上昇をもたらして工業的には不
都合である。
The first method and the second method are generally called doping methods, and are a method that enables the production of tungsten alloys with high specific gravity.
However, in the doping method, since the salts used are usually acid solutions, it is unavoidable that harmful gases such as hydrochloric acid gas and nitric acid gas are generated during the above-mentioned heating and drying process, resulting in corrosion of manufacturing equipment and damage to workers. This can lead to adverse health effects. Protective measures for this purpose are industrially inconvenient because they complicate processes and equipment and increase product costs.

第3の方法は、W粉末にFe 、Ni 、Co 、Cu
の金属粉末の2種類以上を所定用配合し、これらをボー
ルミル、らいかい機などの混合機で充分に混合するもの
である。
The third method is to add Fe, Ni, Co, Cu to W powder.
Two or more kinds of metal powders are blended in a predetermined proportion, and these are sufficiently mixed in a mixer such as a ball mill or a miller.

この粉末混合法を適用すれば、ドープ法における欠点を
解消して簡単かつ安価に混合粉末を調製することができ
るので工業的には有利である。
If this powder mixing method is applied, it is industrially advantageous because the drawbacks of the doping method can be overcome and a mixed powder can be prepared easily and inexpensively.

しかしながら、この方法で得られた混合粉末からは高比
重のダンゲステン合金を製造することが極めて困難であ
る。それは、Wと上記金属との間の濡れ性が悪いので、
焼結時に合金中には相互の界面で空孔(巣)が多発して
、ドープ法による場合に比べて多孔質となるためである
However, it is extremely difficult to produce a high specific gravity dungesten alloy from the mixed powder obtained by this method. This is because the wettability between W and the above metal is poor.
This is because many pores (cavities) are generated in the alloy at mutual interfaces during sintering, making the alloy more porous than when using the doping method.

一方、粉末混合法にあっては、湿式混合法と乾式混合法
とがある。
On the other hand, powder mixing methods include wet mixing methods and dry mixing methods.

湿式混合法は、水、各種の有機溶剤などを適量添加して
混合する・方法であって、その混合効率が高いという特
徴を有する。しかしながら、この方法は混合後におりる
混合粉末の乾燥工程を不可欠とする。水の使用は金属粉
末の酸化を招くことがあり、他方、有機溶剤を使用する
場合は、酸化の虞れは解消するが、乾燥装置における防
爆・回収処理を施さなければならず製品コストの上昇を
招く。
The wet mixing method is a method of adding and mixing appropriate amounts of water, various organic solvents, etc., and is characterized by high mixing efficiency. However, this method requires a step of drying the mixed powder after mixing. The use of water may lead to oxidation of the metal powder; on the other hand, if an organic solvent is used, the risk of oxidation is eliminated, but explosion-proofing and recovery processes must be performed in the drying equipment, which increases product costs. invite.

乾式混合法は、湿式混合法における上記のような不都合
は生じ表いが、粉末相互の混合効率の低下をもたらす。
The dry mixing method does not suffer from the above-mentioned disadvantages of the wet mixing method, but it also results in a decrease in the efficiency of mixing powders with each other.

〔発明の目的] 本発明は、高比重のタングステン合金の製造方法、とり
わけ、それに適した原料の混合粉末を乾式の粉末混合法
で製造する方法の提供を目的とする。
[Object of the Invention] An object of the present invention is to provide a method for producing a high specific gravity tungsten alloy, and in particular, a method for producing a mixed powder of raw materials suitable for the production by a dry powder mixing method.

〔発明の概要〕[Summary of the invention]

本発明者らは、ドープ法による混合粉末は、W粉末の表
向が、水素還元により析出したFe。
The present inventors have discovered that the mixed powder produced by the doping method contains Fe precipitated by hydrogen reduction on the surface of the W powder.

Ni、Co、Cuなどの金属で被覆された状態にあると
いう事実に着目した。したがって、乾式の粉末混合法に
おいても、なんらかの手段を講じて類似の状態が得られ
れば、その混合粉末はドープ法によるものと遜色のない
高比重ダンゲステン合金の原料粉末になり得るであろう
、との着想を得、そのために、乾式強制攪拌粉砕機を用
いて行なわれ、近時注目を集めている機械的合金法を適
用することによって本発明を完成するに到った。
We focused on the fact that it is coated with metals such as Ni, Co, and Cu. Therefore, if a similar state can be obtained in the dry powder mixing method by some means, the mixed powder could be used as a raw material powder for high-density dungesten alloys, comparable to those obtained by the doping method. Therefore, the present invention was completed by applying a mechanical alloying method, which is carried out using a dry forced stirring pulverizer and has been attracting attention recently.

すなわち、本発明方法は、乾式強制攪拌粉砕機の中に、
W粉末とli’e 、Ni 、Co 、Cuの群から選
ばれる2種類以上の金属粉末とを同時に収納し1これら
粉末を、比重が該W粉末と該金属粉末とから成る混合粉
末のタップ密度の15倍値以上である球体を媒体として
、不活性ガス雰囲気中で粉砕・混合処理した後;不活性
ガス雰囲気中で冷却し!得られた処理粉末を成形、焼結
することを特徴とするものである。
That is, in the method of the present invention, in a dry forced stirring pulverizer,
W powder and two or more kinds of metal powders selected from the group of li'e, Ni, Co, and Cu are simultaneously housed, and the tap density of the mixed powder having a specific gravity of the W powder and the metal powder is determined. After pulverizing and mixing in an inert gas atmosphere using a sphere with a value of 15 times or more as a medium; cooling in an inert gas atmosphere! This method is characterized by molding and sintering the obtained treated powder.

本発明方法では、まず、W粉末とii’e 、Ni 、
Co 。
In the method of the present invention, first, W powder and ii'e, Ni,
Co.

Cuの2′IIi類以上の金属粉末とを砕料として、乾
式強制攪拌粉砕機の中に同時に所定量収納する。
A predetermined amount of Cu metal powder of class 2'IIi or higher is simultaneously stored in a dry forced stirring pulverizer as a pulverizer.

ここで、乾式強制攪拌粉砕機とは、例えば乾式アトライ
タ(商品名、■三井三池製作所製)として市販されてい
る粉砕機であって、ロケット、ジェットエンジン部品な
どの耐熱高強度合金の製造に近時用いられている1、こ
の粉砕機は、外周に水冷ジャケットを備えた粉砕タンク
内に、複数本の攪拌羽根(又はアーム)を備えた攪拌軸
が内股された構造である。砕料の粉砕処理に当っては、
該タンク内に所定直径の、例えば、スチールボールから
成る多数個の媒体を砕料とともに収納した後、攪拌軸を
高速回転させる。
Here, the dry-type forced stirring pulverizer is a pulverizer commercially available as, for example, Dry-type Attritor (trade name, manufactured by Mitsui Miike Manufacturing Co., Ltd.), which is used for manufacturing heat-resistant high-strength alloys such as rocket and jet engine parts. 1. This pulverizer, which is used at the time, has a structure in which a stirring shaft equipped with a plurality of stirring blades (or arms) is housed inside a pulverizing tank equipped with a water-cooled jacket on the outer periphery. When crushing crushed materials,
After a large number of media consisting of, for example, steel balls having a predetermined diameter are stored in the tank together with the crushed material, the stirring shaft is rotated at high speed.

媒体と砕料は、攪拌羽根によって強制的に攪拌されて粉
砕タンク内で流動する。このとき、媒体相互の衝突、摩
擦々どによって、砕料には繰返し変杉、破断などの現象
が起ってそのたびに砕料には原子的に新鮮な表面が形成
されて砕料相互の接合・合金化が進行する。
The medium and the crushed material are forcibly stirred by stirring blades and flowed within the crushing tank. At this time, due to mutual collisions and friction between the media, phenomena such as deformation and breakage occur repeatedly in the crushed material, and each time a new atomically fresh surface is formed on the crushed material, causing the mutual friction between the crushed materials. Joining and alloying progress.

したがって、本発明方法において該粉砕機を用いて強制
攪拌粉砕すればW粉末とFe、Nj。
Therefore, in the method of the present invention, if the grinder is used to forcefully stir and grind, W powder, Fe, and Nj are produced.

CO,CLIの金属粉末とがそれぞれ上記したような作
用を受け、相対的にt!!!質なW粉末の表面に相対的
に軟質なFe 、Ni 、Co 、Cu  が接合して
、一種の被覆状態を構成することが可能となる。
The metal powders of CO and CLI are each subjected to the above-mentioned action, and relatively t! ! ! Relatively soft Fe 2 , Ni 2 , Co 2 , and Cu 2 bond to the surface of the high-quality W powder, making it possible to form a kind of coating state.

さて、本発明方法にあっては、媒体として、比重が砕料
(W粉末と金属粉末の混合物)のタップ密度の1.5倍
以上でありかつ直径が8wm以下の真球を用いる。
Now, in the method of the present invention, a true sphere with a specific gravity of 1.5 times or more than the tap density of the crushed material (a mixture of W powder and metal powder) and a diameter of 8 wm or less is used as the medium.

比重が上記値より小さい場合には、媒体が砕料(主とし
て比重の高いW)から浮いてしまい、砕料が粉砕機底部
に層をなして滞留して砕料の粉砕が円滑に進行しない。
If the specific gravity is smaller than the above value, the medium will float away from the granules (mainly W, which has a high specific gravity), and the granules will stay in a layer at the bottom of the mill, and the pulverization of the granules will not proceed smoothly.

°まだ、媒体たる真球の直径が8鴎を超えると、媒体間
に形成される空間が大きくなって砕料を粉砕機の上方域
に分散させる(まきあける)ことが充分とはならないた
め、この場合も砕料が粉砕機底部で滞留することになる
。史には、スクリュウ−と粉砕機底部の空間(通常、媒
体径の2〜3倍の間隔)を媒体が円滑に移動せず衝撃音
のみを発すること社なる。媒体としては、通常、直径6
〜7−のスチールボールが好適である。
°However, if the diameter of the true sphere that is the medium exceeds 8 mm, the space formed between the media will become large and it will not be possible to sufficiently disperse (sprinkle) the crushed material into the upper area of the crusher. In this case as well, the crushed material remains at the bottom of the crusher. Historically, the medium does not move smoothly in the space between the screw and the bottom of the crusher (usually the distance is 2 to 3 times the diameter of the medium), and only impact noise is generated. The medium usually has a diameter of 6
~7- steel balls are preferred.

粉砕処理に当っては、媒体、砕料の摩擦によって多数の
熱が発生する。そして、本発明で対象とするFe 、N
i 、Co 、Cuなどの金属粉末は、通常、粒径1〜
4μm程度であるため、その比表面積は著しく増大して
いて、吸湿性、易酸化性の表面状態にある。
During the crushing process, a large amount of heat is generated due to friction between the medium and the crushed material. Then, Fe, N which is the object of the present invention
Metal powders such as i, Co, and Cu usually have a particle size of 1 to
Since it is approximately 4 μm, its specific surface area is significantly increased, and the surface is hygroscopic and easily oxidized.

したがって、粉砕時における上記金属粉末の酸化を防止
するために、粉砕機円筒内には、窒素、アルゴン、ヘリ
ウムなどの不活性ガスヲ導入し粉砕領域を不活性ガス雰
囲気にしなければならない。
Therefore, in order to prevent oxidation of the metal powder during crushing, an inert gas such as nitrogen, argon, helium, etc. must be introduced into the crusher cylinder to create an inert gas atmosphere in the crushing area.

粉砕処理を終了した後、砕料はそのまま不活性ガス雰囲
気中で冷却されてから取り出される。
After finishing the crushing process, the crushed material is cooled in an inert gas atmosphere and then taken out.

粉砕直後に砕料を空気中に取り出すと、一部に生成した
超微粉末が、次第に発熱しやがては着火するという事態
を招くので危険である。
If the crushed material is taken out into the air immediately after pulverization, it is dangerous because the ultrafine powder that has formed in some parts will gradually generate heat and eventually ignite.

このようにして得られた処理粉末は、W粉末の表面がl
i’e 、Ni 、Co 、Cuと合金化した状態にあ
り、両者粉末を単純に乾式粉末混合法で混合したときの
場合よりも濡れ性が改善されている。
The treated powder thus obtained has a surface of W powder of l
It is in an alloyed state with i'e, Ni, Co, and Cu, and its wettability is improved compared to when these powders are simply mixed by a dry powder mixing method.

本発明方法においては、この処理粉末を常法にしたがっ
て、所定形状に成形した後、焼結して所望のタングステ
ン合金とする。
In the method of the present invention, this treated powder is formed into a predetermined shape according to a conventional method and then sintered to form a desired tungsten alloy.

〔発明の実施例〕[Embodiments of the invention]

実施例 乾式アトライタ(商品名、MA−ID型:■三井三池製
作所製)の中に、平均粒径1.5μmのW粉末と1.5
重t%置のカルボニル−ニッケル粉末(平均粒径43μ
m)と2.51i1%量の電解銅粉末(平均粒径1.2
μm)とを同時に収納した。
Example In a dry attritor (trade name, MA-ID type: ■ manufactured by Mitsui Miike Seisakusho), W powder with an average particle size of 1.5 μm and 1.5
Carbonyl-nickel powder (average particle size 43μ) at weight t%
m) and 2.51i1% amount of electrolytic copper powder (average particle size 1.2
μm) were stored at the same time.

粉末全体のタップ密度は4.5 y/crn”であった
The overall powder tap density was 4.5 y/crn''.

媒体として直径6.35 wm 、比重7. f3 y
 7cm”のスチールボールを4.2Q用いた。粉砕機
を密閉した後、N2ガスを円筒内に導入して空気と置換
した1、外周の水冷ジャケットに20 Cの水を流しな
がら、160rpmでスクリニウーを回転し、6時間粉
砕処理を行なった。ジャケットの出口水温は42Cに昇
温[、た。スクリュウ−回転しながら、底部の排出[J
から混合粉末を、窒素雰囲気に保った容器の中に取出し
、そのま−冷却した。
The medium has a diameter of 6.35 wm and a specific gravity of 7. f3 y
7 cm" steel balls were used. After sealing the crusher, N2 gas was introduced into the cylinder to replace air. The water temperature at the outlet of the jacket was raised to 42C.While the screw was rotating, the bottom discharge [J
The mixed powder was taken out into a container kept in a nitrogen atmosphere and cooled.

混合粉末を粉砕機から取り出し、所定の型に充填し、1
.51’n n10n”が加圧成形した後13soc−
r焼結した1゜ 焼結体の比重は19. Of 17cm”であった。こ
れは理論密度の99%に相当する値である1゜比較例1 平均粒径15μmのW粉末に、Niに換算して15重社
%社に相当するN i (NO3) 2の溶液とCuに
換算して25重緻%敏に相当するC u CQ 2溶液
とを添加して攪拌した。得られた泥漿を10Orで3時
開撹拌乾燥1−た後、850Cの水素炉中で還元処理し
た。得られた粉末を実施例と同一の条件により焼結体と
lまた。焼結体の比重は19.01 f 7cm3であ
った。。
Take out the mixed powder from the pulverizer, fill it into a specified mold, and
.. 51'n n10n'' after pressure molding 13soc-
The specific gravity of the 1° sintered body is 19. Of 17 cm". This value corresponds to 99% of the theoretical density. A solution of NO3) 2 and a Cu CQ 2 solution equivalent to 25% heavy density in terms of Cu were added and stirred.The resulting slurry was dried at 10 Orr with stirring for 3 hours, and then dried at 850C. The resulting powder was mixed with a sintered body under the same conditions as in the example.The specific gravity of the sintered body was 19.01 f 7cm3.

比較例2 実施例と同じ仕様の各粉末を、ボールミルで4時間粉砕
・混合した。得られた粉末を実施例と同一の条件により
焼結体とした。焼結体の比重は、1824ノ/crn3
であった。これは理論密度の95%に相当する。
Comparative Example 2 Each powder having the same specifications as in the example was ground and mixed in a ball mill for 4 hours. The obtained powder was made into a sintered body under the same conditions as in the example. The specific gravity of the sintered body is 1824 no/crn3
Met. This corresponds to 95% of the theoretical density.

(11) 〔発明の効果〕 本発明方法によれば、■粉末混合法を適用するにもかか
わらすドープ法と同等の特性を備えた高比重タングステ
ン合金用の出発原料を#製できる、■しかも、乾式混合
法の適用なので湿式混合法に付随する諸問題は解消され
る、(■ドープ法に伴う工業上の不都合は解決される、
などの効果を奏し、高比重タングステン合金の製造方法
としてはその且業的価値は極めて大である。
(11) [Effects of the Invention] According to the method of the present invention, it is possible to produce a starting material for a high-density tungsten alloy with properties equivalent to those of the doping method despite applying the powder mixing method; , Since the dry mixing method is applied, various problems associated with the wet mixing method are solved (■ Industrial inconveniences associated with the dope method are solved,
It has the following effects and is of extremely great industrial value as a method for producing high-density tungsten alloys.

(12)(12)

Claims (2)

【特許請求の範囲】[Claims] (1)  乾式強制攪拌粉砕機の中に、タングステン粉
末と、鉄、ニッケル、コバルト、銅の群から選ばれる2
種類以上の金属粉末とを同時に収納し藁 これら粉末を、比重が該タングステン粉末と該金属粉末
とから成る混合粉末のタップ密度の15倍値以上である
球体を媒体として、不活性ガス雰囲気中で粉砕・混合処
理した後i不活性ガス雰囲気中で冷却し; 得られた処理粉末を、成形、焼結することを%徴とする
タングステン合金の製造方法。
(1) In the dry forced stirring pulverizer, tungsten powder and 2 metals selected from the group of iron, nickel, cobalt, and copper are added.
At the same time, these powders are stored in an inert gas atmosphere using a sphere whose specific gravity is at least 15 times the tap density of the mixed powder consisting of the tungsten powder and the metal powder. A method for producing a tungsten alloy, which comprises: cooling in an inert gas atmosphere after pulverizing and mixing; and molding and sintering the obtained treated powder.
(2)  該球体が直径8u以下の真球である特許請求
範囲第1項記載のタングステン合金の製造方法、。
(2) The method for producing a tungsten alloy according to claim 1, wherein the sphere is a true sphere with a diameter of 8u or less.
JP2593282A 1982-02-22 1982-02-22 Preparation of tungsten alloy Pending JPS58144401A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2593282A JPS58144401A (en) 1982-02-22 1982-02-22 Preparation of tungsten alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2593282A JPS58144401A (en) 1982-02-22 1982-02-22 Preparation of tungsten alloy

Publications (1)

Publication Number Publication Date
JPS58144401A true JPS58144401A (en) 1983-08-27

Family

ID=12179546

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2593282A Pending JPS58144401A (en) 1982-02-22 1982-02-22 Preparation of tungsten alloy

Country Status (1)

Country Link
JP (1) JPS58144401A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02256283A (en) * 1988-11-15 1990-10-17 Agency Of Ind Science & Technol Thermoelectric material and manufacture thereof
JPH04218602A (en) * 1990-12-18 1992-08-10 Fukuda Metal Foil & Powder Co Ltd Production of metal coated composite powder
US5821441A (en) * 1993-10-08 1998-10-13 Sumitomo Electric Industries, Ltd. Tough and corrosion-resistant tungsten based sintered alloy and method of preparing the same
WO2010119785A1 (en) 2009-04-17 2010-10-21 Jx日鉱日石金属株式会社 Barrier film for semiconductor wiring, sintered sputtering target, and method of manufacturing sputtering targets
CN110358941A (en) * 2019-08-12 2019-10-22 河南科技大学 A kind of tungsten alloy material and preparation method thereof

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02256283A (en) * 1988-11-15 1990-10-17 Agency Of Ind Science & Technol Thermoelectric material and manufacture thereof
JPH04218602A (en) * 1990-12-18 1992-08-10 Fukuda Metal Foil & Powder Co Ltd Production of metal coated composite powder
US5821441A (en) * 1993-10-08 1998-10-13 Sumitomo Electric Industries, Ltd. Tough and corrosion-resistant tungsten based sintered alloy and method of preparing the same
WO2010119785A1 (en) 2009-04-17 2010-10-21 Jx日鉱日石金属株式会社 Barrier film for semiconductor wiring, sintered sputtering target, and method of manufacturing sputtering targets
US9051645B2 (en) 2009-04-17 2015-06-09 Jx Nippon Mining & Metals Corporation Barrier film for semiconductor wiring, sintered compact sputtering target and method of producing the sputtering target
CN110358941A (en) * 2019-08-12 2019-10-22 河南科技大学 A kind of tungsten alloy material and preparation method thereof

Similar Documents

Publication Publication Date Title
CN109261980B (en) Preparation method of tungsten powder for high-density alloy
JP5874951B2 (en) Method for producing RTB-based sintered magnet
US5866273A (en) Corrosion resistant RAM powder
CN113579246B (en) Preparation method of nano high-entropy alloy powder
JPH01116002A (en) Production of composite metal powder from base iron powder and alloying component and composite metal powder
JPS6289803A (en) Powdery particle for fine granular hard alloy and its production
JPS58144401A (en) Preparation of tungsten alloy
CN111872414B (en) Preparation method of micro-nano pre-alloyed powder
CA1041324A (en) Process for the production of high apparent density water atomized steel powders
JPH03122205A (en) Manufacture of ti powder
CN112626404A (en) 3D printing high-performance WMoTaTi high-entropy alloy and low-cost powder preparation method thereof
JPS59159903A (en) Method and device for producing metallic powder
US4053578A (en) Process for oxidizing primarily nickel powders
CN114192788B (en) Alumina dispersion strengthening copper-tin alloy powder and preparation method thereof
JP2002004015A (en) Iron-based amorphous spherical grain
JP3755882B2 (en) Apparatus and method for producing alloy powder for permanent magnet
JP2005226114A (en) Method of producing hydrogen storage alloy powder, and hydrogen storage alloy powder obtained by the production method
CN110499443A (en) A kind of high-performance mold materials and preparation method thereof
JP2560567B2 (en) Method for producing hydrogen storage alloy
US4174211A (en) Process for manufacturing composite powder for powder metallurgy
JP2560566B2 (en) Method for producing hydrogen storage alloy
JP3755883B2 (en) Apparatus and method for producing alloy powder for permanent magnet
JPH022810B2 (en)
JP4101737B2 (en) Apparatus and method for producing alloy powder for permanent magnet
JP4086241B2 (en) Hydrogen storage alloy powder