JPH02256283A - Thermoelectric material and manufacture thereof - Google Patents

Thermoelectric material and manufacture thereof

Info

Publication number
JPH02256283A
JPH02256283A JP1293915A JP29391589A JPH02256283A JP H02256283 A JPH02256283 A JP H02256283A JP 1293915 A JP1293915 A JP 1293915A JP 29391589 A JP29391589 A JP 29391589A JP H02256283 A JPH02256283 A JP H02256283A
Authority
JP
Japan
Prior art keywords
raw material
mixing
material containing
sintering
tellurium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1293915A
Other languages
Japanese (ja)
Other versions
JP2835406B2 (en
Inventor
Toshitaka Ota
敏隆 太田
Takenobu Kajikawa
武信 梶川
Takashi Uesugi
隆 上杉
Tatsuo Tokiai
健生 時合
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Idemitsu Petrochemical Co Ltd
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Idemitsu Petrochemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology, Idemitsu Petrochemical Co Ltd filed Critical Agency of Industrial Science and Technology
Priority to JP1293915A priority Critical patent/JP2835406B2/en
Publication of JPH02256283A publication Critical patent/JPH02256283A/en
Application granted granted Critical
Publication of JP2835406B2 publication Critical patent/JP2835406B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Abstract

PURPOSE:To easily manufacture the little material by intermixing specific metal powder to be a raw material and forming and sintering it. CONSTITUTION:Being a raw material containing at least bismuth and a raw material containing at least tellurium while a raw material, which is not totally alloyed, is used for being concrashed and mixed so that a mixing ratio of the raw materials may desirably become the former : the latter = 2:3 (mole ratio) followed by being cocrached formed and sintered. In order to simultaneously progress mixture and cocrashing, that is, in order to perform cocrashing mixing, a planetary type ball is desirably used. Thereby, a manufacture process can be simplified.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、熱電材料およびその製造方法に関し、詳しく
は特異な性能を有する熱電材料ならびに製造工程を簡略
化した工業的に有利な熱電材料の製造方法に関する。
Detailed Description of the Invention [Field of Industrial Application] The present invention relates to a thermoelectric material and a method for producing the same, and more particularly, to a thermoelectric material having unique performance and an industrially advantageous thermoelectric material with a simplified production process. Regarding the manufacturing method.

〔従来の技術及び発明が解決しようとする課題〕ゼーベ
ック効果を利用した熱電発電素子、あるいはベルチェ効
果を利用した電子冷却素子は、構造が簡単で取扱が容易
であることから注目されている。これらの熱電変換材料
(熱電材料)は、宇宙開発、海洋開発、僻地用電源、温
度センサーや半導体製造プロセスにおける恒温装置、エ
レクトロニクスデバイスの冷却など種々の分野において
幅広く利用されている。また、このような熱電材料を製
造する方法として従来から種々の手段が提供されてきて
いる。例えば、(1)原料を混合溶解してインゴット化
してスライスする結晶インゴット製造法、(2)原料粉
末、あるいは混合溶解物を粉末化した後に、これを成形
焼結し、必要に応じてスライスする粉末焼結製造法、(
3)多結晶化−帯溶解製造法、さらには(4)非晶質製
造法や(5)薄・厚膜製造法等各種の製造法が知られて
いる。
[Prior Art and Problems to be Solved by the Invention] Thermoelectric power generating elements that utilize the Seebeck effect or electronic cooling elements that utilize the Beltier effect have attracted attention because of their simple structure and ease of handling. These thermoelectric conversion materials (thermoelectric materials) are widely used in various fields such as space development, ocean development, power supplies for remote areas, temperature sensors, constant temperature devices in semiconductor manufacturing processes, and cooling of electronic devices. Moreover, various means have been conventionally provided as methods for manufacturing such thermoelectric materials. For example, (1) a crystalline ingot production method in which raw materials are mixed and melted, formed into an ingot, and sliced; (2) the raw material powder or mixed melt is powdered, then shaped and sintered, and sliced as necessary. Powder sintering manufacturing method, (
Various manufacturing methods are known, such as 3) polycrystallization-zonal melting manufacturing method, (4) amorphous manufacturing method, and (5) thin/thick film manufacturing method.

しかし、これらのいずれの方法も工程が1141で、し
かも融解混合という長時間の処理を必要とするなど量産
性が低いという問題があり、また、工程中にスライス操
作を含むものではスライスロスが発生し、あるいは多結
晶化−帯溶解製造法では、結晶による電気的・機械的な
方向性が生じていた。
However, all of these methods require 1141 steps and require a long process of melting and mixing, resulting in low mass productivity.Also, methods that include slicing operations during the process cause slicing loss. However, in the polycrystallization-zonal melting production method, electrical and mechanical directionality was caused by the crystals.

さらに超小型の素子の製造が困難であるなどの理由によ
り、その応用範囲は一部の分野に限られていた。
Furthermore, due to the difficulty of manufacturing ultra-small devices, the scope of its application has been limited to some fields.

特に従来の方法にあっては、成形方法が限定されており
、種々の成形方法によって任意の形状の成形品を得るこ
とが困難であるという本質的な問題点があった。
In particular, conventional methods have a fundamental problem in that the molding methods are limited and it is difficult to obtain molded products of arbitrary shapes using various molding methods.

また特開昭59−143383号公報には、これらの問
題を解決する一手段として、鉛テルル化合物とマンガン
系の金属を強制混合することが記載されているが、未だ
充分な方法とはいえない。
Furthermore, JP-A No. 59-143383 describes forced mixing of a lead tellurium compound and a manganese metal as a means of solving these problems, but this method is still not sufficient. .

さらに、特開昭64−37456号公報には、Bi2T
e、−Bj2Se4固溶体粉末の焼結体を製造する方法
が開示されているが、工程が複雑で実用化には不適当な
ものである。
Furthermore, in JP-A No. 64-37456, Bi2T
Although a method for producing a sintered body of e,-Bj2Se4 solid solution powder is disclosed, the process is complicated and is inappropriate for practical use.

〔課題を解決するだめの手段〕[Failure to solve the problem]

そこで、本発明者らは、製造工程が簡略で、収率も高く
、種々の成形方法により任意の素子を直接得ることも可
能な熱電材料を開発すべく鋭意研究を重ねた。その結果
、特定の原料を用いるとともに、該原料を共粉砕混合す
ることにより、上記目的を達成できることを見出した。
Therefore, the present inventors have conducted extensive research in order to develop a thermoelectric material that has a simple manufacturing process, a high yield, and can be used to directly obtain any desired element using various molding methods. As a result, it has been found that the above object can be achieved by using specific raw materials and co-pulverizing and mixing the raw materials.

本発明はかかる知見に基いて完成したものである。The present invention was completed based on this knowledge.

すなわち本発明は、少なくともビスマスを含有する原料
七少なくともテルルを含有する原料であって全体を合金
化したものでない原料を共粉砕混合した後に、成形し、
焼結してなる熱電材料を提供するとともに、少なくとも
ビスマスを含有する原料と少なくともテルルを含有する
原料であって全体を合金化したものでない原料を共粉砕
混合した後に、成形し、焼結することを特徴とする熱雷
材料の製造方法を提供するものである。
That is, in the present invention, after co-pulverizing and mixing seven raw materials containing at least bismuth and seven raw materials containing at least tellurium that are not entirely alloyed,
To provide a thermoelectric material obtained by sintering, and to co-pulverize and mix a raw material containing at least bismuth and a raw material containing at least tellurium, which are not entirely alloyed, and then molding and sintering. The present invention provides a method for producing a thermal lightning material characterized by the following.

上記熱電材料の原料は、少なくともビスマスを含有する
原料(粉巣)と少なくともテルルを含有する原料(粉末
)であり、全体(全組成物)を合金化した原料(粉末)
を用いる従来方法とは全く異なる。
The raw materials for the thermoelectric material mentioned above are a raw material containing at least bismuth (powder nest) and a raw material containing at least tellurium (powder), and the raw material (powder) is an alloy of the entire composition (total composition).
This method is completely different from the conventional method using .

その原料としては、ビスマスとテルルの他に、アンチモ
ン、セレンなどの粉末、あるいはテルルとアンチモンの
粉末、さらにはテルル・アンチモンの合金粉末などとす
ることもできる。これらの原料の粒径は、特に制限はな
いが、通常は平均20〜70tImのものであり、11
00u以上のものを含まないものが好ましい。なお、粒
径の大きいものは、事前に粉砕等の手段により上記粒径
の範囲に調節しておくことが好ましい。
In addition to bismuth and tellurium, the raw material may also be powders of antimony, selenium, etc., powders of tellurium and antimony, or alloy powders of tellurium and antimony. The particle size of these raw materials is not particularly limited, but is usually 20 to 70 tIm on average, and 11
Preferably, it does not contain anything larger than 00u. In addition, if the particle size is large, it is preferable to adjust the particle size to the above range by means of pulverization or the like in advance.

また原料の種類やその混合比は、様々な態様が考えられ
るが、例えばBi: Te=2 : 3(モル比)。
Various types of raw materials and their mixing ratio can be considered; for example, Bi:Te=2:3 (molar ratio).

Bi: Sb:Te=2 : 8 : 15(モル比)
、Bi:Te:5e=2:2:1(モル比)あるいは(
Bi+Sb): (Te +5e)−2: 3(モル比
)などがあり、特ニヒスマス(B i)またはビスマス
+アンチモン(Bi十Sb)とテルル +Se)を約2:3の割合で含有させることにより、6
00に以下で非常に優れた性能を有する熱電材料を得る
ことができる。
Bi:Sb:Te=2:8:15 (molar ratio)
, Bi:Te:5e=2:2:1 (molar ratio) or (
Bi + Sb): (Te + 5e) - 2: 3 (molar ratio), etc., and especially by containing nihismuth (Bi) or bismuth + antimony (Bi + Sb and tellurium + Se) in a ratio of about 2: 3. ,6
00 or less, thermoelectric materials with very good performance can be obtained.

また、原料として、上記成分を含有するものであれば、
融解混合をしていない単体金属あるいは精練過程で得ら
れる金属混合物,金属化合物,原料組成の部分的合金を
用いることもできる。
In addition, if the raw material contains the above ingredients,
It is also possible to use a single metal that has not been melt-mixed, a metal mixture obtained in a scouring process, a metal compound, or a partial alloy of the raw material composition.

さらに上記原料には、適量の導電型不純物(ドーパント
)を混入することが望ましい。このドーパントとしては
、従来から用いられているものを常法にしたがって添加
混入することができるが、例えば熱電材料をn形とする
場合には、Sblj。
Further, it is desirable to mix an appropriate amount of conductivity type impurity (dopant) into the above raw material. As this dopant, conventionally used dopants can be added and mixed according to a conventional method. For example, when the thermoelectric material is an n-type, Sblj is used.

CuTe,Cu,S,CuI,CuBr,AgBrなど
を用いることができる。またp形とする場合には、Te
CuTe, Cu, S, CuI, CuBr, AgBr, etc. can be used. In addition, in the case of p-type, Te
.

Cd,Sb,Pb,As,Bi,Seなどを用いること
ができる.特に上記の如くビスマスとテルルを約2:3
で含有させる際には、n形の場合はSb13を用いるこ
とが、またp形の場合にはTeやSeを用いることが溶
解度や安定性の面から好ましい。
Cd, Sb, Pb, As, Bi, Se, etc. can be used. In particular, as mentioned above, bismuth and tellurium are mixed at about 2:3.
In the case of n-type, it is preferable to use Sb13, and in the case of p-type, it is preferable to use Te or Se from the viewpoint of solubility and stability.

このドーパントの添加量は、原料の種類や混合比、ある
いはドーパントとなる物質の種類等により適宜決定され
るものであるが、通常は0.01〜10モル%、好まし
くは0.05〜5モル%が適当である。
The amount of this dopant to be added is appropriately determined depending on the type and mixing ratio of raw materials, the type of substance to be the dopant, etc., but it is usually 0.01 to 10 mol%, preferably 0.05 to 5 mol%. % is appropriate.

本発明の方法においては、このように配合した原料(原
料粉末)を共粉砕混合して充分に混合させるわけである
が、この際に、混合粉砕を同時に進行させて原料の粒子
径をさらに小さくすることが望ましい。この場合、共粉
砕混合は、ボールミル。
In the method of the present invention, the raw materials (raw material powders) blended in this way are co-pulverized and mixed sufficiently, but at this time, the mixed-pulverization is simultaneously progressed to further reduce the particle size of the raw materials. It is desirable to do so. In this case, the co-grinding mixture is ball milled.

衝撃微粉砕機,ジェット粉砕機,塔式摩擦機等の混合と
粉砕を同時に行う手段により行うことができる。これら
の手段になかでもボールミル、特に落下式で°なく遊星
型強力ポールミルを使用することが好ましい.また混合
時の状態は、乾式あるいは湿式のいずれでもよく、例え
ば湿式で行う場合には、混合助剤としては、エタノール
やブタノール等のアルコール類や各種の溶媒を用いて行
うことができる。
This can be carried out by a means for simultaneously mixing and pulverizing, such as an impact pulverizer, jet pulverizer, or tower-type friction machine. Among these methods, it is preferable to use a ball mill, especially a powerful planetary pole mill rather than a falling type. Further, the mixing may be carried out in either a dry or wet manner. For example, in the case of wet mixing, alcohols such as ethanol and butanol or various solvents may be used as mixing aids.

上記共粉砕混合の混合力や混合時間は、粉砕混合後の原
料粉末の平均粒径が0.05〜10μm、好ましくは0
.05〜5μm程度となるように設定することが望まし
い。
The mixing power and mixing time of the above co-pulverization mixing are such that the average particle size of the raw material powder after pulverization and mixing is 0.05 to 10 μm, preferably 0.
.. It is desirable to set the thickness to about 0.05 to 5 μm.

なお、上述の混合と共粉砕を同時に進行させる、即ち共
粉砕混合を行うには、遊星型ボールミルを用いてその粉
砕力を4 X 1 0” (kg−m−s−’/―〕以
上、特に5×10h〜2×107〔kg−m・s−’/
kg)の範囲に選定することが特に好ましい。
In addition, in order to proceed with the above-mentioned mixing and co-pulverization at the same time, that is, to perform co-pulverization mixing, use a planetary ball mill and increase the crushing force to 4 X 10"(kg-m-s-'/-) or more, Especially from 5×10h to 2×107 [kg-m・s-'/
It is particularly preferable to select a range of 1 kg).

ここで上記粉砕力は次式で定義される。Here, the above-mentioned crushing force is defined by the following formula.

式中、Wは処理量(kg)、  nはボール数.mはボ
ールの質量(kg)、  dはポット直径(m)、Vは
ボール速度(m/s)、  tは共粉砕混合時間(s)
を示す。
In the formula, W is the throughput (kg), and n is the number of balls. m is the mass of the ball (kg), d is the pot diameter (m), V is the ball speed (m/s), t is the co-grinding mixing time (s)
shows.

したがって、粉砕力が4xlo”(kg・m−s/kg
)以上となるように処理量.ボール数.ボールの質量,
ポット(遊星型ボールミルのポット)直径.ボール速度
及び共粉砕混合時間について適宜条件を選択し共粉砕混
合を行えば良い。ここで好ましい範囲としてはボール速
度は0.4〜6.0m/ S %共粉砕混合時間3〜6
0時間である。
Therefore, the crushing force is 4xlo" (kg・m-s/kg
) or more. Number of balls. mass of the ball,
Pot (planetary ball mill pot) diameter. Co-pulverization and mixing may be performed by appropriately selecting conditions regarding ball speed and co-pulverization and mixing time. Here, the preferred range is ball speed of 0.4 to 6.0 m/S and % co-pulverization mixing time of 3 to 6.
It is 0 hours.

なお、ボール速度(V)はミルの直径(d)や回転数(
rpm)より次式にしたがって求めることができる。
Note that the ball speed (V) depends on the mill diameter (d) and rotation speed (
rpm) according to the following formula.

(式中、■及びdは上記と同様である.)このような粉
砕力で共粉砕混合を行うと、原料は、状況によっても異
なるが、一般に粉砕力4×10 Ckg −m −s−
’/kg)以上において平均粒径が2μm以下、好まし
くは111m以下のものとなる。
(In the formula, ■ and d are the same as above.) When co-pulverizing and mixing is performed with such a crushing force, the raw materials will be mixed with a crushing force of 4 × 10 Ckg -m -s-, although it varies depending on the situation.
'/kg) or more, the average particle size is 2 μm or less, preferably 111 m or less.

本発明の方法では、次いでこのような原料粉末(微粉末
)を、成形し、焼結することによって目的とする熱電材
料を製造することができる。しかし、本発明の好ましい
態様では、上記の共粉砕混合の後に、粒径150μm以
下の粒子に造粒し、続いて粒径32〜70μmの範囲に
分級して造粒粉の粒径を揃え、しかる後に、成形、焼結
を行うとさらに性能の向上した熱電材料を製造すること
ができる。ここで、造粒は通常はステアリツ酸、パラフ
ィンワックス等のバインダーを用いて、常法にしたがっ
て行えばよい。また分級についても通常行われている方
法に従えばよく、特に制限はない。
In the method of the present invention, the desired thermoelectric material can be manufactured by subsequently molding and sintering such raw material powder (fine powder). However, in a preferred embodiment of the present invention, after the above-mentioned co-pulverization and mixing, the particles are granulated to have a particle size of 150 μm or less, and then classified into a particle size range of 32 to 70 μm to make the particle size of the granulated powder uniform, After that, by performing molding and sintering, it is possible to manufacture a thermoelectric material with further improved performance. Here, granulation may be carried out according to a conventional method, usually using a binder such as stearic acid or paraffin wax. Further, classification may be carried out according to a commonly used method, and there is no particular restriction.

−船釣には篩等を用いて、70μmオーバー及び32μ
mアンダーをカットすればよい。
- For boat fishing, use a sieve, etc.,
Just cut the m under.

更に本発明の方法では、共粉砕混合後の原料粉末を、あ
るいは共粉砕混合後に造粒し、さらには必要により分級
した原料粉末(粒子)を、従来行われていた融解混合処
理を行うことなく、たとえばプレス成形等の加圧手段に
より希望する形状に加圧成形することができる。この加
圧成形は、必要に応じてポリビニルアルコール等のバイ
ンダー成分を添加して行うことができる。加圧成形時の
圧力は、原料粉末の種類や粒径により異なるが、通常は
0.2〜20 ton / cIfl、好ましくは0.
5〜15ton/c4が適当である。
Furthermore, in the method of the present invention, the raw material powder after co-pulverizing and mixing, or the raw material powder (particles) granulated after co-pulverizing and mixing, and further classified if necessary, without performing the conventional melting and mixing process. For example, it can be pressure-molded into a desired shape using a pressure means such as press-forming. This pressure molding can be performed by adding a binder component such as polyvinyl alcohol, if necessary. The pressure during pressure molding varies depending on the type and particle size of the raw material powder, but is usually 0.2 to 20 tons/cIfl, preferably 0.2 to 20 tons/cIfl.
5 to 15 tons/c4 is suitable.

成形方法としては、上記加圧成形の他、押出成′形、射
出成形、コーティング、スクリーン印刷法など任意の成
形方法を採用することができる。
As the molding method, in addition to the above-mentioned pressure molding, any molding method such as extrusion molding, injection molding, coating, and screen printing can be employed.

さらに本発明の方法では、上記成形を行った後、焼結操
作を行うことが必要であり、この焼結処理によって得ら
れる焼結体が熱電材料としての機能を発揮することとな
る。この焼結処理は、前述の成形により得られる成形体
に対して、一般には、常圧あるいは加圧下、アルゴン、
窒素、水素あるいはこれらの混合ガス等の雰囲気下で行
われる。
Furthermore, in the method of the present invention, it is necessary to perform a sintering operation after the above-mentioned molding, and the sintered body obtained by this sintering process functions as a thermoelectric material. This sintering treatment is generally performed on the molded body obtained by the above-mentioned molding under normal pressure or pressurization, using argon,
This is carried out in an atmosphere of nitrogen, hydrogen, or a mixture of these gases.

焼結温度は、原料粉末の種類、混合比等により適宜選択
されるが、通常は300〜600℃で行うことができる
。この際の昇温速度、特に200°C以上における昇温
速度を10に7時間以下とすることが好ましい、これよ
りも速い速度で昇温すると、得られる熱電材料の性能が
低下することがある。また昇温速度が遅すぎると、所定
の温度まで到達するのに長時間を必要とするため、例え
ば5〜10に/時間程度とすることが適当である。なお
、昇温時間は加圧下等の雰囲気や組成等によって異なり
、必ずしもこの範囲に限定されるものではない。
The sintering temperature is appropriately selected depending on the type of raw material powder, the mixing ratio, etc., but it can usually be carried out at 300 to 600°C. In this case, it is preferable that the temperature increase rate, especially at temperatures above 200°C, be 7 to 10 hours or less. If the temperature is increased at a faster rate than this, the performance of the resulting thermoelectric material may deteriorate. . Furthermore, if the temperature increase rate is too slow, it will take a long time to reach a predetermined temperature, so it is appropriate to set it to about 5 to 10 times per hour, for example. Note that the heating time varies depending on the atmosphere under pressure, the composition, etc., and is not necessarily limited to this range.

かかる昇温速度で所定の焼結温度に到達した後、該温度
に所定時間保持して、前記成形体を焼結することにより
、目的の熱電材料を得ることができる。また、焼結時間
は通常0.5〜30時間である。
After reaching a predetermined sintering temperature at such a temperature increase rate, the desired thermoelectric material can be obtained by maintaining the temperature for a predetermined time and sintering the molded body. Moreover, the sintering time is usually 0.5 to 30 hours.

〔実施例〕〔Example〕

次に、発明を実施例及び参考例に基いてさらに詳しく説
明する。
Next, the invention will be explained in more detail based on Examples and Reference Examples.

実施例1−14および参考例1. 2 第1表に示すように、各種組成の100メンシユパスの
原料粉末及びドーパントを用意し、それぞれをエタノー
ルを加えた遊星型湿式ボールミルにて3時間、共粉砕混
合を行った。得られた各粉末の粒子径は平均で約1μm
であった。
Examples 1-14 and Reference Example 1. 2. As shown in Table 1, 100-mensie pass raw material powders and dopants of various compositions were prepared, and each was co-pulverized and mixed for 3 hours in a planetary wet ball mill to which ethanol had been added. The average particle size of each powder obtained was approximately 1 μm.
Met.

次に、得られた混合粉末をI 000 kg/cIII
の圧力で加圧成形し、第1表に示す夫々の焼結条件にて
焼結を行った。焼結時間は■10時間、■2時間である
Next, the obtained mixed powder was weighed at I 000 kg/cIII
Pressure molding was carried out at a pressure of 100.degree. C., and sintering was performed under the respective sintering conditions shown in Table 1. The sintering time was (1) 10 hours and (2) 2 hours.

尚、昇温速度は、第1表に示す焼結温度■から焼結温度
■に至る間の昇温速度である。また、参考例1及び2は
、上記共粉砕混合に代えて従来法である融解混合により
原料成分を混合し、粉末化したものである。
Incidentally, the temperature increase rate is the temperature increase rate from sintering temperature (1) to sintering temperature (2) shown in Table 1. Further, in Reference Examples 1 and 2, the raw material components were mixed and powdered by the conventional method of melt mixing instead of the co-pulverization mixing described above.

(以下余白) 実施例15及び16 第2表に示す原料組成の平均粒径458d程度の粉末及
びドーパントを、第2表に示す配合比で合計処理量とし
て0.1 (kg)用い、エタノールをld!/gの割
合で加え、遊星型湿式ボールミルにてボール数=50個
、1個あたりのボールの質量=0.0021 (kg)
、ミルのポンド直径−0,076(m)、ボール速度=
2(m/s)(回転数50゜rpm) 、共粉砕混合時
間−40X3600(s)の条件下で、粉砕力8X10
”(kg−m−s−’/kg)にて強制粉砕混合を行っ
た。なお、ボンド体積は200d、ボール直径10mm
であった。得られた粉末の平均粒径は約lamであった
(Left space below) Examples 15 and 16 Powders and dopants with an average particle size of about 458 d having the raw material composition shown in Table 2 were used in a total treatment amount of 0.1 (kg) at the blending ratio shown in Table 2, and ethanol was added. ld! /g, number of balls = 50, mass of each ball = 0.0021 (kg) using a planetary wet ball mill.
, mill pound diameter - 0,076 (m), ball speed =
2 (m/s) (rotation speed 50° rpm), co-grinding mixing time - 40 x 3600 (s), grinding force 8 x 10
” (kg-m-s-'/kg).The bond volume was 200 d, and the ball diameter was 10 mm.
Met. The average particle size of the obtained powder was about lam.

次に、得られた混合粉末を、−軸加工成形機にて1.0
ton/c−の圧力で加圧成形した。その後、アルゴン
雰囲気下にて昇温速度6に/sin、焼結温度460°
C1焼結時間5時間で焼結を行い、熱電材料を得た。
Next, the obtained mixed powder was processed into a 1.0
Pressure molding was carried out at a pressure of ton/c-. Then, under an argon atmosphere, the heating rate was 6/sin, and the sintering temperature was 460°.
Sintering was performed for a C1 sintering time of 5 hours to obtain a thermoelectric material.

得られた熱電材料の熱電特性を第2表に示す。The thermoelectric properties of the obtained thermoelectric material are shown in Table 2.

実施例17及び1日 実施例15において原料組成を第2表に示されるものと
し、ボール速度を3.2 (m/ s )(回転数80
 Orpm)で粉砕力12.8 X 10” [kg−
m −s−’’ / kg )としたこと以外は、実施
例15と同様にして共粉砕混合を行い、さらに実施例1
5と同様に成形、焼結を行った。結果を第2表に示す。
In Example 17 and 1-day Example 15, the raw material composition was as shown in Table 2, and the ball speed was 3.2 (m/s) (rotational speed 80
Orpm) with a crushing force of 12.8 x 10” [kg-
Co-pulverization and mixing were carried out in the same manner as in Example 15, except that the mixture was set to m-s-''/kg), and
Molding and sintering were performed in the same manner as in 5. The results are shown in Table 2.

実施例19及び20 実施例15において原料組成を第2表に示されるものと
し、ボール速度を4.8(m/s)(回転数120 O
rpm)で粉砕力19.2X I Ob(kg−m −
s/kg)としたこと以外は、実施例15と同様にして
共粉砕混合を行い、さらに実施例15と同様に成形、焼
結を行った。結果を第2表に示す。
Examples 19 and 20 In Example 15, the raw material composition was as shown in Table 2, and the ball speed was 4.8 (m/s) (rotational speed 120 O
rpm) and crushing force 19.2X I Ob (kg-m −
Co-pulverization and mixing were carried out in the same manner as in Example 15, except that the mixture was adjusted to s/kg), and then molding and sintering were carried out in the same manner as in Example 15. The results are shown in Table 2.

実施例21 実施例17と同様の条件にて共粉砕混合した粉末を、造
粒し、次いで70〜100μmに分級した後、実施例1
7と同様に成形、焼結を行い、熱電材料を得た。結果を
第2表に示す。
Example 21 Powder co-pulverized and mixed under the same conditions as Example 17 was granulated and then classified to 70 to 100 μm.
Molding and sintering were performed in the same manner as in 7 to obtain a thermoelectric material. The results are shown in Table 2.

実施例22 実施例18と同様の条件にて共粉砕混合した粉末を、造
粒し、次いで70〜1100IIに分級した後、実施例
18と同様に成形、焼結を行い、熱電材料を得た。結果
を第2表に示す。
Example 22 The co-pulverized and mixed powder was granulated under the same conditions as in Example 18, and then classified into 70 to 1100II, and then molded and sintered in the same manner as in Example 18 to obtain a thermoelectric material. . The results are shown in Table 2.

実施例23 実施例17と同様の条件にて共粉砕混合した粉末を、造
粒し、次いで32〜70amに分級した後、実施例17
と同様に成形、焼結を行い、熱雷材料を得た。結果を第
2表に示す。
Example 23 Powder co-pulverized and mixed under the same conditions as Example 17 was granulated and then classified into 32 to 70 am.
Molding and sintering were performed in the same manner as above to obtain a thermal lightning material. The results are shown in Table 2.

実施例24 実施例18と同様の条件にて共粉砕混合した粉末を、造
粒し、次いで32〜70μmに分級した後、実施例18
と同様に成形、焼結を行い、熱電材料を得た。結果を第
2表に示す。
Example 24 Powder co-pulverized and mixed under the same conditions as Example 18 was granulated and then classified to 32 to 70 μm.
Molding and sintering were performed in the same manner as above to obtain a thermoelectric material. The results are shown in Table 2.

実施例25 実施例17と同様の条件にて共粉砕混合した粉末を、造
粒し、次いで32μm以下に分級した後、実施例17と
同様に成形、焼結を行い、熱電材料を得た。結果を第2
表に示す。
Example 25 Powders co-pulverized and mixed under the same conditions as in Example 17 were granulated, then classified to 32 μm or less, and then molded and sintered in the same manner as in Example 17 to obtain a thermoelectric material. Second result
Shown in the table.

実施例26 実施例1日と同様の条件にて共粉砕混合した粉末を、造
粒し、次いで32μm以下に分級した後、実施例18と
同様に成形、焼結を行い、熱電材料を得た。結果を第2
表に示す。
Example 26 The co-pulverized and mixed powder was granulated under the same conditions as in Example 1, and then classified to 32 μm or less, and then molded and sintered in the same manner as in Example 18 to obtain a thermoelectric material. . Second result
Shown in the table.

(以下余白) 〔発明の効果〕 以上説明したように、原料となる金属粉末を共混合して
成形し、焼結することにより、容易に熱電材料を得るこ
とができる。特に単体金属粉末を原料とすることができ
るため、原料の調製も簡単に行うことができ、さらに製
造工程において、煩わしい操作や特殊な装置を用いるこ
となく、容易に製造することができ、熱電材料の製造コ
ストを低減することができる。
(The following is a blank space) [Effects of the Invention] As explained above, a thermoelectric material can be easily obtained by co-mixing metal powders as raw materials, molding, and sintering. In particular, since single metal powder can be used as a raw material, the raw material can be easily prepared, and furthermore, it can be easily manufactured without using complicated operations or special equipment in the manufacturing process. The manufacturing cost can be reduced.

特に、加圧成形のみでなく、押出成形、コーティング、
スクリーン印刷法など製品として望ましい形態になるよ
うに任意の成形法を用いることができる特徴がある。
In particular, not only pressure molding, but also extrusion molding, coating,
It has the characteristic that any molding method such as screen printing can be used to obtain a desired form as a product.

本発明の方法で製造した熱電素子の熱伝導率には、1.
4Wm−1K−1以下、特に0.7〜1.3 Wm−’
に一’であり、融解混合したものよりも低いという大き
な特徴を有している。このことは、焼結の際の粒成長が
あまり起こらず、微細粒構造となっているためと考えら
れる。これにより性能指数が向上した熱電材料となる。
The thermal conductivity of the thermoelectric element manufactured by the method of the present invention includes 1.
4 Wm-1K-1 or less, especially 0.7 to 1.3 Wm-'
It has the great feature of being lower than that of melt-mixed products. This is thought to be because grain growth during sintering does not occur much, resulting in a fine grain structure. This results in a thermoelectric material with an improved figure of merit.

また、特に粉砕力4×10” (kg−m−s−’/k
g)以上の条件下にて遊星型ボールミルを用いて共粉砕
混合した場合には、得られる熱電素子は性能指数(Z)
が、例えば1.5×10−3〜2.60 X 10−’
に一’以上のものであり、従来のものと比較して性能指
数が著しく向上しており、最大冷却温度差が向上した熱
電素子である。
In addition, especially the crushing force 4×10"(kg-m-s-'/k
g) When co-pulverized and mixed using a planetary ball mill under the above conditions, the obtained thermoelectric element has a figure of merit (Z)
However, for example, 1.5 x 10-3 to 2.60 x 10-'
It is a thermoelectric element with a significantly improved figure of merit and an improved maximum cooling temperature difference compared to conventional ones.

しかも製造ロスや結晶構造による方向性も生ぜず、その
うえ、任意の形状のものを直接得ることができるため、
小型化が可能である共に、モジュールの一体成形も可能
である。
Moreover, there is no manufacturing loss or directionality due to crystal structure, and in addition, it is possible to directly obtain products of any shape.
It is possible to reduce the size and also to integrally mold the module.

したがって、本発明の方法で得られる熱電材料は、熱電
発電や熱電冷却、温度センサー等、宇宙開発、海洋開発
、僻地用電源、半導体製造プロセス、エレクトロニクス
デバイスその池幅広い分野で有効な利用が期待される。
Therefore, the thermoelectric material obtained by the method of the present invention is expected to be effectively used in a wide range of fields such as thermoelectric power generation, thermoelectric cooling, and temperature sensors, space development, ocean development, power supplies for remote areas, semiconductor manufacturing processes, and electronic devices. Ru.

Claims (11)

【特許請求の範囲】[Claims] (1)少なくともビスマスを含有する原料と少なくとも
テルルを含有する原料であって全体を合金化したもので
ない原料を共粉砕混合した後に、成形し、焼結してなる
熱電材料。
(1) A thermoelectric material obtained by co-pulverizing and mixing a raw material containing at least bismuth and a raw material containing at least tellurium that are not entirely alloyed, followed by molding and sintering.
(2)少なくともビスマスを含有する原料と少なくとも
テルルを含有する原料の混合比が、前者:後者≒2:3
(モル比)である請求項1記載の熱電材料。
(2) The mixing ratio of the raw material containing at least bismuth and the raw material containing at least tellurium is 2:3.
(molar ratio).The thermoelectric material according to claim 1.
(3)ビスマス、アンチモンからなる原料とテルル、セ
レンからなる原料であって全体を合金化したものでない
原料を共粉砕混合した後に、成形し、焼結してなる熱電
材料。
(3) A thermoelectric material obtained by co-pulverizing and mixing raw materials consisting of bismuth and antimony and raw materials consisting of tellurium and selenium, which are not entirely alloyed, followed by molding and sintering.
(4)ビスマス、アンチモンからなる原料とテルル、セ
レンからなる原料の混合比が、前者:後者≒2:3(モ
ル比)である請求項3記載の熱電材料。
(4) The thermoelectric material according to claim 3, wherein the mixing ratio of the raw materials consisting of bismuth and antimony and the raw materials consisting of tellurium and selenium is former:latter≈2:3 (molar ratio).
(5)熱伝導率が、1.4Wm^−^1K^−^1以下
である請求項1〜4のいずれかに記載の熱電材料。
(5) The thermoelectric material according to any one of claims 1 to 4, which has a thermal conductivity of 1.4 Wm^-^1 K^-^1 or less.
(6)少なくともビスマスを含有する原料と少なくとも
テルルを含有する原料であって全体を合金化したもので
ない原料を共粉砕混合した後に、成形し、焼結すること
を特徴とする熱電材料の製造方法。
(6) A method for producing a thermoelectric material, which comprises co-pulverizing and mixing a raw material containing at least bismuth and a raw material containing at least tellurium that is not wholly alloyed, followed by molding and sintering. .
(7)共粉砕混合後に粉末の平均粒径が、0.05〜1
0μmである請求項6記載の熱電材料の製造方法。
(7) The average particle size of the powder after co-pulverization and mixing is 0.05 to 1.
The method for manufacturing a thermoelectric material according to claim 6, wherein the thickness is 0 μm.
(8)焼結の際の昇温速度が、10K/時間以下である
請求項6または7記載の熱電材料の製造方法。
(8) The method for producing a thermoelectric material according to claim 6 or 7, wherein the temperature increase rate during sintering is 10 K/hour or less.
(9)少なくともビスマスを含有する原料と少なくとも
テルルを含有する原料であって全体を合金化したもので
ない原料を、粉砕力4×10^6〔kg・m・s^−^
1/kg〕以上の条件下にて遊星型ボールミルを用いて
共粉砕混合した後に、成形し、焼結することを特徴とす
る熱電材料の製造方法。
(9) A raw material containing at least bismuth and a raw material containing at least tellurium, which are not entirely alloyed, are crushed with a crushing force of 4 x 10^6 [kg・m・s^-^
1/kg] or more using a planetary ball mill under the following conditions, followed by molding and sintering.
(10)少なくともビスマスを含有する原料と少なくと
もテルルを含有する原料であって全体を合金化したもの
でない原料を、粉砕力4×10^6〔kg・m・s^−
^1/kg〕以上の条件下にて遊星型ボールミルを用い
て共粉砕混合した後、得られた粉末を粒径150μm以
下に造粒し、次いで粒径32〜70μmの範囲に分級し
、さらに成形し、焼結することを特徴とする熱電材料の
製造方法。
(10) A raw material containing at least bismuth and a raw material containing at least tellurium, which are not entirely alloyed, are crushed with a crushing force of 4 × 10^6 [kg・m・s^−
^1/kg] After co-pulverizing and mixing using a planetary ball mill under the above conditions, the obtained powder is granulated to a particle size of 150 μm or less, then classified into a particle size range of 32 to 70 μm, and further A method for producing a thermoelectric material, characterized by forming and sintering.
(11)少なくともビスマスを含有する原料と少なくと
もテルルを含有する原料であって全体を合金化したもの
でない原料に、導電型不純物を混入した請求項9あるい
は10記載の熱電材料の製造方法。
(11) The method for producing a thermoelectric material according to claim 9 or 10, wherein a conductive impurity is mixed into a raw material containing at least bismuth and a raw material containing at least tellurium, which are not entirely alloyed.
JP1293915A 1988-11-15 1989-11-14 Thermoelectric material and method of manufacturing the same Expired - Lifetime JP2835406B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1293915A JP2835406B2 (en) 1988-11-15 1989-11-14 Thermoelectric material and method of manufacturing the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP28686988 1988-11-15
JP63-286869 1988-11-15
JP1293915A JP2835406B2 (en) 1988-11-15 1989-11-14 Thermoelectric material and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JPH02256283A true JPH02256283A (en) 1990-10-17
JP2835406B2 JP2835406B2 (en) 1998-12-14

Family

ID=26556495

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1293915A Expired - Lifetime JP2835406B2 (en) 1988-11-15 1989-11-14 Thermoelectric material and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP2835406B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007505028A (en) * 2003-09-12 2007-03-08 ボード オブ トラスティース オペレイティング ミシガン ステイト ユニバーシティー Thermoelectric composition containing silver

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58144401A (en) * 1982-02-22 1983-08-27 Toshiba Corp Preparation of tungsten alloy
JPS60235764A (en) * 1984-05-07 1985-11-22 株式会社シバソン Manufacture of boron carbide-titanium diboride two state composite superhard alloy

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58144401A (en) * 1982-02-22 1983-08-27 Toshiba Corp Preparation of tungsten alloy
JPS60235764A (en) * 1984-05-07 1985-11-22 株式会社シバソン Manufacture of boron carbide-titanium diboride two state composite superhard alloy

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007505028A (en) * 2003-09-12 2007-03-08 ボード オブ トラスティース オペレイティング ミシガン ステイト ユニバーシティー Thermoelectric composition containing silver

Also Published As

Publication number Publication date
JP2835406B2 (en) 1998-12-14

Similar Documents

Publication Publication Date Title
US5108515A (en) Thermoelectric material and process for production thereof
US5246504A (en) Thermoelectric material
US6440768B1 (en) Thermoelectric semiconductor material and method of manufacturing the same
US20060118161A1 (en) Thermoelectric material having crystal grains well oriented in certain direction and process for producing the same
KR101736974B1 (en) Thermoelectric materials and method for manufacturing the same
KR100795194B1 (en) Method for fabricating thermoelectric material by mechanical milling-mixing and thermoelectric material fabricated thereby
KR102579525B1 (en) Semiconductor sintered body, electrical/electronic components, and semiconductor sintered body manufacturing method
JP3458587B2 (en) Thermoelectric conversion material and its manufacturing method
KR101409404B1 (en) Manufacturing method for thermoelectric material and thermelectric material manufactured thereby
JP2879152B2 (en) Manufacturing method of thermoelectric material
JPH02256283A (en) Thermoelectric material and manufacture thereof
JPH08186294A (en) Thermoelectric material
EP0948061B1 (en) P-type thermoelectric converting substance and method of manufacturing the same
JPH11163422A (en) Manufacture of thermoelectric material
JP2750416B2 (en) Manufacturing method of thermoelectric material
JP3580783B2 (en) Thermoelectric element manufacturing method and thermoelectric element
JP2000261044A (en) Thermoelectric conversion material and its manufacture
JPH10308538A (en) Thermoelectric element and its manufacture
KR102134306B1 (en) P-type thermoelectric composite and process for preparing the same
JPH06169110A (en) Manufacture of thermoelectric conversion material
JPH03233980A (en) Thermoelectric element and manufacture thereof
JPH03165076A (en) Manufacture of thermoelectric device
JP2003243733A (en) METHOD FOR MANUFACTURING p-TYPE THERMOELECTRIC CONVERSION MATERIAL
JP2002118299A (en) Manufacturing method of thermoelement
JP2002327223A (en) Method for manufacturing intermetallic compound, and thermoelectric element and thermoelectric module manufactured therewith

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term