JPS60235764A - Manufacture of boron carbide-titanium diboride two state composite superhard alloy - Google Patents

Manufacture of boron carbide-titanium diboride two state composite superhard alloy

Info

Publication number
JPS60235764A
JPS60235764A JP59089370A JP8937084A JPS60235764A JP S60235764 A JPS60235764 A JP S60235764A JP 59089370 A JP59089370 A JP 59089370A JP 8937084 A JP8937084 A JP 8937084A JP S60235764 A JPS60235764 A JP S60235764A
Authority
JP
Japan
Prior art keywords
sintering
boron carbide
manufacture
powder
carbide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59089370A
Other languages
Japanese (ja)
Inventor
勝廣 西山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SHIBASON KK
Original Assignee
SHIBASON KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SHIBASON KK filed Critical SHIBASON KK
Priority to JP59089370A priority Critical patent/JPS60235764A/en
Publication of JPS60235764A publication Critical patent/JPS60235764A/en
Pending legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔技術分野〕 本発明は炭化はう素(以下84Cと略記する。)と2は
う化チタン(以下TiB2と略記する。)から構成場れ
る2相複合型の超硬合金の製造方法に関するものである
Detailed Description of the Invention [Technical Field] The present invention relates to a two-phase composite superstructure composed of boron carbide (hereinafter abbreviated as 84C) and titanium di-boride (hereinafter abbreviated as TiB2). The present invention relates to a method for producing hard alloys.

〔従来技術〕[Prior art]

セラミックスは大別すると酸化物系と非酸化物系に分け
られる。酸化物系はアルミナ(AI□03)に代表され
るようにイオン結合の化学結合構造をとる物質なので、
一般には易焼結性を示す。すなわち酸化物系セラミック
スは粉体を圧縮成形後、常圧焼結法と称される無加圧状
轢での焼結かり能である。
Ceramics can be broadly divided into oxide-based and non-oxide-based. Oxide-based materials have a chemical bond structure of ionic bonds, as typified by alumina (AI□03).
Generally exhibits easy sinterability. In other words, oxide ceramics can be sintered by compressing powder and then sintering it in a pressureless sintering process called an atmospheric pressure sintering method.

一方、非酸化物系セラミックスは共有結合性が強い物質
であることから焼結が難しく、離焼結物質と呼ばれる。
On the other hand, non-oxide ceramics are difficult to sinter because they have strong covalent bonds and are called de-sintered materials.

そこで非酸化物系セラミックスの多くは常圧焼結ではな
くホノトプンス(熱間加圧焼結)や雰囲気加圧・焼結お
よびHIP (熱間等圧焼結)などの焼結法を採用する
場合が多い。ところが上述の焼結法は粉体もしくは成形
体を過当な耐熱B1(例えば焼結アルミナ製の型又は黒
鉛製の型など)に入れて焼結することになるので製品コ
ストが商くなるし、又複雑形状の製品を作成することが
困難となる。
Therefore, many non-oxide ceramics use sintering methods such as Honotopunsu (hot pressure sintering), atmospheric pressure/sintering, and HIP (hot isostatic sintering) instead of pressureless sintering. There are many. However, in the above-mentioned sintering method, the powder or molded body is placed in an excessively heat-resistant B1 (for example, a sintered alumina mold or a graphite mold) and sintered, which increases the product cost. Furthermore, it becomes difficult to create products with complex shapes.

最近、非酸化物系セラミックスの中で特に注目を集めて
いる物質にSI3N4やSiCが挙げられる。
SI3N4 and SiC are substances that have recently attracted particular attention among non-oxide ceramics.

その理由は勿論それらの・物質の高温における機械的性
質が優れていることにもよるけれども、最大の理由は反
応焼結法という一種の無加圧焼結法が開発されたことに
ある。この反応焼結法は成形体の焼成過程で化学反応を
行なわせる方法であり、例えば513N4の場合には8
1粉末全成形した後、N2を含む雰囲気中で窒化焼成す
る方法によりS I 3N4焼結体を得る方法である。
The reason for this is, of course, that these materials have excellent mechanical properties at high temperatures, but the biggest reason is that a type of pressureless sintering method called reaction sintering method was developed. This reaction sintering method is a method in which a chemical reaction is carried out during the firing process of the compact, and for example, in the case of 513N4, 8
In this method, a S I 3N4 sintered body is obtained by nitriding and firing the powder in an atmosphere containing N2 after molding the whole powder.

この方法は工業上は極めて有用な焼結方法であるけれど
も、焼結体は多孔質であり強度が低いという欠点をもた
らす。
Although this method is an extremely useful sintering method industrially, it has the disadvantage that the sintered body is porous and has low strength.

非酸化物系セラミックスの中で、前述のセラミックスの
他に工業的に極めて重要と考えられている物質K B4
CとTlB2がある。これら2つの物質も難焼結物質で
あり、先に述べた反応焼結法では焼結することはできな
い物質であり、常圧焼結法によっても高密度焼結体を製
造することはできない物質である。
Among non-oxide ceramics, in addition to the above-mentioned ceramics, there is a substance K B4 that is considered to be extremely important industrially.
There are C and TlB2. These two substances are also difficult to sinter, and cannot be sintered using the reaction sintering method described above, and materials that cannot be produced into high-density sintered bodies using the pressureless sintering method. It is.

従来、B、C−TiB2系の複合セラミックスを作成す
る試みがホットプレス法によって行なわれている。
Conventionally, attempts have been made to create B,C-TiB2-based composite ceramics using a hot press method.

B4CとTi B2は共に高硬度であり、耐摩耗性に優
れているためB C−TiB22相複合型超硬合金を常
圧焼結法によって高密度化を達成することは工業上極め
て重要である。
Both B4C and TiB2 have high hardness and excellent wear resistance, so it is extremely important industrially to achieve high density of B4C-TiB2 two-phase composite cemented carbide by pressureless sintering. .

〔目的〕〔the purpose〕

本発明の目的は、上述の従来技術の諸欠点を解消し、上
記要望に応えるべく研究がなされたもので、84C−T
I B2系2相複合型超硬合金を常圧焼結法により得る
ための製造方法を提供せんとするものである。
The purpose of the present invention is to eliminate the various drawbacks of the above-mentioned prior art and to meet the above-mentioned demands.
It is an object of the present invention to provide a manufacturing method for obtaining an IB2-based two-phase composite cemented carbide by an atmospheric pressure sintering method.

〔発明の概要〕[Summary of the invention]

本発明の炭化はう素−2はう化チタン系2相複合型超硬
合金の製造方法は、炭化はう素粉末と2#1う化チタン
粉末とも所定時間粉砕混合し、その後所定形状に成形し
、その後真空中または所定ガス雰囲気中で、かつ、温I
J[600℃〜2200℃のもとて常圧焼結すること金
%徴とする。
The manufacturing method of the boron carbide-2 titanium uride two-phase composite cemented carbide of the present invention involves pulverizing and mixing both boron carbide powder and 2#1 titanium uride powder for a predetermined period of time, and then forming them into a predetermined shape. After molding, in a vacuum or in a specified gas atmosphere, and at a temperature of I
J[Items must be sintered under normal pressure at 600°C to 2200°C.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の詳細な説明する。 The present invention will be explained in detail below.

(1)超硬合金の製造方法 325メツシユを通過するB4C粉末と325メツシユ
を通過するTiB2粉末をWC−Co超硬合金製のボー
ルミル中で10分〜印分粉砕混合する。粉砕混合は前述
の粉体の他にトルエンの如き有機溶剤1,6ラフインお
よび適当な界■活性剤を添加して行なう。次いで乾燥さ
せた粉体全成形型に入れ、圧縮成形圧力2 t on/
cm2〜4 t on/cm2で所定寸法に成形する。
(1) Manufacturing method of cemented carbide B4C powder passing through a 325 mesh and TiB2 powder passing through a 325 mesh are pulverized and mixed for 10 minutes in a ball mill made of WC-Co cemented carbide. Grinding and mixing is carried out by adding, in addition to the above-mentioned powder, an organic solvent such as toluene 1,6 rough-in and a suitable surfactant. Next, the entire dried powder was put into a mold and compression molded at a pressure of 2 tons/on.
It is molded to a predetermined size at cm2 to 4 ton/cm2.

成形の際の粉体は造粒して用いても良へ次いで黒鉛製又
は炭素製の台において疼空中もしくはガス雰囲気中で常
圧焼結を行なう。
The powder for molding may be granulated before use, and then pressureless sintering is performed on a table made of graphite or carbon in a sintered atmosphere or a gas atmosphere.

真空度は10”’ 2mmHg −10−” mrnH
gで光分であるが、より高真空中で、焼結を行なっても
構わない。又、雰囲気ガス中での焼結を行なう場合に使
用されるガスはAr + co + B2 + N2 
T N2を含むガスおよびこれらのガスの混合ガス’t
t用しても構わない。
Vacuum level is 10"' 2mmHg -10-"mrnH
Although the sintering process is performed using light in g, sintering may be performed in a higher vacuum. In addition, the gas used when sintering in an atmospheric gas is Ar + co + B2 + N2
Gases containing T N2 and mixed gases of these gases't
You can use it for t.

焼結温度は1600’C,〜2200℃であり、最も適
当な焼結温度は真空中で焼結を行なった場合には、21
00℃である。焼結時間は加分から2時間の範囲である
The sintering temperature is 1600'C to 2200°C, and the most suitable sintering temperature is 21°C when sintering is carried out in vacuum.
It is 00℃. Sintering times range from addition to 2 hours.

(2)用いた84cmTi n2の組成84Cに対する
TlB2の組成は3車t%から(イ)重量%たとえば3
 、5.10,20,30,40,50゜艶、 70 
+ 1a 、 90の各Mitチの[]組成である。、
(3)上記本発明の作成方法で得られた超硬合金の特性 (a)組成 り4C−(3〜90)劃ii % T + 82の2相
複台型の超硬合金が得られた。
(2) Composition of 84cmTi n2 used The composition of TlB2 for 84C is from 3 car t% to (a) weight%, for example 3
, 5.10, 20, 30, 40, 50° gloss, 70
+ 1a, 90 Mitchi [ ] composition. ,
(3) Characteristics of the cemented carbide obtained by the above-mentioned production method of the present invention (a) A two-phase multi-base type cemented carbide having a composition of 4C-(3 to 90) % T + 82 was obtained. .

(b)組織 第1図(a)〜(k)にそれぞれ示すように灰色の部分
がB4C相で白い部分がT i B 2相である。
(b) Structure As shown in FIG. 1 (a) to (k), the gray part is the B4C phase and the white part is the T i B 2 phase.

B4Cに対しく加〜10)取量%T IB 2超硬合金
組織写真(第1図(d)〜(J)参照)に見られる黒い
点状の部分はダイヤモンド粒によってポリツシングを行
なった際に発生したビット孔である。
Addition to B4C~10) Removal % T IB 2 The black dot-like parts seen in the cemented carbide microstructure photographs (see Figure 1 (d) to (J)) are caused by polishing with diamond grains. This is the bit hole that occurred.

(c)気孔率 B、Cに対しく20〜70)ji量% T I 82 
ノ広い組成で気孔率は0.2%以下となる。
(c) Porosity B, 20 to 70) ji amount% T I 82
With a wide range of compositions, the porosity is 0.2% or less.

(d)ロックウェル硬度(Aスケールで表示。)第2図
に示すようK(3〜60)卓暇q6 T + 82組成
で92.8〜94を示す。
(d) Rockwell hardness (displayed on A scale) As shown in FIG. 2, K (3 to 60) and hardness q6 T + 82 composition shows 92.8 to 94.

(c)BC相のマイクロビッカース硬度(荷重100g
) 第3図に示すように(3〜701重縫%TI B2組成
で4200〜57011 kg/ mm2を示す。
(c) Micro Vickers hardness of BC phase (load 100g
) As shown in Figure 3, (3-701 heavy stitching%TI B2 composition shows 4200-57011 kg/mm2.

(4)従来の#端方法との比較 従来のB4C−Tl B2系合金はポットプレスを用い
、情結温度2100’C〜2400℃で実施したという
報告があるけれども、組織、気孔率、ロックウェル硬度
等、本発明の製造方法によって得らrtだ結果と比較し
うるデータは表示されていない。
(4) Comparison with the conventional #edge method Although there is a report that the conventional B4C-Tl B2 alloy was carried out using a pot press at a temperature of 2100'C to 2400°C, the structure, porosity, Rockwell hardness No data are shown that can be compared with the rt results obtained by the manufacturing method of the present invention.

現在切削工具材料の中で最も硬度が高いものに、立方晶
窒化はう素(CBN)複合焼結体およびダイヤモンド複
合焼結体があるけれども、本発明のB4C−TlB2系
2相複合型超硬合金はこれらとほぼ同程度の硬・躯を有
する(第4図参照)。
Currently, the hardest cutting tool materials include cubic boron nitride (CBN) composite sintered bodies and diamond composite sintered bodies. The alloy has approximately the same hardness and strength as these (see Figure 4).

又、抗折強r1においても本発明の2組機合型超硬合金
は約82kg/mm 8#であり先の2つの複合焼結体
とほぼ同程度である。しかもCBNおよびダイヤモンド
は(5〜6)万気圧、 + 1400〜16001’C
;という高温高圧の製造#C置である超高圧合成装置に
よってのみ製造されるのに対し、本発明の2組機合型超
硬合金は常圧焼結法によって前述の高硬If’を実現出
来、簡易な装置により簡単に作製出来ることから製造コ
ストも安価となる。
Also, the transverse flexural strength r1 of the double mechanical cemented carbide of the present invention is approximately 82 kg/mm 8#, which is approximately the same as the two composite sintered bodies described above. Moreover, CBN and diamond have a pressure of (5 to 6) million atmospheres, +1400 to 16001'C.
In contrast, the double mechanical type cemented carbide of the present invention achieves the above-mentioned high hardness If' by the pressureless sintering method. Since it can be easily produced using a simple device, the manufacturing cost is also low.

〔本発明の効果〕[Effects of the present invention]

以上述べた如く、本発明によれは、従来B4C−TlB
2系2相複合型超硬合金を得るためにはホットプレス法
等の加圧焼結法を採用しなければならなかったが、常圧
焼結法による製造方法によっても容易に^密度焼結体を
得ることが可能であQ1製造コスト上有利であり、大型
のしかも複雑形状の焼結全可能にすることになり、産業
上の効果が本2図 尾3図 もd(2I 手続補正書 昭和59年6月6日 特許庁長官 若 杉 和 夫 殿 1、事件の表示 昭和59年特許頗第89370号 2、発明の名称 炭化はう素−2t1う化チタン系2相複合型超硬合金の
製造方法 3、補正をする者 事件との関係 特許出願人 千葉県野田市山崎東龜山2641番地 東京理科大学理工学部機械工学科内 [1,明細誓、図面および証明− 5、補正の内容 (1) 願4 t−11A付別紙の通り浄書する(内容
に変笑なし)。
As described above, according to the present invention, the conventional B4C-TlB
In order to obtain a two-system two-phase composite cemented carbide, it was necessary to use a pressure sintering method such as a hot press method, but it is also possible to easily achieve density sintering by using a pressureless sintering method. This is advantageous in terms of manufacturing costs, and it also makes it possible to sinter large and complex shapes, which has an industrial effect. June 6, 1980 Kazuo Wakasugi, Commissioner of the Japan Patent Office1, Description of the case, Patent No. 89370 of 19892, Name of the invention: Boron carbide-2t1 titanium uride-based two-phase composite cemented carbide Manufacturing method 3, Relationship with the case of the person making the amendment Patent applicant: Department of Mechanical Engineering, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki Higashifuyama, Noda City, Chiba Prefecture [1. Detailed oath, drawings and certification - 5. Contents of the amendment ( 1) Request 4 Please write as shown in the attachment attached to t-11A (no funny content).

(2)明111114を添付別紙の通り浄書する(内容
に変更なし)。
(2) Copy the document 111114 according to the attached document (no changes to the content).

(3)図面を添付別紙の通り浄書する(内容に変更なし
)。
(3) Print the drawing as per the attached attachment (no changes to the content).

(4)本願発明が特許法第(資)条第1項に規定する発
明であることを証明する書面を添付別紙の通り補充する
(4) Add a document certifying that the claimed invention is an invention stipulated in Article (Capital) Paragraph 1 of the Patent Law as shown in the attached attachment.

Claims (1)

【特許請求の範囲】[Claims] 炭化t1う素扮末と2はう化チタン粉末とを所定時間粉
砕混合し、その後所定形状に成形し、その後真空中また
は所定ガス雰囲気中で、かつ、温度1600℃〜220
0℃のもとて常圧焼結することを特徴とする炭化はう素
−2#1う化チタン系2相複合型超硬曾金の製造方法。
The carbide t1 boron powder and the titanium carbide powder 2 are pulverized and mixed for a predetermined period of time, then molded into a predetermined shape, and then heated in a vacuum or in a predetermined gas atmosphere at a temperature of 1600°C to 220°C.
A method for producing a two-phase composite cemented carbide based on boron carbide-2#1 titanium uride, which comprises performing pressureless sintering at 0°C.
JP59089370A 1984-05-07 1984-05-07 Manufacture of boron carbide-titanium diboride two state composite superhard alloy Pending JPS60235764A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59089370A JPS60235764A (en) 1984-05-07 1984-05-07 Manufacture of boron carbide-titanium diboride two state composite superhard alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59089370A JPS60235764A (en) 1984-05-07 1984-05-07 Manufacture of boron carbide-titanium diboride two state composite superhard alloy

Publications (1)

Publication Number Publication Date
JPS60235764A true JPS60235764A (en) 1985-11-22

Family

ID=13968804

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59089370A Pending JPS60235764A (en) 1984-05-07 1984-05-07 Manufacture of boron carbide-titanium diboride two state composite superhard alloy

Country Status (1)

Country Link
JP (1) JPS60235764A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61111967A (en) * 1984-09-26 1986-05-30 マツクス−プランク−ゲゼルシヤフト・ツ−ル・フエルデルンク・デル・ヴイツセンシヤフテン・エ−・ヴエ− Carbide-boride formed body and manufacture
US4957884A (en) * 1987-04-27 1990-09-18 The Dow Chemical Company Titanium diboride/boron carbide composites with high hardness and toughness
JPH02256283A (en) * 1988-11-15 1990-10-17 Agency Of Ind Science & Technol Thermoelectric material and manufacture thereof
JP2023046932A (en) * 2021-09-24 2023-04-05 美濃窯業株式会社 Manufacturing method of composite ceramic

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50111111A (en) * 1973-11-02 1975-09-01
JPS5329843A (en) * 1976-08-30 1978-03-20 Matsumoto Yushi Seiyaku Kk Rotating device utilizing magnetic fluid

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50111111A (en) * 1973-11-02 1975-09-01
JPS5329843A (en) * 1976-08-30 1978-03-20 Matsumoto Yushi Seiyaku Kk Rotating device utilizing magnetic fluid

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61111967A (en) * 1984-09-26 1986-05-30 マツクス−プランク−ゲゼルシヤフト・ツ−ル・フエルデルンク・デル・ヴイツセンシヤフテン・エ−・ヴエ− Carbide-boride formed body and manufacture
US4957884A (en) * 1987-04-27 1990-09-18 The Dow Chemical Company Titanium diboride/boron carbide composites with high hardness and toughness
JPH02256283A (en) * 1988-11-15 1990-10-17 Agency Of Ind Science & Technol Thermoelectric material and manufacture thereof
JP2023046932A (en) * 2021-09-24 2023-04-05 美濃窯業株式会社 Manufacturing method of composite ceramic

Similar Documents

Publication Publication Date Title
US5326380A (en) Synthesis of polycrystalline cubic boron nitride
US4826791A (en) Silicon carbide-alpha prime sialon beta prime sialon
JPS5924751B2 (en) Sintered shaped body
JPS6256107B2 (en)
Bhaumik et al. Reaction sintering of NiAl and TiB2–NiAl composites under pressure
JPS60235764A (en) Manufacture of boron carbide-titanium diboride two state composite superhard alloy
JPH0627036B2 (en) High strength and high toughness TiB ▲ Bottom 2 ▼ Ceramics
JPS62187173A (en) Bite chip for machining iron material
JPS60103148A (en) Boride-base high-strength sintered hard material
JPS6212664A (en) Method of sintering b4c base composite body
JPH07172919A (en) Titanium-compound sintered material
JP2004107691A (en) High strength titanium alloy and its production method
JP3731223B2 (en) Diamond sintered body and manufacturing method thereof
JPS6357389B2 (en)
JPH0122233B2 (en)
JPS63282166A (en) High-density metal boride-base sintered ceramics body
JPS63256572A (en) Sic base ceramics and manufacture
JPS60239360A (en) Silicon carbide ceramic sintered body
JPS6283377A (en) Manufacture of composite sintered body
Schwetz Substantially Pore-Free Sintered Polycrystalline Materials of alpha-Silicon Carbide, Boron Carbide and Free Carbon--Manufacturing Technology and Material Properties
US5264401A (en) Pressure assisted technique for forming self-supporting composite bodies and articles formed thereby
JPS63176362A (en) Manufacture of high density silicon carbide sintered body
JPS63282234A (en) High-density metallic boride-base ceramics using iron group metal
Kume et al. Ultrahigh pressure hot isostatic pressing of TiN-coated diamond/TiN/alumina composites under thermodynamically unstable condition for diamonds
JPS6126566A (en) Method of sintering sic composite body