JPS63166901A - Fe-si-a alloy powder - Google Patents

Fe-si-a alloy powder

Info

Publication number
JPS63166901A
JPS63166901A JP61313983A JP31398386A JPS63166901A JP S63166901 A JPS63166901 A JP S63166901A JP 61313983 A JP61313983 A JP 61313983A JP 31398386 A JP31398386 A JP 31398386A JP S63166901 A JPS63166901 A JP S63166901A
Authority
JP
Japan
Prior art keywords
powder
alloy powder
alloy
blend
alloyed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61313983A
Other languages
Japanese (ja)
Inventor
Katsu Okumura
奥村 濶
Kensuke Hidaka
日高 謙介
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fukuda Metal Foil and Powder Co Ltd
Original Assignee
Fukuda Metal Foil and Powder Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fukuda Metal Foil and Powder Co Ltd filed Critical Fukuda Metal Foil and Powder Co Ltd
Priority to JP61313983A priority Critical patent/JPS63166901A/en
Publication of JPS63166901A publication Critical patent/JPS63166901A/en
Pending legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Abstract

PURPOSE:To obtain the titled alloy powder having satisfactory formability by blending alloy powder such as Fe-Si alloy power with metal powder such as Al powder so as to provide a compsn. consisting of specified amts. of Si and Al and the balance Fe, mechanically alloying the blend in a nonoxidizing atmosphere and granulating the alloyed fine particles so as to form porous powder. CONSTITUTION:One or more kinds of powdery starting materials selected among Fe-Si alloy powder, Fe-Al alloy powder, Fe-Si-Al alloy powder, Fe powder, Si powder and Al powder are blended so as to provide a compsn. consisting of 7-11 wt.% Si, 5-7 wt.% Al and the balance Fe. The blend is put in a vessel such as a mechanical stirring type vibration mill having high energy density, an inert gas such as Ar is introduced and the blend is mechanically alloyed by repeating grinding and mixing in the nonoxidizing atmosphere. The alloyed fine particles are granulated so as to form spherical porous state The resulting Fe-Si-Al alloy powder is suitable for powder metallurgy or for use in the production of an electromagnetic material, paint or the like.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は成形性の良好なるFe−Si−Al合金粉末に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a Fe-Si-Al alloy powder with good formability.

〔従来の技術〕[Conventional technology]

Fe−Si−Al合金材料はセンダストの名でよく知ら
れており、高透磁率材料として代表的な材料の1つであ
る。Fe−Si−Al合金粉末の用途で粉末冶金用、電
磁材用等が要求されている。
The Fe-Si-Al alloy material is well known as Sendust, and is one of the typical high magnetic permeability materials. Fe-Si-Al alloy powder is required to be used in powder metallurgy, electromagnetic materials, etc.

従来、粉砕法で粉末を製造する場合、溶湯をインゴット
ケースに鋳込んでインゴットを作製する。
Conventionally, when producing powder by a pulverization method, an ingot is produced by pouring molten metal into an ingot case.

インゴットの場合は熱処理を施して粗粉砕する。In the case of ingots, they are heat treated and coarsely ground.

粗粉砕したインゴットを再び粉砕機に入れて粉砕するこ
とによって金属粉末が得られる。しかしながら、前記工
程での金属粉末は硬くて脆い特徴を有しているので通常
のプレスでは成形体を製造するのは非常に難しい粉末で
ある。又、インゴットを作製する時に化学組成の偏析問
題がある。又、経済的に好ましい方法ではない。
Metal powder is obtained by putting the coarsely crushed ingot back into the crusher and crushing it. However, since the metal powder used in the above process is hard and brittle, it is very difficult to produce a compact using a normal press. Furthermore, there is a problem of chemical composition segregation when producing ingots. Moreover, it is not an economically preferable method.

水アトマイズ法で製造する場合、金属溶滴を微細に粉砕
するのに噴霧圧力を高く、噴霧氷量を多くすることによ
って不規則状の金属粉末が得られる。しかしながら、水
を使用するために錆の発生の危険性が十分にあり、乾燥
において非常に難しい問題がある。又、前述と同様に成
形体を製造するのは難しい粉末である。
When producing by the water atomization method, irregularly shaped metal powder can be obtained by increasing the spray pressure and the amount of sprayed ice to finely pulverize the metal droplets. However, since water is used, there is a significant risk of rust formation, and there are very difficult problems in drying. Further, as mentioned above, it is a powder that is difficult to manufacture into molded bodies.

粉砕法及びアトマイズ法によって得られた粉末を熱間静
水圧法又は、冷間静水圧法によって成形することが可能
であるが経済的に好ましい方法ではない。
Although it is possible to mold the powder obtained by the pulverization method and the atomization method by the hot isostatic pressing method or the cold isostatic pressing method, this method is not economically preferable.

混合法で粉末を製造する場合、成形体を製造することが
可能であるが、各種金属粉末の比重が異なるので各種金
属粉末を混合した後、粉末移送の時、又、プレス作業の
振動により粉末の偏析を起こし、出来た成形体は不均一
な化学組成を有しており好ましい方法ではない。
When producing powder by the mixing method, it is possible to produce a compact, but since the specific gravity of various metal powders is different, after mixing various metal powders, the powder may be mixed during powder transfer or due to vibrations during press operation. This is not a preferred method because it causes segregation and the resulting molded product has a non-uniform chemical composition.

従って、Fe−Si−Al合金粉末を通常のプレスで安
定した成形体を製造する方法が望まれている。
Therefore, there is a need for a method for producing stable compacts using ordinary pressing of Fe-Si-Al alloy powder.

〔本発明が解決しようとする問題点〕[Problems to be solved by the present invention]

本発明は前記従来の技術の問題点に留意してなされたも
のであり、Fe−5t−Al合金の金属粉末を容易にか
つ節単に製造することを種々検討した結果、各粉末を機
械的に合金化して得られるFe−Si−41合金粉末は
成形体を容易に製造でき、経済的なメリットも十分に得
られるとの知見にもとすき本発明を完成したものである
The present invention has been made in consideration of the problems of the prior art, and as a result of various studies on how to easily and economically produce Fe-5t-Al alloy metal powder, it is possible to mechanically produce each powder. The present invention was completed based on the knowledge that the Fe-Si-41 alloy powder obtained by alloying can be easily manufactured into compacts and has sufficient economic benefits.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、Fe−Si合金粉末、Fe−Al合金粉末、
Fe−Si−41合金粉末、Fe粉末、Si粉末、Al
粉末を用いて1種又は2種以上選び組成が重量パーセン
トでSi 7〜11%、Al5〜7%、残部Feになる
ように配合して、非酸化性の雰囲気で機械的に合金化す
るとともに合金化した微細粒を多孔質状に造粒して得ら
れる、成形性の良好なFe−3i−Al合金粉末である
The present invention provides Fe-Si alloy powder, Fe-Al alloy powder,
Fe-Si-41 alloy powder, Fe powder, Si powder, Al
Using powder, one or more types are selected and blended so that the composition is 7 to 11% Si, 5 to 7% Al, and the balance Fe in weight percent, and mechanically alloyed in a non-oxidizing atmosphere. Fe-3i-Al alloy powder with good formability is obtained by granulating alloyed fine grains into a porous shape.

〔作用〕[Effect]

本発明において、従来のFe−3i−41合金粉末の製
造方法では通常のプレスを用いて成形体を製造すること
は非常に難しいもので、本発明においては、通常のプレ
スを用いて成形体を製造することを可能ならしめる合金
粉末を提供するものである。すなわち高エネルギー密度
を有する機械的攪拌式振動ミルのアトライター(商品名
)や電磁攪拌式振動ミルのリムマック(商品名)などを
使用して製造する方法である。従来からのボールミル、
ロットミルなどと区別している。
In the present invention, it is very difficult to produce a compact using a normal press using the conventional method for producing Fe-3i-41 alloy powder. The present invention provides an alloy powder that can be manufactured. That is, this is a manufacturing method using a mechanical stirring type vibrating mill, Atliter (trade name), an electromagnetic stirring type vibrating mill, RIMMAC (trade name), etc., which have high energy density. Traditional ball mill,
It is distinguished from rot mills, etc.

本発明における合金とは、Cu−Pb合金、Fe−Pb
合金のような全(固溶しない合金は本発明においては合
金とは言わない。
The alloy in the present invention refers to Cu-Pb alloy, Fe-Pb
An alloy that does not form a solid solution, such as an alloy, is not referred to as an alloy in the present invention.

本発明において、機械的合金化の前に原料として使用す
るPe−8i合金、Fe−Al合金、Fe粉末、Si粉
末、Al粉末が極力酸化の少ない状態にすることが重要
である。
In the present invention, it is important to bring the Pe-8i alloy, Fe-Al alloy, Fe powder, Si powder, and Al powder used as raw materials into a state with as little oxidation as possible before mechanical alloying.

各種金属粉末が酸化した原料を用いて機械的合金化法に
より出来たFe−5t−Al合金粉末は酸化物の影響が
生じて成形体強度を劣化させる。又、焼結工程における
焼結の進行を防げ良好な焼結体が得られない等の欠点が
ある。
Fe-5t-Al alloy powder produced by a mechanical alloying method using raw materials in which various metal powders are oxidized is affected by oxides and deteriorates the strength of the compact. Further, there is a drawback that progress of sintering in the sintering process cannot be prevented and a good sintered body cannot be obtained.

各種金属粉末を原料として使用するにおいて、粗粉末、
例えばIn+m以上の粉末を使用した場合、Fe−Si
合金粉末、Fe−Al合金粉末、Si粉末は短時間で細
粉化される。しかし、Al粉末、Fe粉末は材料の特性
として展延性を有しているので短時間での細粉化は難し
い。又、機械的合金化も難しい。
When using various metal powders as raw materials, coarse powder,
For example, if powder of In+m or more is used, Fe-Si
Alloy powder, Fe-Al alloy powder, and Si powder are pulverized in a short time. However, since Al powder and Fe powder have malleability as a material characteristic, it is difficult to reduce them to fine powder in a short time. Also, mechanical alloying is difficult.

原料として使用する粉末は149μm以下の細粉を使用
することにより機械的合金化を促進させると同時に微粉
化を進行させて凝集力を増加する。付着凝集した合金粉
末は更に表面平滑化によって球状の多孔質状態に至る。
By using fine powder of 149 μm or less as the raw material, mechanical alloying is promoted, and at the same time, pulverization is progressed to increase cohesive force. The surface of the adhered and agglomerated alloy powder is further smoothed, resulting in a spherical porous state.

又、偏析の少ない良好なFe−3i−41合金粉末が得
られる。時間的にも短縮されるので粉末の酸化も防止で
きる。
Moreover, a good Fe-3i-41 alloy powder with little segregation can be obtained. Since the time is shortened, oxidation of the powder can also be prevented.

機械的合金法による製造方法において粉砕機の容器内に
不活性ガス、例えば窒素ガス、アルゴンガスを導入する
ことにより、各種金属粉末が合金化の過程で極力酸化し
ないようにしてFe−Si−41合金粉末の酸化を防止
することができる。
In the manufacturing method using the mechanical alloying method, by introducing an inert gas such as nitrogen gas or argon gas into the container of the crusher, various metal powders are prevented from oxidizing as much as possible during the alloying process, and Fe-Si-41 Oxidation of alloy powder can be prevented.

容器内の温度を出来るだけ常温に近い状態で制御するこ
とにより金属粉末の発火、容器の強度の低下を防止する
ことができる。
By controlling the temperature inside the container as close to room temperature as possible, it is possible to prevent the metal powder from igniting and reducing the strength of the container.

高エネルギー密度を有する粉砕機、アトライター装置の
容器に各種金属粉末と粉砕ボールを入れて粉砕、混合を
繰り返し行うことによって各種金属粉末は原子レベルに
近い複合化が進行すると同時に各元素は粒子内で均一な
状態で得られる。
By putting various metal powders and grinding balls into the container of a grinder or attritor device that has high energy density, and repeating grinding and mixing, the various metal powders become composites close to the atomic level, and at the same time, each element is contained within the particles. obtained in a uniform state.

低エネルギー密度を有する粉砕機、振動式ボールミルに
よって各種金属粉末の粉砕は進行するが複合化までには
至らず各種金属粉末が混合された状態で粒子を形成して
いるので組成的には不均一な状態である。
Although various metal powders are pulverized using a pulverizer with low energy density and a vibrating ball mill, they do not become composites, and the particles are formed by mixing various metal powders, so the composition is non-uniform. It is in a state of

本発明の機械的合金化法によるFe−Si−Al粉末の
平均粒径は30μm以下で球状の多孔質状態に造粒され
た合金粉末が得られた。球状の多孔質状態に造粒された
合金粉末はプレスによる圧縮により、微細な粉末が多孔
質粉末の表面に食い込んで成形体を向上させていると考
えられる。
The Fe-Si-Al powder obtained by the mechanical alloying method of the present invention had an average particle size of 30 μm or less and was granulated into a spherical porous state. It is thought that the alloy powder granulated into a spherical porous state is compressed by a press, and the fine powder bites into the surface of the porous powder, improving the quality of the compact.

なお、この粉末は機械的合金化処理によって高い冷間ひ
ずみを有しているので場合によっては、水素中又は、真
空中で800〜1100℃の範囲でひずみ取りを行う。
In addition, since this powder has a high cold strain due to mechanical alloying treatment, the strain may be removed in hydrogen or vacuum at a temperature in the range of 800 to 1100°C.

前述の工程によって得られた球状の多孔質状態に造粒さ
れたFe−Si−Al合金粉末に潤滑剤を添加して通常
のプレスで5〜8 t/catで圧縮した結果、5t/
adの成形体はクラックが入り、ハンドリングが難しい
状態であった。6 t/calから8 t/cdの成形
体は良好な状態であった。
As a result of adding a lubricant to the Fe-Si-Al alloy powder granulated into a spherical porous state obtained by the above process and compressing it with a normal press at 5 to 8 t/cat, 5 t/cat was obtained.
The ad molded product had cracks and was difficult to handle. The molded bodies of 6 t/cal to 8 t/cd were in good condition.

水アトマイズ法で製造した場合、粉末が不規則形状なの
でプレスで圧縮した場合、粉末にクラックが入りやすく
、又室温付近の塑性変形は(001)面に沿ってへき開
破壊しやすいので、成形体を製造することは難しい。
When manufactured by the water atomization method, the powder is irregularly shaped, so when it is compressed with a press, cracks tend to appear in the powder, and plastic deformation near room temperature tends to cause cleavage failure along the (001) plane, so the molded body is Difficult to manufacture.

本発明によって得られた合金粉末は非金属介在物、酸化
物等が殆ど含まれていない成形性の良好な合金粉末であ
る。
The alloy powder obtained by the present invention is an alloy powder that contains almost no nonmetallic inclusions, oxides, etc. and has good formability.

〔実施例〕〔Example〕

以下、本発明の代表的な実施例を示す。 Hereinafter, typical examples of the present invention will be shown.

実施例(1) 74μm以下のFe(58X)−3i(42%)合金粉
末と63pm以下のFe (50χ) −Al (50
X)粉末、63 p m以下のFe粉末を混合して、組
成が重量パーセントでSi9%、Al6%、残部Feに
なるようにFe−3i合金粉末21.4%、Fe−Al
合金粉末12%、Fe粉末66.0%を配合した。次に
アトライター(容量5りに上記のように配合された粉末
を2kg投入した。アジテータの回転数300rpm 
、スチールボール径9mm 。
Example (1) Fe(58X)-3i(42%) alloy powder of 74 μm or less and Fe(50χ)-Al(50
X) Fe-3i alloy powder 21.4%, Fe-Al
12% alloy powder and 66.0% Fe powder were blended. Next, 2 kg of the powder blended as above was added to the attritor (capacity 5).The rotation speed of the agitator was 300 rpm.
, steel ball diameter 9mm.

スチールボール充填型115kg 、アルゴンガス11
/ll1inil!続導入、容器は冷却水を流して温度
上昇しないようにする。そして30時間処理した。得ら
れた球状の多孔質合金粉末の平均粒径22μmであった
。次に1000℃、2時間lXl0−3mm l1g以
下の真空雰囲気中で熱処理を行ってひずみ取り焼鈍をし
た。熱処理した合金粉末にステアリン酸亜鉛1%添加し
て混合した。次に直径12.3mmの金型に合金粉末を
3g投入して油圧式プレスで成形圧力6t/c+IIで
成形した。圧粉体密度が6.2g/aiの成形体が得ら
れた。成形体をlXl0−’m+n Hgの真空雰囲気
中で1250℃、2時間焼結した結果、焼結体密度6.
0g/c+dの焼結体が得られた。
Steel ball filling mold 115kg, argon gas 11
/ll1inil! When introducing a continuous stream, the container should be flushed with cooling water to prevent the temperature from rising. It was then treated for 30 hours. The average particle size of the obtained spherical porous alloy powder was 22 μm. Next, strain relief annealing was performed by heat treatment at 1000° C. for 2 hours in a vacuum atmosphere of 1×10 −3 mm 1 g or less. 1% zinc stearate was added to the heat-treated alloy powder and mixed. Next, 3 g of alloy powder was put into a mold with a diameter of 12.3 mm, and molded using a hydraulic press at a molding pressure of 6 t/c+II. A molded body having a green compact density of 6.2 g/ai was obtained. The compact was sintered at 1250°C for 2 hours in a vacuum atmosphere of lXl0-'m+n Hg, and as a result, the sintered compact density was 6.
A sintered body of 0 g/c+d was obtained.

実施例(2) 74μm以下のFe (97χ)−Si(3χ)合金粉
末と74μm以下のFe (98χ)−At(2χ)合
金粉末、63.crm以下のPe粉末、63μm以下の
Si粉末、63μm以下のAl粉末を混合して、組成が
重量パーセントでSi 9%、At6%、残部Feにな
るようにFe−Si合金粉末60%、Fe−Al合金粉
末20%、Fe粉末7.2%、Si粉末7.2%、■粉
末5.6%を配合した。次にリムマック(容ffi 4
Z)に上記のように配合した粉末を1kg投入した。ス
チールワイヤー径0.5mm 、長さ20mm。
Example (2) Fe (97χ)-Si(3χ) alloy powder of 74 μm or less and Fe (98χ)-At(2χ) alloy powder of 74 μm or less, 63. A Fe-Si alloy powder of 60%, Fe- 20% Al alloy powder, 7.2% Fe powder, 7.2% Si powder, and 5.6% ■ powder were blended. Next, Rimmac (Yongffi 4)
1 kg of the powder blended as above was added to Z). Steel wire diameter 0.5mm, length 20mm.

スチールワイヤ充填型it 2kg、スチールワイヤ回
転数6Orpm/sec 、アルゴンガスを容器内に充
填して密閉する。容器は冷却水を流して温度上昇しない
ようにする。そして30時間処理した。得られた球状の
多孔質合金粉末の平均粒径29μmであった。
A steel wire filling type IT weighs 2 kg, the steel wire rotation speed is 6 Orpm/sec, and the container is filled with argon gas and sealed. Run cooling water through the container to prevent the temperature from rising. It was then treated for 30 hours. The average particle size of the obtained spherical porous alloy powder was 29 μm.

次にステアリン酸亜鉛1%添加して混合した。次に直径
12.3mmの金型に合金粉末を3g投入して油圧式プ
レスで成形圧力8t/cJで成形した。圧粉体密度が6
.1g/cdの成形体が得られた。成形体を水素雰囲気
中で1250℃、2時間焼結した結果、焼結体密度5.
9g/adの焼結体が得られた。
Next, 1% zinc stearate was added and mixed. Next, 3 g of alloy powder was put into a mold with a diameter of 12.3 mm, and molded using a hydraulic press at a molding pressure of 8 t/cJ. Green density is 6
.. A molded article of 1 g/cd was obtained. As a result of sintering the compact at 1250°C for 2 hours in a hydrogen atmosphere, the sintered compact density was 5.
A sintered body weighing 9 g/ad was obtained.

実施例(3) 74μs以下のFe(75X)−Si(10χ)−Al
(15χ)合金粉末と63μ量以下のFe粉末、63μ
m以下のSi粉末を混合して、組成が重量パーセントで
Si 7%、八16%、残部FeになるようにFe−S
i−Al合金粉末40%、Fe粉末57%、Si粉末3
%を配合した。次にアトライター(容量51)に上記の
ように配合した粉末を2kg投入した。アジテータ−の
回転数300rpm、スチールボール径9mm、スチー
ルボール充填重量15kg、アルゴンガスl 1 /m
in連続導入、容器は冷却水を流して温度上昇しないよ
うにして、30時間処理した。得られた球状の多孔質合
金粉末の平均粒径は25μmであった。次にステアリン
酸亜鉛1%添加して混合した。次に直径12.3mmの
金型に合金粉末を3g投入して油圧式プレスで成形圧カ
フt/clI!で成形した。圧粉体密度が6.3g/c
alの成形体が得られた。成形体をI X 10−’m
n+ Hgの真空雰囲気中で1250℃、2時間焼結し
た結果、焼結体密度6.1g/co!の焼結体が得られ
た。
Example (3) 74μs or less Fe(75X)-Si(10χ)-Al
(15χ) alloy powder and Fe powder with an amount of 63μ or less, 63μ
Fe-S is mixed with Si powder of less than
i-Al alloy powder 40%, Fe powder 57%, Si powder 3
% was added. Next, 2 kg of the powder blended as above was put into an attritor (capacity: 51). Agitator rotation speed 300 rpm, steel ball diameter 9 mm, steel ball filling weight 15 kg, argon gas l 1 /m
The treatment was continued for 30 hours, with cooling water flowing through the container to prevent the temperature from rising. The average particle size of the obtained spherical porous alloy powder was 25 μm. Next, 1% zinc stearate was added and mixed. Next, 3g of alloy powder was put into a mold with a diameter of 12.3mm and molded using a hydraulic press. It was molded with. Green density is 6.3g/c
A molded body of al was obtained. The molded body is I x 10-'m
As a result of sintering at 1250°C for 2 hours in an n+ Hg vacuum atmosphere, the sintered body density was 6.1 g/co! A sintered body was obtained.

実施例(4) Fe(85χ)−Si(9%)−Al(6χ)合金粉末
を水アトマイズ法により、150μ−以下の合金粉末を
製造して、次にアトライター(容量51)に合金粉末2
Kg投入し、アジテータ−の回転数300rpai、ス
チールボール径9mm5スチールボール充填重量15k
g、アルゴンガスl l /min連続導入、容器は冷
却水を流して温度上昇しないようにして、30時間処理
した。
Example (4) An alloy powder of 150μ or less was produced from Fe(85χ)-Si(9%)-Al(6χ) alloy powder by a water atomization method, and then the alloy powder was placed in an attritor (capacity 51). 2
Kg input, agitator rotation speed 300 rpm, steel ball diameter 9mm, 5 steel balls filling weight 15k.
The treatment was carried out for 30 hours by continuously introducing argon gas at a rate of 1 l/min and by flowing cooling water into the container to prevent the temperature from rising.

得られた球状の多孔質合金粉末の平均粒径は25μmで
あった。次にステアリン酸亜鉛1%添加して混合した。
The average particle size of the obtained spherical porous alloy powder was 25 μm. Next, 1% zinc stearate was added and mixed.

次に直径12.3mmmの金型に合金粉末を3g投入し
て、油圧式プレスで成形圧力8t/cdで成形した。圧
粉体密度が6.2g/antの成形体が得られた。成形
体をlXl0−’mm Ilgの真空雰囲気中で125
0℃、2時間焼結した結果、焼結体密度6.0g/cf
flの焼結体が得られた。
Next, 3 g of alloy powder was put into a mold with a diameter of 12.3 mm, and molded using a hydraulic press at a molding pressure of 8 t/cd. A molded body having a green compact density of 6.2 g/ant was obtained. The molded body was heated in a vacuum atmosphere of lXl0-'mm Ilg at 125
As a result of sintering at 0°C for 2 hours, the sintered body density was 6.0 g/cf.
A sintered body of fl was obtained.

〔発明の効果〕〔Effect of the invention〕

以上、説明したように本発明によれば、成形性の良好な
Fe−Si−S1合金粉末を容易に得ることができる。
As described above, according to the present invention, Fe-Si-S1 alloy powder with good formability can be easily obtained.

本発明のFe−5t−Al合金粉末は粉末冶金用、電磁
材用、塗料用等に好適である。
The Fe-5t-Al alloy powder of the present invention is suitable for powder metallurgy, electromagnetic materials, paints, etc.

Claims (1)

【特許請求の範囲】[Claims] (1)Fe−Si合金粉末、Fe−Al合金粉末、Fe
−Si−Al合金粉末、Fe粉末、Si粉末、Al粉末
を用いて、1種又は2種以上選び組成が重量パーセント
でSi7〜11%、Al5〜7%、残部Feになるよう
に配合して、非酸化性の雰囲気で機械的に合金化すると
ともに合金化した微細粒を多孔質状に造粒して得られる
、成形性の良好なFe−Si−Al合金粉末。
(1) Fe-Si alloy powder, Fe-Al alloy powder, Fe
- Using Si-Al alloy powder, Fe powder, Si powder, and Al powder, one or more of them are selected and blended so that the composition is 7 to 11% Si, 5 to 7% Al, and the balance is Fe. , Fe-Si-Al alloy powder with good formability, which is obtained by mechanically alloying in a non-oxidizing atmosphere and granulating the alloyed fine particles into a porous shape.
JP61313983A 1986-12-26 1986-12-26 Fe-si-a alloy powder Pending JPS63166901A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61313983A JPS63166901A (en) 1986-12-26 1986-12-26 Fe-si-a alloy powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61313983A JPS63166901A (en) 1986-12-26 1986-12-26 Fe-si-a alloy powder

Publications (1)

Publication Number Publication Date
JPS63166901A true JPS63166901A (en) 1988-07-11

Family

ID=18047821

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61313983A Pending JPS63166901A (en) 1986-12-26 1986-12-26 Fe-si-a alloy powder

Country Status (1)

Country Link
JP (1) JPS63166901A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004043633A1 (en) * 2002-11-13 2004-05-27 Humanelecs Co., Ltd. Fe-Si ALLOY POWDER CORES AND FABRICATION PROCESS THEREOF

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5271312A (en) * 1975-12-11 1977-06-14 Nippon Musical Instruments Mfg Moulding method for pig dust alloy

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5271312A (en) * 1975-12-11 1977-06-14 Nippon Musical Instruments Mfg Moulding method for pig dust alloy

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004043633A1 (en) * 2002-11-13 2004-05-27 Humanelecs Co., Ltd. Fe-Si ALLOY POWDER CORES AND FABRICATION PROCESS THEREOF

Similar Documents

Publication Publication Date Title
CA2182389C (en) High density sintered alloy
CA2104605C (en) Powder metal alloy process
EP0215168B1 (en) Method for making rare-earth element containing permanent magnets
JPH08209263A (en) Compacted article and its production
JPH01116002A (en) Production of composite metal powder from base iron powder and alloying component and composite metal powder
EP0124699A2 (en) Method of producing a sintered body without communicating porosity
JPS60255901A (en) Powder metallurgical manufacture for high speed steel product
JPH0261521B2 (en)
CA1233679A (en) Wrought p/m processing for prealloyed powder
GB2084612A (en) Isostatic pressing of sintered crushed spherical particles
CA1041324A (en) Process for the production of high apparent density water atomized steel powders
US5834640A (en) Powder metal alloy process
CA1151384A (en) Liquid phase compacting
JPS63166901A (en) Fe-si-a alloy powder
JPH02259029A (en) Manufacture of aluminide
JPH0222121B2 (en)
JPH08120393A (en) Production of iron-silicon soft magnetic sintered alloy
KR100262488B1 (en) Method of manufacturing sintered fe-si type soft magnets
JP3363459B2 (en) Method for producing aluminum-based particle composite alloy
JP2654982B2 (en) Fe-Al-Si alloy and method for producing the same
JPS61127848A (en) Manufacture of sintered alnico magnet
JPH06256912A (en) Production of ultra-magnetostrictive sintered compact having high magnetostrictive property
JPS6315321B2 (en)
KR100456234B1 (en) Method for manufacturing magnetic abrasive particle by mechanical alloying
JPH09235660A (en) Bulk compact of amorphous alloy powder and its production