JPS60215529A - Production of ferrite raw material - Google Patents

Production of ferrite raw material

Info

Publication number
JPS60215529A
JPS60215529A JP59071441A JP7144184A JPS60215529A JP S60215529 A JPS60215529 A JP S60215529A JP 59071441 A JP59071441 A JP 59071441A JP 7144184 A JP7144184 A JP 7144184A JP S60215529 A JPS60215529 A JP S60215529A
Authority
JP
Japan
Prior art keywords
oxide
powder
ferromanganese
raw material
wet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59071441A
Other languages
Japanese (ja)
Inventor
Koichi Kanbe
神戸 功一
Hideaki Honoki
朴木 秀明
Mitsuharu Tominaga
富永 光春
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Metals and Chemical Co Ltd
Original Assignee
Japan Metals and Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Metals and Chemical Co Ltd filed Critical Japan Metals and Chemical Co Ltd
Priority to JP59071441A priority Critical patent/JPS60215529A/en
Publication of JPS60215529A publication Critical patent/JPS60215529A/en
Pending legal-status Critical Current

Links

Landscapes

  • Soft Magnetic Materials (AREA)
  • Compounds Of Iron (AREA)
  • Magnetic Ceramics (AREA)

Abstract

PURPOSE:To produce a high-quality ferrite raw material in high efficiency at a low cost, by drying the wet mixture of a ferromanganese oxide powder and iron oxide powder, and calcining the dry mixture after pelletization. CONSTITUTION:(A) The powder of ferromanganese oxide obtained by the air oxidation of ferromanganese (composed of about 70-80wt% Mn and the rest part composed mainly of Fe) used as a deacidifying agent in a steel mill, is mixed with (B) powdery iron oxide in wet state, and the mixture is pelletized after drying at 100-600 deg.C. The obtained pellet is calcined at 500-1,400 deg.C to obtain the objective ferrite raw material. The above powdery mixture may be mixed further with the powder prepared by the wet mixing of zinc oxide, magnesium oxide, nickel oxide, etc., before pelletization.

Description

【発明の詳細な説明】 (産業上の利用分野及び本発明の目的)本発明はフェラ
イト原料の製造法であって、その目的とする処は高精度
のフェライト原料を安価に、かつ、高能率に製造する方
法を提供することにある。
Detailed Description of the Invention (Industrial Field of Application and Object of the Invention) The present invention is a method for producing a ferrite raw material, and its purpose is to produce a high-precision ferrite raw material at low cost and with high efficiency. The purpose is to provide a method for manufacturing.

(従来の技術) フェライトはテレビ、ラジオ等の他各種通信器等に用い
られる高周波磁芯(例えばヘッド。
(Prior Art) Ferrite is used in high-frequency magnetic cores (such as heads) used in televisions, radios, and various other communication devices.

トランス、ブラウン管、偏向ヨーク等)のほか、フェラ
イトの粉末を塗料等に配合し、電波障害除去用等の材料
等に広く使用されている。
In addition to ferrite powder (transformers, cathode ray tubes, deflection yokes, etc.), ferrite powder is mixed into paints, etc., and is widely used as materials for eliminating radio interference.

前述における高周波磁芯は要求される各種磁気特性に応
じて種々の組成からなるフェライトが使用されているが
、その組成は酸化鉄、マンガン酸化物、酸化亜鉛を主体
とし、これにマグネシウム、ニッケルその他の酸化物を
配合したスぎネル型の焼結体、即ちMOFe203(M
は2価の金属)の構造からなるものである。
The high-frequency magnetic core mentioned above uses ferrite with various compositions depending on the various magnetic properties required, but the composition is mainly iron oxide, manganese oxide, zinc oxide, and magnesium, nickel, etc. MOFe203 (M
is a divalent metal).

前記の如きフェライトを工業的に製造する代表的な方法
は、前記各種成分の酸化物粉末を混合成形し、これを酸
化性雰囲気で仮焼成した後、粉砕してフェライト原料と
し、これを成形して本焼成するものであるが、この方法
は酸化物同士が反応してフェライト化するまでに、仮焼
成。
A typical method for industrially manufacturing ferrite as described above is to mix and mold oxide powders of the various components described above, calcinate this in an oxidizing atmosphere, and then crush it to obtain a ferrite raw material, which is then molded. However, this method requires preliminary firing before the oxides react with each other and become ferrite.

本焼成ともに数時間の加熱を必要とすると云う欠点があ
る。
Both main firings have the disadvantage of requiring several hours of heating.

また、従来マンガン酸化物の原料たる二酸化マンガンは
、マンガン鉱石を硫酸によって溶解し、電解したものが
使用され、まだ炭酸マンガンはマンガン鉱石を硫酸によ
り溶解した後、アルカリを加え、沈澱物を脱水乾燥しま
たものが使用されている。
Conventionally, manganese dioxide, the raw material for manganese oxide, is obtained by dissolving manganese ore in sulfuric acid and electrolyzing it.Manganese carbonate is still produced by dissolving manganese ore in sulfuric acid, adding alkali, and dehydrating and drying the precipitate. Shimata is used.

しかし、前者の方法は電解時に多量の電力を要し、また
後者は湿式反応であるため工程が複雑化し、何れの方法
も高価な原料を使用するため非経済的であり、まだ非能
率であると云う欠点がある。
However, the former method requires a large amount of electricity during electrolysis, the latter is a wet reaction, which complicates the process, and both methods use expensive raw materials, making them uneconomical and still inefficient. There is a drawback.

本発明者等は、上述従来の欠点を改善するだめ研究の結
果、特許請求の範囲に記載した構成とすることによって
高精度のフェライト原料を安価に、かつ、高能率で製造
する方法を得るととができた。
As a result of research aimed at improving the above-mentioned conventional drawbacks, the inventors of the present invention have found that a method for manufacturing high-precision ferrite raw materials at low cost and with high efficiency can be obtained by adopting the configuration described in the claims. I was able to do it.

(問題点を解決するだめの手段) 即ち、特許請求の範囲第1項に記載されている発明(以
下第1の発明という)はフェロマンガン酸化物粉末と酸
化鉄粉末とを湿式混合し、100〜6008Cで乾燥し
た後、ペレットに成形し、500〜1400℃で加熱す
ることを特徴とするフェライト原料の製造法であり、ま
た特許請求の範囲第2項に記載されている発明(以下第
2の発明という)は、フェロマンガンの酸化物粉末と酸
化鉄粉末に、さらに酸化亜鉛。
(Means for solving the problem) That is, the invention described in claim 1 (hereinafter referred to as the first invention) wet-mixes ferromanganese oxide powder and iron oxide powder, This is a method for producing a ferrite raw material, which is characterized by drying at ~6008C, then forming into pellets, and heating at 500~1400C. The invention is based on ferromanganese oxide powder, iron oxide powder, and zinc oxide.

酸化マグネシウム、酸化ニッケルの1種又は2種以上の
粉末を添加して湿式混合し、100〜600°Cで乾燥
した後、ペレットに成形し、500〜1400°Cで加
熱することを特徴とするフェライト原料の製造法である
It is characterized by adding one or more powders of magnesium oxide and nickel oxide, wet mixing, drying at 100 to 600°C, forming into pellets, and heating at 500 to 1400°C. This is a method for producing ferrite raw materials.

(作用効果) さらに本発明の詳細な説明すれば、本発明で使用するフ
ェロマンガン酸化物粉末は、Mn70〜80%残余主と
してFeからなる鉄鋼製造時の脱酸剤として使用するも
のであって、このフェロマンガンを酸化した粉末である
(Operation and Effect) To further explain the present invention in detail, the ferromanganese oxide powder used in the present invention is used as a deoxidizing agent during steel production, consisting of 70 to 80% Mn and the remainder mainly Fe. It is a powder made by oxidizing this ferromanganese.

前記のフェロマンガン酸化物粉末は、フェロマンガン粉
末と酸化鉄粉末との混合物を空気又は酸素等の酸化性ガ
ス雰囲気で湿式混合することによって得ることができる
。尚、この場合酸化性ガス雰囲気に代えて、製品フェラ
イト組成に影響を及ぼさない限り、前記混合物に酸化剤
を混合して酸化させることもできる。もつとも、フェロ
マンガン酸化物を製造する場合、フェロマンガンを前記
と同様に酸化性ガス雰囲気中で湿式粉砕した後、酸化鉄
粉末と湿式混合せしめてもよい。
The ferromanganese oxide powder described above can be obtained by wet mixing a mixture of ferromanganese powder and iron oxide powder in an atmosphere of an oxidizing gas such as air or oxygen. In this case, instead of using an oxidizing gas atmosphere, an oxidizing agent may be mixed into the mixture to oxidize, as long as it does not affect the composition of the product ferrite. However, when producing ferromanganese oxide, ferromanganese may be wet-pulverized in an oxidizing gas atmosphere in the same manner as described above, and then wet-mixed with iron oxide powder.

以上の如くフェロマンガンを湿式混合又は湿式粉砕する
ことによって酸化物の活性度は向上し、また活性度のバ
ラツキのない均一々ものとして得られ、従って本発明に
よって得られる最終製品は局部的な異方性がなく、均一
な性状の磁性体として得ることができる。
As described above, by wet mixing or wet pulverizing ferromanganese, the activity of the oxide is improved and a uniform product with no variation in activity is obtained. Therefore, the final product obtained by the present invention has no local differences. It has no orientation and can be obtained as a magnetic material with uniform properties.

前記湿式混合によってフェロマンガン粉末の約70%は
酸化されるが、本発明は前記混合物を100〜600°
Cに加熱して粉砕する。この結果、前記混合物中のフェ
ロマンガンの未酸化物は完全に酸化されてフェロマンガ
ン酸化物と酸化鉄との混合物粉末が得られる。
Approximately 70% of the ferromanganese powder is oxidized by the wet mixing, but in the present invention, the mixture is oxidized at 100 to 600°.
Heat to C and crush. As a result, unoxidized ferromanganese in the mixture is completely oxidized to obtain a powder mixture of ferromanganese oxide and iron oxide.

尚、前記湿式混合に当り、フェロマンガンの酸化反応に
よって水素、メタン等の可燃性ガスが発生するため、酸
化を促進するため湿式混合機内に空気又は酸素を送入す
ると同時に、湿式混合機内の前記可燃性ガスを排出させ
ればよい。
In addition, during the wet mixing, combustible gases such as hydrogen and methane are generated due to the oxidation reaction of ferromanganese. All you have to do is exhaust the flammable gas.

以上のように湿式混合して得られたものにポリビニルア
ルコール(PVA )等のバインダーを配合して、適宜
直径のペレットに成形し、さらにこれを500〜140
0’Cで加熱する。このようにフェロマンガン酸化物粉
末と酸化鉄粉末をペレットに成形することによって粉化
が防止され、まだ均一加熱が達成され、従って高温度に
おいても溶融せず、精度の高いフェライト原料を得るこ
とができる。
A binder such as polyvinyl alcohol (PVA) is added to the wet-mixed product as described above, and the pellets are formed into pellets with an appropriate diameter.
Heat at 0'C. By forming ferromanganese oxide powder and iron oxide powder into pellets in this way, powdering is prevented, uniform heating is achieved, and therefore it does not melt even at high temperatures, making it possible to obtain a highly accurate ferrite raw material. can.

まだ、第2の発明は、湿式混合に当り、フェロマンガン
粉末と酸化鉄粉末に、さらに酸化亜鉛、酸化マグネシウ
ム、酸化−ツケルの1種支は2種以上を添加するもので
あって、この場合添加配合するものは必らずしも金属酸
化物である必要はなく、酸化焙焼時に金属酸化物を生成
できる各種金属塩であってもよく、これによって酸化マ
ンガン、酸化鉄以外に酸化亜鉛、酸化マグネシウム、酸
化ニッケル等を配合した精度の高い各種フェライトを安
価に、しがも高能率で製造することができる。
However, the second invention is to add two or more of zinc oxide, magnesium oxide, and iron oxide to ferromanganese powder and iron oxide powder during wet mixing, and in this case, What is added and blended does not necessarily have to be metal oxides, and may be various metal salts that can generate metal oxides during oxidative roasting. Various types of highly accurate ferrite containing magnesium oxide, nickel oxide, etc. can be produced at low cost and with high efficiency.

実施例l Mn74.1%、 Fe l 8.6%のフェロマンガ
ン粗粒300yに、水300尻eを加え、一方より空気
を送入し、他方より系内ガスを排出し乍ら、振動ミルに
より5時間粉砕する。粉砕したスラリーに、Fe203
600 yと水600m/+を加え湿式混合する。
Example 1 300 ml of water was added to 300 y of coarse ferromanganese particles containing Mn 74.1% and Fe 8.6%, and while air was introduced from one side and gas in the system was discharged from the other, a vibrating mill was used. Grind for 5 hours. Fe203 is added to the crushed slurry.
Add 600 y and 600 m/+ of water and wet mix.

ついで400℃で乾燥して得られた粉末に、PVAを0
.1%加えペレットとし、1000°Cで2時間加熱し
てフェライト原料を得る。
Next, 0 PVA was added to the powder obtained by drying at 400°C.
.. Add 1% to make pellets and heat at 1000°C for 2 hours to obtain a ferrite raw material.

これをさらに3時間湿式粉砕し脱水乾燥して粉末とし、
これにバインダーとしてPVAを0.5%加えてリング
状に成形し、1280°Cで3時間加熱後、窒素気流中
で冷却した。この試料の常温における特性は表−1の通
りである。
This was further wet-pulverized for 3 hours, dehydrated and dried to form a powder.
0.5% of PVA was added as a binder to this, molded into a ring shape, heated at 1280°C for 3 hours, and then cooled in a nitrogen stream. The characteristics of this sample at room temperature are shown in Table 1.

表 −1 実施例2 Mn ? 4.1. % 、 Fe 1 B、6 %の
フエ0マンガン粗粒210グに水210mA!を加え、
実施例1と同様振動ミルで粉砕する。粉砕したスラリー
にFe203660f、Zn095f及び水750m1
を加えて湿式混合し、実施例1と全く同様にしてフェラ
イト原料を得、リング状に成形し、1330℃で2時間
加熱後、窒素気流中で冷却した。この試料の常温におけ
る特性は表−2の通りである。
Table-1 Example 2 Mn? 4.1. %, Fe 1 B, 6% Fe 0 manganese coarse particles 210g and water 210mA! Add
Grind with a vibrating mill in the same manner as in Example 1. Fe203660f, Zn095f and 750ml of water were added to the crushed slurry.
was added and wet mixed to obtain a ferrite raw material in exactly the same manner as in Example 1, molded into a ring shape, heated at 1330° C. for 2 hours, and then cooled in a nitrogen stream. The characteristics of this sample at room temperature are shown in Table 2.

表 −2 実施例3 Mn 72.1%、 Fe 18.7%のフェロマンガ
ン粗粒250yと純度99.3%の酸化鉄粉末700y
及び純度99.7%の亜鉛華75y並びに水800m1
を実施例1と全く同様振動ミルで粉砕混合する。
Table 2 Example 3 250y of ferromanganese coarse particles with Mn 72.1% and Fe 18.7% and 700y of iron oxide powder with a purity of 99.3%
and 75y of zinc white with a purity of 99.7% and 800ml of water
were pulverized and mixed using a vibrating mill in exactly the same manner as in Example 1.

得られた混合物を実施例1と同様加熱乾燥した後、直径
2〜4mmのペレットに成形した後、電熱マツフル炉で
9.00°Cで2時間加熱してフェライト原料を得る。
The obtained mixture was dried by heating in the same manner as in Example 1, and then formed into pellets with a diameter of 2 to 4 mm, and then heated in an electric Matsufuru furnace at 9.00° C. for 2 hours to obtain a ferrite raw material.

つぎにこれを常温まで急冷(約30分間で冷却)した後
、平均粒子径1.5ミクロンまで粉砕し、PVAをバイ
ンダーとしてリング状に成形し、1350℃で2時間加
熱後、窒素気流中で冷却した。この試料の磁気特性を測
定した処、μ1ac2800、B、o5200ガウスで
あった。この値は、テレビのフライバックトランスに使
用されているMn−Zn系フェライトの一般的数値と同
等である。
Next, this was rapidly cooled to room temperature (cooling for about 30 minutes), then ground to an average particle size of 1.5 microns, formed into a ring shape using PVA as a binder, heated at 1350°C for 2 hours, and then placed in a nitrogen stream. Cooled. The magnetic properties of this sample were measured and were found to be μ1ac2800, B, and o5200 Gauss. This value is equivalent to the general value of Mn-Zn ferrite used in flyback transformers for televisions.

特許出願人 日本重化学工業株式会社 代理人 市 川 理 吉 (11) 手続補正書(方式) %式% 1、事件の表示 昭和59年 特 許 願第 71441号2、発明の名
称 フェライト原料の製造法 3、補正をする者 5、補正命令の日付 昭和59年7 月11日 願書に最初に添付した明細書の浄書・別紙の通り(内容
に変更々し) 以上
Patent Applicant Japan Heavy Chemical Industry Co., Ltd. Agent Rikichi Ichikawa (11) Procedural Amendment (Method) % Formula % 1. Indication of the case 1982 Patent Application No. 71441 2. Name of the invention Method for producing ferrite raw material 3. Person making the amendment 5. Date of the amendment order: July 11, 1980 As per the engraving and attached sheet of the specification originally attached to the application (with various changes in content)

Claims (2)

【特許請求の範囲】[Claims] (1) フェロマンガンの酸化物粉末と酸化鉄粉末とを
湿式混合し、100〜600°Cで乾燥した後、ペレッ
トに成形し500〜1400°Cで加熱することを特徴
とするフェライト原料の製造法。
(1) Production of ferrite raw material characterized by wet mixing ferromanganese oxide powder and iron oxide powder, drying at 100 to 600°C, forming into pellets, and heating at 500 to 1400°C. Law.
(2) フェロマンガンの酸化物粉末と酸化鉄粉末に、
さらに酸化亜鉛、酸化マグネシウム、酸化ニッケルの1
種又は2種の粉末を添加して湿式混合し、100〜60
0°Cで乾燥した後、ペレットに成形し、500〜14
00°Cで加熱することを特徴とするフェライト原料の
製造法。
(2) Ferromanganese oxide powder and iron oxide powder,
Furthermore, 1 of zinc oxide, magnesium oxide, and nickel oxide
Wet mix by adding seeds or two types of powder, and add 100-60
After drying at 0°C, it is formed into pellets and
A method for producing a ferrite raw material, characterized by heating at 00°C.
JP59071441A 1984-04-10 1984-04-10 Production of ferrite raw material Pending JPS60215529A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59071441A JPS60215529A (en) 1984-04-10 1984-04-10 Production of ferrite raw material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59071441A JPS60215529A (en) 1984-04-10 1984-04-10 Production of ferrite raw material

Publications (1)

Publication Number Publication Date
JPS60215529A true JPS60215529A (en) 1985-10-28

Family

ID=13460625

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59071441A Pending JPS60215529A (en) 1984-04-10 1984-04-10 Production of ferrite raw material

Country Status (1)

Country Link
JP (1) JPS60215529A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58199721A (en) * 1982-05-12 1983-11-21 Tadayoshi Karasawa Ferromagnetic oxide and its manufacture

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58199721A (en) * 1982-05-12 1983-11-21 Tadayoshi Karasawa Ferromagnetic oxide and its manufacture

Similar Documents

Publication Publication Date Title
US2452530A (en) Magnetic core
CN113698192A (en) Method for preparing permanent magnetic ferrite by taking ultrapure magnetite concentrate as raw material
CN110818402B (en) Preparation method of superfine ferrite powder
US2751353A (en) Magnetic material
US2579267A (en) Material having improved magnetic property
JPS58140324A (en) Manufacture of ferrite as starting material
US3896216A (en) Process for the preparation of barium titanate
US3000828A (en) Manufacture of metal oxides and of ferrites
CN108863334B (en) Method for preparing manganese-zinc ferrite wave-absorbing material by using casting waste ash
JP2008251848A (en) NiMnZn-BASED FERRITE AND ITS MANUFACTURING METHOD
JPS60215529A (en) Production of ferrite raw material
US2958664A (en) Making manganese-zinc ferrites
CN113620700A (en) Short-process for preparing permanent magnetic ferrite
US3694361A (en) Lithium titanium bismuth cobalt ferrites
US3009880A (en) Method for preparing nickel-zinc ferrites
JPS6131601B2 (en)
US4892672A (en) Process for controlling ferrous iron content in manganese zinc ferrite
US2980619A (en) Manganese zinc ferrite containing tungstic oxide
JP2005089281A (en) Electromagnetic wave absorption material using waste
JPS5815037A (en) Magnetic manganese-zinc ferrite material and its manufacture
JP2008290906A (en) METHOD OF MANUFACTURING MnZn-BASED FERRITE
JPH05135933A (en) Production of material oxide for soft ferrite
TW202328004A (en) Powdered lithium oxide, process for its preparation and its use
JP2706975B2 (en) Method for producing Mn-Zn ferrite material
KR100269854B1 (en) Setter for ferrite production and its manufacturing method