JPS6229482B2 - - Google Patents

Info

Publication number
JPS6229482B2
JPS6229482B2 JP56153919A JP15391981A JPS6229482B2 JP S6229482 B2 JPS6229482 B2 JP S6229482B2 JP 56153919 A JP56153919 A JP 56153919A JP 15391981 A JP15391981 A JP 15391981A JP S6229482 B2 JPS6229482 B2 JP S6229482B2
Authority
JP
Japan
Prior art keywords
iron powder
powder
apparent density
less
density
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56153919A
Other languages
Japanese (ja)
Other versions
JPS5858201A (en
Inventor
Minoru Nitsuta
Haruo Ogawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP56153919A priority Critical patent/JPS5858201A/en
Publication of JPS5858201A publication Critical patent/JPS5858201A/en
Publication of JPS6229482B2 publication Critical patent/JPS6229482B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/02Making ferrous alloys by powder metallurgy
    • C22C33/0257Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements
    • C22C33/0264Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements the maximum content of each alloying element not exceeding 5%
    • C22C33/0271Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements the maximum content of each alloying element not exceeding 5% with only C, Mn, Si, P, S, As as alloying elements, e.g. carbon steel

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Powder Metallurgy (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

その発明は、流動性、成形性にあわせ圧縮性に
も優れる粉末冶金用低見掛密度噴霧鉄粉に関する
ものである。 最近の粉末冶金用鉄粉は、機械構造用焼結材用
の原料として多く用いられており、その多くは高
強度、強靭化するためにNi粉、Cu粉、黒鉛粉お
よび粉末潤滑剤等を例えば(2Cu−0.8C−1Zn・
St.−96.2Fe)wt%の割合で混合し圧縮成形して
焼結されたものである。 従来、粉末冶金用噴霧鉄粉の場合、見掛密度
2.80〜3.20g/cm3と高くした圧縮性に優れたもの
を高密度鉄系焼結材用の原料鉄粉として用いるの
が普通である。その従来噴霧鉄粉粒子形状は房状
ではあるが、房状を構成する個々の粒子あるいは
突起の表面は平滑球面なので、混合する微細な黒
鉛粉や粉末潤滑剤の溜り場が少なく、ために混合
粉の流動度はJIS Z2502試験法によると流下せず
(non flow)、金型への充填性に関し大きな問題
点があつた。とくに、この従来鉄粉はかかる意味
において複雑形状薄肉焼結材への適用が制限され
ていた。しかも、ラトラー値や圧粉体抗折力で評
価される成形性が十分でなく、高密度の割には焼
結材の機械的強度が低いため、例えば6.80g/cm3
程度より低い中、低密度の焼結剤には使用されて
いないのが実情である。そのため、中、低密度焼
結材用原料粉末としてはもつぱら還元鉄粉(ミル
スケール還元鉄粉、鉱石還元鉄粉)が使用されて
いる。 従つて、最近では良好な圧縮性を保持したま
ま、優れた流動性と成形性とを兼ね備えた噴霧鉄
粉が要望されるようになり、とくに成形性向上を
指向した噴霧鉄粉の開発が進められている。例え
ば、特開昭54−114467号公報や特開昭50−115161
号公報には見掛密度が2.50g/cm3まで低下する水
噴霧鉄粉の製造法を開示している。即ち、該特開
昭54−114467号として開示の技術は、水圧81.6Kg
f/cm2、噴射角度が80〜120゜の逆円錐状に噴出
する高圧水を20〜204gf/索の負圧状態の雰囲
気下で溶鉄落下流に噴射粉砕し、微粉量の多い噴
霧鉄粉(以下生鉄粉という)を得、その後1000〜
1200℃の温度の還元雰囲気中で還元焼鈍して、得
たその焼結ケーキを解砕し生鉄粉に較べて大きい
粒度を有するものを得る方法である。一方、前記
特開昭50−115161号として開示のものは、粒度分
布をPSC値で規定し、そのPSC値が1.0〜2.7の範
囲の生鉄粉を760〜1149℃の温度で還元焼鈍し、
焼結ケーキをデイスクミルで解砕する方法であ
る。 上記公知の2つの方法は、いずれもただ単に生
鉄粉中の微粉量割合を高くして還元焼鈍時に粒子
相互を焼結凝集させたのち、その焼結ケーキを比
較的小さい負荷で解砕して低見掛密度化し成形性
の向上改善を計る技術であり、そこで達成される
見掛密度としては2.50g/cm3までの水噴霧鉄粉の
製造例が示されているにすぎない。しかも、一般
には生鉄粉はその微粉量を増すほど、還元焼鈍温
度を高くするほど粒子相互の焼結が進み、解砕し
た鉄粉の見掛密度が低下して成形性の向上を計れ
るが、還元鉄粉と同等以上の流動性、成形性およ
び焼結性を有するには到らないのが実情である。 また、上述の2つの先行技術の他に、粉体粉末
冶金協会;昭和54年度秋季講演概要集、講演No.1
−11に、環元焼鈍した鉄粉の見掛密度は還元条件
より噴霧のままの粉末(生鉄粉)それ自体の見掛
密度に強く影響されるということが開示されてい
るが、見掛密度が2.50g/cm3以下の噴霧鉄粉につ
いては全く言及されていない。 本発明の目的は、噴霧鉄粉自体がもつ優れた圧
縮性を害することなく還元鉄粉と同等もしくはよ
り以上に優れた流動性と成形性とを兼ね備えたと
くに見掛密度が2.00〜2.50g/cm3の低見掛密度噴
霧鉄粉を提供することにある。 以下に本発明の構成の詳細を説明する。 本発明は次の4つの知見に基づいて完成された
ものである。 (1) 粉末冶金用鉄粉は、混ぜ合わせた微細な黒鉛
粉やステアリン酸亜鉛(Zn・St)等の粉末潤
滑剤により層厚く覆われているが、それらの余
つた分が団塊状に偏在すると混合粉の流動性と
成形性が劣化する。したがつて、優れた流動
性、成形性を確保するには、鉄粉が上記微細な
黒鉛粉や粉末潤滑剤の溜り場の多い粒形をして
いることである。 すなわち、低い見掛密度であることが必要で
あり、JIS−Z−2502試験法により円滑に流下
する鉄粉単味の見掛密度は、噴霧鉄粉において
2.50g/cm3以下である(なお、還元鉄粉は2.60
g/cm2以下)。 (2) 見掛密度2.80〜3.20g/cm3の従来の噴霧鉄粉
に比べ、本発明で得られるような、見掛密度
2.50g/cm3以下にしたものにおいては、噴霧鉄
粉のラトラー値、圧粉体抗折力は格段に優れ
る。 例えば、2Cu−0.8C−1Zu・St−96.2wt%Fe
混合粉の場合、成形圧力5t/cm2におけるストラ
ー値(JSPM標準4−69試験法による)は
0.6wt%以下の範囲であり、また鉄粉単味
(100wt%Fe)の例では成形圧力4.2t/cm2にお
けるASTM−B−312−64試験法による圧粉体
抗折力が250Kg/cm2を超える範囲となり、一段
と優れた成形性を有することが判る。 (3) −325メツシユ(−45μm)の微粉量につい
て見ると、その量が50wt%を越えると、見掛
密度が2.50g/cm3を超え、流動性、圧縮性およ
び成形性が劣化する。一方、10wt%より少な
いと焼結体の粗大空孔と粒子界面に沿つた先鋭
空孔が増え焼結体の機械強度が著しく低下す
る。 (4) 還元鉄粉と同等の見掛密度で還元鉄粉より優
れた圧縮性、すなわち成形圧力5t/cm2における
圧粉密度を6.70g/cm3以上確保するためには、
C、N、Si、P、S等の不純物量の限界が必要
になるし、また、同一成形圧力で成形したとき
還元鉄粉を用いた場合と同程度の焼結体強度を
確保するためにはSi、Mn、O等の不純物量を
限定しなければならない。 本発明噴霧鉄粉は、上述のような知見にもとづ
いて製造したものであり、以下その鉄粉の化学成
分および特性について、実施例の記述にあわせ限
定した理由を説明る。 本発明鉄粉を得るのに重要なことは、最終製品
の見掛密度2.0〜2.5g/cm3を達成するのに、それ
なりに低い見掛密度の生鉄粉を出発原料として用
いることである。このことは、液体噴霧鉄粉本来
の特色である不規則粒形と、還元焼鈍のとき生成
する焼結凝集した集合不規則粒形とをそのまま保
つような衝撃力で焼結ケーキを解砕するのに好都
合になるからである。 すなわち、本発明者らの研究によると、生鉄粉
においてタイラー標準篩で篩つた単一粒径;di
〔μm〕と見掛密度;x〔g/cm3〕との間には、
150μmを超える粒径においてx=ほぼ一定、150
μm以下の粒径においてdi=ae-bxなる関係のあ
ることが判つた。そして、この関係はまた還元焼
鈍した焼結ケーキを10-5Kgf・m/sec2以下の衝
撃力で解砕した噴霧鉄粉においても同様に成立す
ることを知見した。したがつて、生鉄粉の見掛密
度によつて還元焼鈍した鉄粉の見掛密度も限定さ
れ、例えば生鉄粉が150μmを超える粒径のもの
を使い還元焼鈍した鉄粉の見掛密度は生鉄粉の見
掛密度より低くすることは困難であり、一方それ
を解消するのに強解砕すれば高見掛密度化するこ
とになる。また、生鉄粉が150μm以下の粒径の
ものを用い還元焼鈍した鉄粉の見掛密度は粒子相
互が焼結凝集して集合不規則粒径となるため、生
鉄粉より低くなる。この場合でも上記粒形定数;
bは常に正の値を持ち、これを負の値にするよう
な工業的実現は困難である。 よつて、還元焼鈍して見掛密度が2.50g/cm3
下の噴霧鉄粉を製造するためには、150μmを超
える粒度においてx2.60g/cm3好ましくはx
2.50g/cm3、150μm以下の粒径においてdi=
ae-bx、ただしdi;タイラー標準篩の3つの篩目
の平均径 (di=d+d/2)〔μm〕、x;見掛密度〔g/
cm3〕、 a、b;粒形定数でb1.5の関係を満足する生
鉄粉を原料に用いることが、本発明鉄粉を得るの
に重要であり、この点が優れた流動性と成形性と
を確保するのに効果的である。 なお、表−1は上記の生鉄粉の性状について、
その見掛密度:x〔g/cm3〕とタイラー標準篩で
篩分けた単一粒径:di=d+d/2〔μm〕の関係
を 示す。
The invention relates to a low apparent density atomized iron powder for powder metallurgy that has excellent fluidity, moldability, and compressibility. Recently, iron powder for powder metallurgy is often used as a raw material for sintered materials for machine structures, and many of them contain Ni powder, Cu powder, graphite powder, powder lubricant, etc. to increase strength and toughness. For example, (2Cu−0.8C−1Zn・
St.−96.2Fe) wt%, compression molded, and sintered. Traditionally, in the case of atomized iron powder for powder metallurgy, the apparent density
It is common to use iron powder with excellent compressibility as high as 2.80 to 3.20 g/cm 3 as raw material iron powder for high-density iron-based sintered materials. Conventionally, the shape of the atomized iron powder particles is tuft-like, but the surfaces of the individual particles or protrusions that make up the tufts are smooth spherical surfaces, so there are few pools of fine graphite powder and powder lubricant to be mixed, so the mixed powder According to the JIS Z2502 test method, the fluidity of the product was non-flow, and there was a major problem regarding the ability to fill the mold. In particular, this conventional iron powder has been limited in its application to thin-walled sintered materials with complex shapes. Moreover, the formability evaluated by the Rattler value and the transverse rupture strength of the green compact is insufficient, and the mechanical strength of the sintered material is low despite its high density, for example, 6.80 g/cm 3
The reality is that it is not used as a medium or low density sintering agent. Therefore, reduced iron powder (mill scale reduced iron powder, ore reduced iron powder) is used as the raw material powder for medium to low density sintered materials. Therefore, recently there has been a demand for atomized iron powder that has both excellent fluidity and formability while maintaining good compressibility, and the development of atomized iron powder that is particularly oriented toward improving formability is progressing. It is being For example, JP-A-54-114467 and JP-A-50-115161.
The publication discloses a method for producing water-sprayed iron powder whose apparent density is reduced to 2.50 g/cm 3 . That is, the technology disclosed in JP-A-54-114467 has a water pressure of 81.6 kg.
f/cm 2 , high-pressure water jetted in an inverted cone shape with a spray angle of 80 to 120 degrees is injected into the falling flow of molten iron under a negative pressure atmosphere of 20 to 204 gf/cable to produce atomized iron powder with a large amount of fine powder. (hereinafter referred to as raw iron powder), and then 1000 ~
This is a method of reducing annealing in a reducing atmosphere at a temperature of 1200°C and crushing the obtained sintered cake to obtain a product having a larger particle size than raw iron powder. On the other hand, in the method disclosed in JP-A-50-115161, the particle size distribution is defined by a PSC value, and raw iron powder with a PSC value in the range of 1.0 to 2.7 is reduced and annealed at a temperature of 760 to 1149°C.
This method involves crushing the sintered cake using a disc mill. Both of the above-mentioned known methods simply increase the proportion of fine powder in the raw iron powder to sinter and agglomerate the particles during reduction annealing, and then crush the sintered cake under a relatively small load. This is a technology that aims to improve formability by lowering the apparent density, and only examples of producing water-sprayed iron powder with an apparent density of up to 2.50 g/cm 3 have been shown. Moreover, in general, as the amount of fine powder in raw iron powder increases and as the reduction annealing temperature increases, sintering of the particles progresses, and the apparent density of the crushed iron powder decreases, improving formability. The reality is that they do not have fluidity, formability, and sinterability that are equivalent to or better than reduced iron powder. In addition to the above-mentioned two prior arts, there is also the Powder and Powder Metallurgy Association; Collection of Autumn Lecture Summaries in 1974, Lecture No. 1.
11 discloses that the apparent density of ring-annealed iron powder is more strongly influenced by the apparent density of the as-sprayed powder (raw iron powder) itself than by the reducing conditions. There is no mention of atomized iron powder with a density of less than 2.50 g/cm 3 . The object of the present invention is to have fluidity and formability that are equal to or better than reduced iron powder without impairing the excellent compressibility of the atomized iron powder itself, and in particular, to have an apparent density of 2.00 to 2.50 g/ The purpose is to provide atomized iron powder with a low apparent density of cm3 . The details of the configuration of the present invention will be explained below. The present invention was completed based on the following four findings. (1) Iron powder for powder metallurgy is covered with a thick layer of mixed fine graphite powder and powder lubricants such as zinc stearate (Zn/St), but the excess is unevenly distributed in nodules. This deteriorates the fluidity and moldability of the mixed powder. Therefore, in order to ensure excellent fluidity and moldability, the iron powder must have a particle shape that has many reservoirs for the fine graphite powder and powder lubricant. In other words, it is necessary to have a low apparent density, and according to the JIS-Z-2502 test method, the apparent density of a single iron powder that flows smoothly is lower than that of atomized iron powder.
2.50g/ cm3 or less (reduced iron powder is 2.60g/cm3 or less
g/ cm2 or less). (2) Compared to conventional atomized iron powder, which has an apparent density of 2.80 to 3.20 g/cm 3 , the apparent density obtained by the present invention is
When the amount is 2.50 g/cm 3 or less, the Rattler value and transverse rupture strength of the green compact are significantly superior. For example, 2Cu−0.8C−1Zu・St−96.2wt%Fe
In the case of mixed powder, the Stoller value (according to JSPM standard 4-69 test method) at a molding pressure of 5t/ cm2 is
In the case of single iron powder (100wt%Fe), the transverse rupture strength of the green compact is 250Kg/cm according to the ASTM-B-312-64 test method at a compacting pressure of 4.2t/ cm2 . 2 , which indicates that it has even better moldability. (3) Regarding the amount of fine powder of -325 mesh (-45 μm), if the amount exceeds 50 wt%, the apparent density will exceed 2.50 g/cm 3 and fluidity, compressibility and moldability will deteriorate. On the other hand, if it is less than 10 wt%, coarse pores and sharp pores along the grain interfaces of the sintered body will increase, and the mechanical strength of the sintered body will decrease significantly. (4) In order to achieve compressibility superior to reduced iron powder with an apparent density equivalent to that of reduced iron powder, that is, a green powder density of 6.70 g/cm 3 or more at a compacting pressure of 5 t/cm 2 ,
It is necessary to limit the amount of impurities such as C, N, Si, P, and S, and also to ensure the same strength of the sintered body as when reduced iron powder is used when molded at the same molding pressure. The amount of impurities such as Si, Mn, and O must be limited. The sprayed iron powder of the present invention was produced based on the above-mentioned knowledge, and the reason why the chemical composition and characteristics of the iron powder were limited in accordance with the description of the examples will be explained below. What is important in obtaining the iron powder of the present invention is to use raw iron powder with a reasonably low apparent density as a starting material in order to achieve an apparent density of 2.0 to 2.5 g/cm 3 in the final product. . This means that the sintered cake is crushed with an impact force that maintains the irregular grain shape, which is the original characteristic of liquid atomized iron powder, and the aggregated irregular grain shape, which is sintered and agglomerated during reduction annealing. This is because it will be convenient for That is, according to the research of the present inventors, the single particle size of raw iron powder sieved with a Tyler standard sieve; di
Between [μm] and apparent density; x [g/cm 3 ],
x = approximately constant for particle sizes exceeding 150 μm, 150
It was found that there is a relationship of di = ae - bx for particle sizes of μm or less. It has also been found that this relationship also holds true for atomized iron powder obtained by crushing a reduction-annealed sintered cake with an impact force of 10 -5 Kgf·m/sec 2 or less. Therefore, the apparent density of reduction annealed iron powder is limited by the apparent density of raw iron powder. For example, the apparent density of reduction annealed iron powder using raw iron powder with a particle size exceeding 150 μm is limited. It is difficult to make the apparent density lower than that of raw iron powder, and on the other hand, if strong crushing is used to solve this problem, the apparent density will be increased. Further, the apparent density of iron powder obtained by reduction annealing using raw iron powder with a particle size of 150 μm or less is lower than that of raw iron powder because the particles are sintered and agglomerated to form irregular particle sizes. In this case, the above particle shape constant;
b always has a positive value, and it is difficult to industrially realize a negative value. Therefore, in order to produce atomized iron powder with an apparent density of 2.50 g/cm 3 or less by reduction annealing, x 2.60 g/cm 3 is preferably x at a particle size exceeding 150 μm.
2.50g/cm 3 , di= for particle size below 150μm
ae -bx , where di: average diameter of three sieves of Tyler standard sieve (di=d 1 + d 2 /2) [μm], x: apparent density [g/
cm 3 ], a, b; It is important to use raw iron powder that satisfies the relationship of b1.5 in particle shape constant as a raw material to obtain the iron powder of the present invention, and this point has excellent fluidity. This is effective in ensuring moldability. Table 1 shows the properties of the raw iron powder mentioned above.
The relationship between its apparent density: x [g/cm 3 ] and the single particle size sieved with a Tyler standard sieve: di=d 1 +d 2 /2 [μm] is shown.

【表】【table】

【表】 次に、本発明低見掛密度噴霧鉄粉の化学組成と
粒度の限定理由について説明する。 第1図は本発明鉄粉1の不純物量と圧粉密度の
関係を示したものである。噴霧鉄粉の特徴の1つ
は圧縮性が還元鉄粉より優れていることであるか
ら、本発明鉄粉においても同等の見掛密度で還元
鉄粉以上の圧粉密度の確保は最低限必要である。
この意味から本発明鉄粉は成形圧力5t/cm2におけ
る圧粉密度を6.70g/cm3以上が必須でり、またこ
の圧粉密度を確保するには第1図から判るよう
に、C;0.05wt%以下、N:0.0050wt%以下、
Si;0.10wt%以下、P;0.050wt%以下、S;
0.10wt%以下の化学成分をもつものにしなければ
ならない。 また、Mn、Oは次の理由により限定した。即
ち、Mnは噴霧鉄粉粒子を球状化して見掛密度を
高める元素であるが、0.40wt%を超えると見掛密
度が2.50g/cm3より高くなる。またMnはSiと同
様に溶鉄脱酸素剤であるとともに噴霧時に優先酸
化して鉄粉粒子表面に酸化皮膜を形成する元素で
あり難還元であるため、0.40wt%、(Siの場合
0.10wt%)を超えると焼結性を阻害する。 Oは、その80%以上が鉄粉表面酸化物から成る
ため、0.25wt%を超えると、酸化皮膜が厚くなり
焼結性を阻害し焼結体の機械的強度が著しく劣化
する。 次に、本発明の鉄粉は45μm以下の粒子のもの
を10〜50wt%の範囲に含む必要があるが以下そ
のように限定される理由を説明する。 一般に噴霧鉄粉の粒子形状は、粗粒側と、微粒
側とで異なり、いわゆる粒度依存性が云われてい
る。とくに−325メツシユ(45μm)の粒子は、
球状化している粉末冶金的諸性質におよぼす影響
が大きい。第2図は−325メツシユ(−45μm)
の微粉量と見掛密度との関係を示すものであり、
第3図は同じく上記微粉量と2Cu−0.8C−1Zn・
St−96.2wt%Fe混合粉の流動度との関係、第4
図は同じく微粉量と成形圧力5t/cm2における圧粉
密度の関係、第5図は同微粉量と成形圧力4.2t/
cm2における圧粉体抗折力の関係、第6図は同微粉
量と圧力5t/cm2で成形し、1120℃で30分間アンモ
ニア分解ガス雰囲気で焼結した本発明鉄粉の引張
り強さとの関係を示すが、これらの関係に示した
ように−325メツシユ(−45μm)の微粉量が
50wt%を超えると、見掛密度は2.50g/cm3を超
え、2Cu−0.8C−1Zn・St−96.2wt%Fe混合粉の
流動度は流下しない(nonflow)で、N量が
50ppmのとき成形圧力5t/cm2における圧粉密度は
6.70g/cm3未満に低下し、金型潤滑した成形圧力
4.2t/cm2における圧粉体抗折力は250Kg/cm2未満
に低下する。 一方、+325メツシユ(+45μm)粗粒において
は、見掛密度を2.00g/cm3より低く成し得るが、
焼結体は粗大、かつ粒子界面に沿つて先鋭化した
不規則状の空孔が多くなり、機械的強度とくに疲
労強度が著しく低下する。よつて、−325メツシユ
(−45μm)の微粉量を10wt%以上として、粗大
空孔を減少せしめ、焼結体の機械的強度の改善を
計る必要がある。 次に、見掛密度を2.00〜2.50g/cm3の範囲に限
定した理由について説明する。一般に、鉄粉の粒
子形状の指標の1つとして見掛密度を用い、粉末
冶金的諸特性を評価することができる。第7図
は、各水準の見掛密度鉄粉と2Cu−0.8C−1Zn・
St−96.2wt%Fe混合粉の流動度との関係を示
し、第8図は該各水準の見掛密度鉄粉と成形圧力
5t/cm2における1Zn・St−99wt%Fe混合粉のラト
ラー値との関係を示し、第9図は該各水準の見掛
密度鉄粉と成形圧力4.2t/cm2における鉄粉単味
(100wt%Fe)の圧粉抗折力との関係を示すもの
である。第7〜9図の関係に示したように、微細
な黒鉛粉やZn・St粉を混合すると鉄粉の流動性
は極端に劣化し、噴霧鉄粉の見掛密度が2.50g/
cm3を超えると流動度は流下しなく(nonflow)な
り、見掛密度を2.50g/cm3以下にすることによつ
て圧粉体の成形性の1つである先端形状維持特性
を評価するラトラー値は、さらに一段と優れた低
い値となり流動性と成形性が良くなる。一方、−
325メツシユ(−4μm)の微粉を10wt%以上
含むと、見掛密度2.00g/cm3未満の噴霧鉄粉は製
造できなくなつたのでこれを下限とする。 次に本発明の実施例について説明する。 表−1は、以下に記述する条件で製造した本発
明鉄粉の1例で、粉末冶金に関するJIS試験法に
より測定した生鉄粉の粉体特性と、これを還元焼
鈍した鉄粉の粉体特性である。 特公昭52−19540号として開示された公知の溶
解金属霧化粉砕装置により、αとβの角度差をα
−β4゜の範囲(α;複数のジエツト衝流の集
束角度、β;ガイドで複数のジエツト衝流を偏向
した膜状流の集束角度)、水圧を100〜180Kg/cm2
Gの範囲、溶湯ノズル口径を8〜14mmφの範囲
で、それぞれ適宜調整し、水量230/minの条
件で本発明鉄粉1、2の生鉄粉(出発原料)を製
造した。 続いて、上記生鉄粉をタイラー標準篩で−80メ
ツシユものを選択しこれをアンモニア分解ガス中
で950℃の温度で45分間均熱して還元焼鈍を行
い、180℃以下に炉中冷却した後、大気中に取り
出した焼結ケーキをハンマーミルで解砕し、−80
メツシユに篩分けた。焼結ケーキの解砕は回転
数:2800r.p.m.主シヤフト軸からハンマー先端ま
での距離;150mm、ハンマーの数;20本、ハンマ
ーの単重;500grfの機械仕様のハンマーミルに
より、先ず3mmφの穴径のスクリーンを取り付け
解砕し、80メツシユ篩により篩分けた。 次に、この+80メツシユ鉄粉について、1mmφ
の穴径のスクリーンを取り付けて解砕し、80メツ
シユ篩により篩分けた。同様にして順次0.5mm
φ、0.3mmφの穴径のスクリーンを取り付けて解
砕と篩分けを繰返し、計4回分の−80メツシユ鉄
粉をV型混合器でブレンドした。表−2はこうし
て製造した本発明鉄粉1、2を粉末冶金に関する
JSPM(粉体粉末冶金協会標準)試験法により測
定した圧粉体特性である。 なお、表−2には比較材として、主に高密度鉄
系焼結材用の原料として適用されている見掛密度
が2.80〜3.20g/cm3の高圧縮性の市販水噴霧鉄粉
(記号;A)と、主に低密度鉄系焼結材用の原料
として適用されている見掛密度が2.30〜2.60g/
cm3の高成形性の市販ミルスケール還元鉄粉(記
号;B、℃)の粉体および圧粉体特性を示した。
[Table] Next, the reason for limiting the chemical composition and particle size of the low apparent density sprayed iron powder of the present invention will be explained. FIG. 1 shows the relationship between the amount of impurities and the green density of iron powder 1 of the present invention. One of the characteristics of atomized iron powder is that its compressibility is superior to that of reduced iron powder, so it is at least necessary for the iron powder of the present invention to have a green density higher than that of reduced iron powder at the same apparent density. It is.
In this sense, the iron powder of the present invention must have a green density of 6.70 g/cm 3 or more at a compacting pressure of 5 t/cm 2 , and in order to ensure this green density, as can be seen from FIG. 1, C; 0.05wt% or less, N: 0.0050wt% or less,
Si; 0.10wt% or less, P; 0.050wt% or less, S;
It must have a chemical composition of 0.10wt% or less. Furthermore, Mn and O were limited for the following reasons. That is, Mn is an element that spheroidizes the sprayed iron powder particles and increases the apparent density, but when it exceeds 0.40 wt%, the apparent density becomes higher than 2.50 g/cm 3 . Also, like Si, Mn is an oxygen scavenger for molten iron and is an element that preferentially oxidizes during spraying to form an oxide film on the surface of iron powder particles, making it difficult to reduce.
If it exceeds 0.10wt%), sinterability will be inhibited. Since 80% or more of O consists of oxides on the surface of iron powder, if it exceeds 0.25 wt%, the oxide film becomes thick, inhibiting sinterability, and the mechanical strength of the sintered body deteriorates significantly. Next, the iron powder of the present invention must contain particles of 45 μm or less in a range of 10 to 50 wt%, and the reason for this limitation will be explained below. Generally, the particle shape of atomized iron powder differs between coarse particles and fine particles, and is said to be dependent on particle size. In particular, -325 mesh (45 μm) particles are
This has a large effect on the powder metallurgical properties of spheroidized powder. Figure 2 is -325 mesh (-45μm)
It shows the relationship between the amount of fine powder and the apparent density of
Figure 3 also shows the amount of fine powder and 2Cu−0.8C−1Zn・
St-Relationship with fluidity of 96.2wt%Fe mixed powder, 4th
The figure also shows the relationship between the amount of fine powder and the green density at a compacting pressure of 5t/ cm2 , and Figure 5 shows the relationship between the amount of fine powder and the compacting pressure of 4.2t/cm2.
Figure 6 shows the relationship between the transverse rupture strength of a green compact in cm 2 and the tensile strength of the iron powder of the present invention, which was formed with the same amount of fine powder and a pressure of 5 t/cm 2 and sintered at 1120°C for 30 minutes in an ammonia decomposition gas atmosphere. As shown in these relationships, the amount of fine powder of -325 mesh (-45 μm) is
When it exceeds 50wt%, the apparent density exceeds 2.50g/ cm3 , the fluidity of the 2Cu-0.8C-1Zn・St-96.2wt%Fe mixed powder is nonflow, and the amount of N is
The green density at 50ppm and compacting pressure of 5t/ cm2 is
Molding pressure reduced to less than 6.70g/ cm3 with mold lubrication
The compact transverse rupture strength at 4.2t/cm 2 decreases to less than 250Kg/cm 2 . On the other hand, with +325 mesh (+45 μm) coarse grains, the apparent density can be lower than 2.00 g/cm 3 , but
The sintered body is coarse and has many irregularly shaped pores that become sharp along the particle interface, resulting in a significant decrease in mechanical strength, particularly fatigue strength. Therefore, it is necessary to increase the amount of -325 mesh (-45 μm) fine powder to 10 wt% or more to reduce coarse pores and improve the mechanical strength of the sintered body. Next, the reason why the apparent density is limited to the range of 2.00 to 2.50 g/cm 3 will be explained. In general, various powder metallurgical properties can be evaluated using the apparent density as one of the indicators of the particle shape of iron powder. Figure 7 shows the apparent density of iron powder at each level and 2Cu−0.8C−1Zn.
Figure 8 shows the relationship between the fluidity of St-96.2wt%Fe mixed powder and the apparent density iron powder and molding pressure at each level.
The relationship between the Rattler value of 1Zn・St-99wt%Fe mixed powder at 5t/cm 2 is shown in Figure 9. This shows the relationship between the powder compact transverse rupture strength of 100wt%Fe). As shown in the relationships in Figures 7 to 9, when fine graphite powder or Zn/St powder is mixed, the fluidity of iron powder is extremely deteriorated, and the apparent density of the sprayed iron powder is 2.50 g/
If the density exceeds cm 3 , the fluidity becomes nonflow, and by reducing the apparent density to 2.50 g/cm 3 or less, the tip shape retention property, which is one of the moldability of the green compact, is evaluated. The Rattler value becomes even more excellent and low, resulting in improved fluidity and moldability. On the other hand, −
If 10 wt% or more of 325 mesh (-4 μm) fine powder is contained, it becomes impossible to produce atomized iron powder with an apparent density of less than 2.00 g/cm 3 , so this is set as the lower limit. Next, examples of the present invention will be described. Table 1 shows an example of the iron powder of the present invention produced under the conditions described below, and the powder characteristics of the raw iron powder measured by the JIS test method related to powder metallurgy and the powder of the iron powder obtained by reduction annealing. It is a characteristic. The angular difference between α and β can be reduced to
-β range of 4° (α: convergence angle of multiple jet impulses, β: convergence angle of membranous flow obtained by deflecting multiple jet impulses with a guide), water pressure 100 to 180 Kg/cm 2
The raw iron powders (starting raw material) of iron powders 1 and 2 of the present invention were produced under conditions of a water flow rate of 230/min and adjusting the G range and the molten metal nozzle diameter within a range of 8 to 14 mmφ. Next, select the raw iron powder with a -80 mesh using a Tyler standard sieve, soak it in ammonia decomposition gas for 45 minutes at a temperature of 950°C for reduction annealing, and cool it to below 180°C in a furnace. , the sintered cake taken out into the atmosphere is crushed with a hammer mill, and -80
It was sieved into mesh. The sintered cake is crushed using a hammer mill with mechanical specifications of rotation speed: 2800 r.pm, distance from the main shaft axis to the tip of the hammer: 150 mm, number of hammers: 20, and unit weight of hammers: 500 grf. A screen with a diameter of 100 mm was attached to crush the material, and the material was sieved using an 80-mesh sieve. Next, regarding this +80 mesh iron powder, 1mmφ
It was crushed using a screen with a hole diameter of 100 mm, and then sieved using an 80-mesh sieve. 0.5mm in the same way
A screen with a hole diameter of 0.3 mm was installed, and the crushing and sieving were repeated, and a total of four times of -80 mesh iron powder was blended in a V-type mixer. Table 2 shows the powder metallurgy of the iron powders 1 and 2 of the present invention produced in this way.
These are green compact properties measured using the JSPM (Society of Powder Metallurgy Standard) test method. Table 2 shows commercially available water-sprayed iron powder (commercially available water-sprayed iron powder) with an apparent density of 2.80 to 3.20 g/ cm3 , which is mainly used as a raw material for high-density iron-based sintered materials, as a comparison material. Symbol: A) and apparent density of 2.30 to 2.60 g/
The powder and compact characteristics of a commercially available mill scale reduced iron powder (symbol: B, °C) with high moldability of cm 3 are shown.

【表】 表−1および表−2に示したように、本発明鉄
粉は還元焼鈍により十分脱炭、脱窒されているた
め、市販水噴霧鉄粉(記号;A)と同等の圧縮
性、すなわち成形圧力5t/cm2における圧粉密度が
6.80g/cm3以上を有し、かつ水噴霧により不規則
状化した粒子と還元焼鈍で粒子相互が焼結凝集に
より不規則状化した粒子とから成つているため市
販ミルスケール還元鉄粉(記号;B、C)に比べ
より以上に優れた成形性を有する。すなわち、成
形圧力4.2t/cm2における圧粉体抗折力が、金型潤
滑での鉄粉単味(100wt%Fe)の場合で250Kg/
cm2以上、粉末潤滑剤としてステアリン酸亜鉛
(Zn・St)を加えた2Cu−0.8C−1Z・St−96.2wt
%Fe混合粉の場合で150Kg/cm2以上を有している
のである。 以上説明したように本発明は、微細な黒鉛粉や
粉末潤滑剤を混だた混合粉において、特に優れた
流動性と成形性を発揮し、かつ圧縮性と焼結性が
良好なため、中、低密度鉄系焼結材および薄肉複
雑形状部品用の原料鉄粉として好適で、還元鉄粉
との代替が可能である。もちろん、高密度鉄系焼
結材用としても広く用いることができる。 なお、本発明は水噴霧鉄粉を例にして説明した
が、噴霧媒に液体を用いて製造した鉄粉総てにつ
いて適用されるものである。
[Table] As shown in Tables 1 and 2, the iron powder of the present invention has been sufficiently decarburized and denitrified by reduction annealing, so it has the same compressibility as commercially available water-sprayed iron powder (symbol: A). , that is, the green density at a compacting pressure of 5t/ cm2 is
It has a particle size of 6.80 g/cm 3 or more and consists of particles made irregular by water spraying and particles made irregular by sintering and agglomeration of particles by reduction annealing, so it is not commercially available mill scale reduced iron powder ( Symbols: B and C) have superior moldability. In other words, the transverse rupture strength of the green compact at a molding pressure of 4.2t/ cm2 is 250Kg/cm2 when using only iron powder (100wt%Fe) in mold lubrication.
cm2 or more, 2Cu−0.8C−1Z・St−96.2wt with zinc stearate (Zn・St) added as a powder lubricant
%Fe mixed powder has 150Kg/cm 2 or more. As explained above, the present invention exhibits especially excellent fluidity and formability in a mixed powder mixed with fine graphite powder and powder lubricant, and has good compressibility and sinterability. It is suitable as a raw material iron powder for low-density iron-based sintered materials and thin-walled parts with complex shapes, and can be substituted for reduced iron powder. Of course, it can also be widely used for high-density iron-based sintered materials. Although the present invention has been explained using water-sprayed iron powder as an example, it is applicable to all iron powders manufactured using a liquid as a spray medium.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は低見掛密度を図つた水噴霧鉄粉の不純
物量と圧粉密度の関係を示す線図、第2図〜第6
図はいずれも−80メツシユ水噴霧鉄粉中−325メ
ツシユ(−45μm)に対する関係を示す図で、第
2図は見掛密度との関係図、第3図は流動度との
関係図、第4図は圧粉密度との関係図、第5図は
圧粉体抗折力との関係図、第6図は引張り強さと
の関係図である。第7図〜9図はいずれも各水準
の見掛密度の−80メツシユ水噴霧鉄粉に対する関
係を示す図で、第7図は流動度との関係図、第8
図はラトラー値との関係図、第9図は圧粉体抗折
力との関係図である。
Figure 1 is a diagram showing the relationship between the amount of impurities and green powder density of water-sprayed iron powder aimed at low apparent density, Figures 2 to 6
Both figures show the relationship to -325 mesh (-45 μm) in -80 mesh water sprayed iron powder. Figure 2 is a relationship with apparent density, Figure 3 is a relationship with fluidity, and FIG. 4 is a relationship diagram with green powder density, FIG. 5 is a relationship diagram with green compact transverse rupture strength, and FIG. 6 is a relationship diagram with tensile strength. Figures 7 to 9 are all diagrams showing the relationship between the apparent density of each level and -80 mesh water sprayed iron powder; Figure 7 is a diagram showing the relationship with fluidity;
The figure shows the relationship with the Rattler value, and FIG. 9 shows the relationship with the transverse rupture strength of the compact.

Claims (1)

【特許請求の範囲】[Claims] 1 重量%で、O:0.25%以下、C:0.05%以
下、N:0.0050%以下、Si:0.10%以下、Mn:
0.40%以下、P:0.050%以下、S:0.10%以下含
有し、残部はその他の不可避的不純物とFeから
なる成分組成を有し、45μm以下の粒径のものが
10〜50wt%である粒度分布を有し、かつ見掛密
度が2.00〜2.50g/cm3である流動性、成形性にあ
わせ圧縮性にも優れる粉末冶金用低見掛密度噴霧
鉄粉。
1% by weight, O: 0.25% or less, C: 0.05% or less, N: 0.0050% or less, Si: 0.10% or less, Mn:
Contains 0.40% or less, P: 0.050% or less, S: 0.10% or less, with the remainder consisting of other unavoidable impurities and Fe, and has a particle size of 45 μm or less.
A low apparent density atomized iron powder for powder metallurgy that has a particle size distribution of 10 to 50 wt% and an apparent density of 2.00 to 2.50 g/cm 3 and has excellent fluidity, moldability, and compressibility.
JP56153919A 1981-09-30 1981-09-30 Atomized iron powder for powder metallurgy with low apparent density having superior compressibility as well as superior fluidity and moldability Granted JPS5858201A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56153919A JPS5858201A (en) 1981-09-30 1981-09-30 Atomized iron powder for powder metallurgy with low apparent density having superior compressibility as well as superior fluidity and moldability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56153919A JPS5858201A (en) 1981-09-30 1981-09-30 Atomized iron powder for powder metallurgy with low apparent density having superior compressibility as well as superior fluidity and moldability

Publications (2)

Publication Number Publication Date
JPS5858201A JPS5858201A (en) 1983-04-06
JPS6229482B2 true JPS6229482B2 (en) 1987-06-26

Family

ID=15572958

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56153919A Granted JPS5858201A (en) 1981-09-30 1981-09-30 Atomized iron powder for powder metallurgy with low apparent density having superior compressibility as well as superior fluidity and moldability

Country Status (1)

Country Link
JP (1) JPS5858201A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6056001A (en) * 1983-09-05 1985-04-01 Kawasaki Steel Corp Atomized raw steel powder for powder metallurgy
JP2608178B2 (en) * 1990-11-07 1997-05-07 川崎製鉄株式会社 Iron powder for powder metallurgy
JP2007147135A (en) * 2005-11-25 2007-06-14 Dowa Holdings Co Ltd Fluidized bed furnace

Also Published As

Publication number Publication date
JPS5858201A (en) 1983-04-06

Similar Documents

Publication Publication Date Title
US5108493A (en) Steel powder admixture having distinct prealloyed powder of iron alloys
US3325277A (en) Method of making metal powder
EP3084029B1 (en) A method for producing a sintered component and a sintered component
US5217683A (en) Steel powder composition
KR102288887B1 (en) Method of manufacturing iron powder and iron powder manufactured thereby
JPS6229482B2 (en)
WO1994017939A1 (en) Sponge-iron powder
CN111036894A (en) Microalloy iron-based composite powder for diamond products and preparation method thereof
JPH0715121B2 (en) Fe-Co alloy fine powder for injection molding and Fe-Co sintered magnetic material
JPH07157803A (en) Water atomized iron powder for powder metallurgy and production thereof
CN113020605B (en) Special in-situ toughening high-performance spherical tungsten powder for laser 3D printing and preparation method thereof
JP2676570B2 (en) Water atomized metal spherical powder and method for producing the same
WO2000039353A1 (en) Iron-based powder blend for use in powder metallurgy
JPS642161B2 (en)
JPH07310101A (en) Reduced iron powder for sintered oilless bearing and its production
JPH08246008A (en) Metal powder and its production by water atomization
JPS6136046B2 (en)
JPH0751721B2 (en) Low alloy iron powder for sintering
Lund Roll-compacting produces pure nickel strip
JPH0892708A (en) Mixed iron powder for powder metallurgy and production of sintered steel excellent in cuttability
JPH07188714A (en) Iron-based powder excellent in compactibility
JPS5947358A (en) Steel powder for wear resistant sintered alloy
JPS591761B2 (en) stainless steel powder for powder metallurgy
JPS6196004A (en) Powder composition and production of metal product therefrom
JPS6056001A (en) Atomized raw steel powder for powder metallurgy