JPS6123702A - Raw material powder of powder metallurgy for producing ferrous parts - Google Patents

Raw material powder of powder metallurgy for producing ferrous parts

Info

Publication number
JPS6123702A
JPS6123702A JP59143919A JP14391984A JPS6123702A JP S6123702 A JPS6123702 A JP S6123702A JP 59143919 A JP59143919 A JP 59143919A JP 14391984 A JP14391984 A JP 14391984A JP S6123702 A JPS6123702 A JP S6123702A
Authority
JP
Japan
Prior art keywords
powder
raw material
particle size
sinterability
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59143919A
Other languages
Japanese (ja)
Inventor
Yoji Tozawa
戸沢 洋二
Minoru Ichidate
一伊達 稔
Toshihiko Kubo
敏彦 久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP59143919A priority Critical patent/JPS6123702A/en
Publication of JPS6123702A publication Critical patent/JPS6123702A/en
Pending legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Abstract

PURPOSE:To provide raw material powder of powder metallurgy for producing ferrous parts having excellent sinterability and compressibility by mixing prealloy powders having specific different grain sizes at a specific ratio. CONSTITUTION:30-40wt% Iron powder or prealloy powder having 1-20mu grain size, <40wt% coarse prealloy particles having 10-500mu grin size and the bal- ance prealloy powder having 20-100mu grain size are mixed. The prealloy powder in this case denotes the alloy steel powder added with a small amt. of alloy elements such as Mn, Cr, Mo, V, B, Ni, Cu, Co, Nb, etc. The pulverous powder having 1-20mu grain size is so formed as to have <=1.5 shape index expressed by the equation. The powder raw material has the excellent sinterability and compressiblity and is excellent as the raw material for the case which high-strength mechanical parts are manufactured by a powder metallurgical method.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 この発明は、焼結性と圧縮性が特に優れた鉄系部品製造
用粉末冶金原料粉に係り、特に機械部品の製造に適用す
るに好適な鉄系焼結部品製造用原料粉末に関するもので
ある。
[Detailed Description of the Invention] <Industrial Application Field> The present invention relates to powder metallurgy raw material powder for manufacturing iron-based parts that has particularly excellent sinterability and compressibility, and is particularly suitable for application to the manufacturing of mechanical parts. The present invention relates to raw material powder for manufacturing iron-based sintered parts.

〈従来の技術〉 近年、金属及び合金粉末の製造技術や、これらを使用す
る粉末冶金技術の進歩・発展には目を見張るものがあり
、これにともなって粉末冶金製品は様々な分野に広く進
出するようになってきた。
<Conventional technology> In recent years, the progress and development of metal and alloy powder manufacturing technology and powder metallurgy technology that uses these has been remarkable, and along with this, powder metallurgy products have expanded widely into various fields. I've come to do it.

しかしながら、粉末冶金技術によって製造される焼結部
品は、一般的に内部に空隙が多く残っていて密度が低く
、従って溶製材から作成した部品よりも機械的強度が低
いと言う問題点を有しており、特に鉄系の焼結機械部品
ではその傾向が極めて著しかった。
However, sintered parts manufactured using powder metallurgy generally have a problem in that they have a low density due to many voids remaining inside, and therefore have lower mechanical strength than parts made from molten wood. This tendency was particularly pronounced for iron-based sintered machine parts.

このようなことから、これまで、焼結材料の適用は強度
をそれほど必要としない中強度部品に限られる傾向にあ
ったが、一段と激しさを増してきた最近の粉末冶金技術
の開発競争を背景として、例えば自動車用トランスミッ
ション、エンジン部品及びステアリング部品等、引張り
強度が100〜120 Kti f /m4程度にも達
する高強度鉄系焼結部品に対する要望が日増しに高まっ
てきている。
For these reasons, up until now, the application of sintered materials has tended to be limited to medium-strength parts that do not require much strength, but against the backdrop of recent competition in the development of powder metallurgy technology that has become even more intense. For example, demand for high-strength iron-based sintered parts with a tensile strength of about 100 to 120 Kti f /m4, such as automotive transmissions, engine parts, and steering parts, is increasing day by day.

しかし、鉄系焼結部品製造のために従来から採用されて
いた混合法(プレミックス法二鉄系焼結材では純鉄粉を
主原料とする)ではこハ、らの要請に十分に応えること
が難しいことから、浸炭性や焼入れ性等の所謂゛熱処理
特性″”に優れる合金鋼粉(プレアロイ粉)の使用が望
まれるようになり、例えばMn 、Cr 、Mo 、 
V 、 B 、Ni 、Cu 、Co 、Nb等の合金
元素を添加した合金鋼粉が粉末冶金原料として注目を浴
びるようになってきた。
However, the mixing method that has traditionally been used to manufacture iron-based sintered parts (pre-mix method diferon-based sintered materials use pure iron powder as the main raw material) is insufficient to meet these demands. Therefore, it has become desirable to use alloyed steel powder (pre-alloyed powder) which has excellent so-called "heat treatment properties" such as carburizing property and hardenability.
Alloy steel powder to which alloying elements such as V, B, Ni, Cu, Co, and Nb are added has been attracting attention as a raw material for powder metallurgy.

ところが、プレアロイ粉は、予め合金化されているが故
に粉末粒子の硬度が純金属粉より高くなっており、その
ため圧縮性が十分に満足できる値を示さないと言う問題
点を有していた。従って、プレアロイ粉で圧粉成型体を
作成した場合には密度−や機械的強度が所望値に達せず
、結局、焼成して得られる焼結体の密度や機械的強度も
思うように向上しなかったのである。
However, since pre-alloyed powder has been alloyed in advance, the hardness of the powder particles is higher than that of pure metal powder, and as a result, it has had the problem that its compressibility does not exhibit a sufficiently satisfactory value. Therefore, when a compacted body is made from pre-alloyed powder, the density and mechanical strength do not reach the desired values, and in the end, the density and mechanical strength of the sintered body obtained by firing do not improve as expected. There wasn't.

そこで、プレアロイ粉粒子自体が硬くなり過ぎないよう
、その化学成分組成に工夫を凝らして圧縮性の改善を図
ったり(特開昭55−621.01号公報)、或いは、
一部高級粉末に対しては焼結助剤として超微粉末C粒径
0.1μ以下)を添加することで焼結性を向上さセ、焼
結体の緻密化を促進すると言う試みがなされたりするよ
うになってきた(「工業材料J、!31巻、第7号、第
50〜54頁)。
Therefore, in order to prevent the pre-alloy powder particles themselves from becoming too hard, we have tried to improve the compressibility by devising the chemical composition of the particles (Japanese Unexamined Patent Publication No. 55-621.01), or
Attempts have been made to improve sinterability and promote densification of sintered bodies by adding ultrafine powder C (particle size 0.1μ or less) to some high-grade powders as a sintering aid. (Industrial Materials J, Vol. 31, No. 7, pp. 50-54).

〈発明が解決しようとする問題点〉 しかしながら、プレアロイ粉粒子の化学成分組成を工夫
した鋼粉(例えば、上記特開昭55−62101号公報
に記載されたもの)では、得られる圧粉体の密度が精々
6.6〜6.8 f/cTI程度にしかならず(5t/
crl成型下で)、高強度焼結機械部品の製造に必要な
6.8 f / crdを越える値の実現は困難であり
、一方、超微粉末な焼結助材として添加した粉末では超
微粉末自体のコストが極めて高く、従ってコスト面から
鉄系焼結機械部品への適用かははかれるものであり、い
ずれも、焼結機械部品製造用鉄系原料粉末として十分に
満足できるものではなかった。
<Problems to be Solved by the Invention> However, with steel powder in which the chemical composition of pre-alloyed powder particles is devised (for example, the one described in the above-mentioned Japanese Patent Application Laid-open No. 55-62101), the resultant green compact is The density is only about 6.6 to 6.8 f/cTI (5t/cTI).
(under crl molding), it is difficult to achieve a value exceeding 6.8 f/crd, which is necessary for manufacturing high-strength sintered mechanical parts.On the other hand, ultrafine powder added as a sintering aid The cost of the powder itself is extremely high, and therefore the application of these powders to iron-based sintered machine parts is difficult to determine from a cost perspective, and none of them are fully satisfactory as iron-based raw material powders for the production of sintered machine parts. .

く問題点を解決するための手段〉 さて、これまで述べてきたように、焼結機械部品製造用
鉄系原料粉末には、 ■ 主体粉末がプレアロイ粉が望ましいこと、■ 圧縮
性(圧粉体密度で評価される)に優れること、 ■ 焼結性(焼結による緻密化の度合で評価される)に
優れること、 ■ 低コストであること、 の4点を同時に満足するものが必要とされている。
As mentioned above, the iron-based raw material powder for manufacturing sintered machine parts has the following characteristics: ■ It is desirable that the main powder is a pre-alloyed powder, and ■ Compressibility (compressibility) A material that simultaneously satisfies the following four points is needed: (1) excellent sinterability (evaluated by the degree of densification due to sintering); (2) low cost. ing.

そこで、本発明者等はこのような観点から、高強度が必
要である機械部品の製造に適用して好適な、焼結性と圧
縮性がともに優れた鉄系部品製造用粉末冶金原料粉を提
供すべく、特に、焼結性に大きな影響を与えると考えら
れる粉末の粒度に着目して研究を行ったところ、以下(
al〜fc)に示される如き知見を得たのである。
Therefore, from this perspective, the present inventors have developed a powder metallurgy raw material powder for manufacturing iron-based parts that has both excellent sinterability and compressibility, and is suitable for the manufacturing of mechanical parts that require high strength. In order to provide this, we conducted research focusing on the particle size of the powder, which is thought to have a large impact on sinterability, and found the following (
The findings shown in al~fc) were obtained.

(a)、  一般に、微細粉は焼結性に優れてはいるが
粉体のかさ密度が小さく、また圧粉体密度も小さい。従
って、微細粉のみで圧粉成型し焼結した場合には、焼結
体密度は優れるが焼結中の寸法変化率が余りに犬ぎ過ぎ
るため、焼結機械部品としての適用は困難であること。
(a) Generally, although fine powder has excellent sinterability, the bulk density of the powder is low, and the green compact density is also low. Therefore, when compacting and sintering only fine powder, the density of the sintered body is excellent, but the rate of dimensional change during sintering is too high, making it difficult to apply it as sintered machine parts. .

第1図は、粉末冶金原料粉の粒子径と圧粉体密度、焼結
体密度並びに寸法変化率との関係を示すグラフであるが
、この第1図からも、通常は数%以内でなければならな
い寸法変化率が、粉末粒子径の減少につれて著しく大き
くなって行くことがわかる。
Figure 1 is a graph showing the relationship between the particle diameter of raw material powder for powder metallurgy, green compact density, sintered compact density, and dimensional change rate. It can be seen that the rate of dimensional change that must occur becomes significantly larger as the powder particle size decreases.

(bl  このように、微細粉のみでは圧粉体密度の低
下を避けることはできないが、より粗大な粉末を該微細
粉に混合すると、それにつれて圧粉体密度が次第に向上
して行き、その粒度構成が特定の範囲に調整されると、
前記微細粉の有する良好な焼結性が生かされつつも圧粉
体密度の大幅な向上がもたらされ、鉄系焼結部品製造用
として好適な粉末冶金原料粉が得られること。
(bl) In this way, it is not possible to avoid a decrease in green compact density with only fine powder, but when coarser powder is mixed with the fine powder, green compact density gradually increases, and the particle size Once the configuration is adjusted to a certain range,
A powder metallurgy raw material powder suitable for producing iron-based sintered parts can be obtained, in which the good sinterability of the fine powder is utilized while the green compact density is significantly improved.

(C)単独で使用した場合には、前記微細粉は微小であ
るほど焼結性が良好であるが、より粗大な粉末と混合し
て使用した場合には必ずしもその通りにならず、粉末の
平均粒子径と焼結体密度の増加率との関係を示した第2
図からも明らかなように、微細粉の粒径が1μ以下にな
ると焼結性改善効果が飽和してしまうこと。なお、この
現象は、微細粉の粒径が小さ過ぎると微細粉同士で凝集
する傾向が強くなり、より粗大な粉末との混合・分散の
効率が低下して焼結性改善の効果が落ちることによるも
のと考えられる。
(C) When used alone, the finer the fine powder, the better the sinterability, but when used in combination with coarser powder, this is not necessarily the case; The second graph shows the relationship between the average particle diameter and the rate of increase in sintered body density.
As is clear from the figure, when the particle size of the fine powder becomes 1 μm or less, the sinterability improvement effect is saturated. This phenomenon occurs because if the particle size of fine powder is too small, there is a strong tendency for fine powder to agglomerate with each other, and the efficiency of mixing and dispersing with coarser powder decreases, reducing the effect of improving sinterability. This is thought to be due to

この発明は、上記知見に基づいてなされたものであり、 粉末冶金によって鉄系焼結部品を製造するための原料粉
末を、 粒径1〜20μの微細粉:3〜40重量%。
This invention was made based on the above findings, and the raw material powder for producing iron-based sintered parts by powder metallurgy is: Fine powder with a particle size of 1 to 20 μm: 3 to 40% by weight.

粒径]、 OO超〜500μの粗粒: 40重量%以下。Particle size], Coarse particles of more than OO ~ 500μ: 40% by weight or less.

粒径20超〜100μの中間粒子:残り、なる粒度構成
に調整することで、主として粉末の焼結性と圧縮性とを
大幅に向上した点、に特徴を有するものである。
By adjusting the particle size structure to the following: intermediate particles with a particle size of more than 20 to 100 μm, the main feature is that the sinterability and compressibility of the powder are greatly improved.

この発明で対象となる粉末は、成分組成上からすると、
鉄系焼結部品の製造が可能なものであればその種類が問
われるものではなく、プレミックス粉やプレアロイ粉の
いずれもが採用され得る。
From the component composition, the powder targeted by this invention is as follows:
The type of powder is not critical as long as it is possible to manufacture iron-based sintered parts, and either premix powder or prealloy powder can be used.

ただ、高密度高強度焼結機械部品への適用を目的とした
場合は、プレアロイ合金鋼粉を採用することにより本発
明の効果が一層有効に生かされる。
However, when the purpose is to apply it to high-density, high-strength sintered machine parts, the effects of the present invention can be utilized more effectively by employing pre-alloyed alloy steel powder.

なせなら、既に述べたように、高強度焼結機械部品に対
してはプレアロイ合金鋼粉の使用が好まし    1!
いが、プレアロイ合金鋼粉は予め合金化がなされている
ので硬化する傾向が強く、そのため圧粉体密度が低くな
り、結果として焼結体密度の低下を来たすのが一般的で
あるのに対して、この発明に従って所定割合の微細粉を
混入すると、焼結性が向上して高密度焼結体が得られる
ので、機械的強度の改善効果が大きいからである。なお
、この場合、微細粉は合金化しない金属粉末であっても
良いことは当然である。
If so, as already mentioned, it is preferable to use pre-alloyed alloy steel powder for high-strength sintered machine parts.1!
However, since pre-alloyed steel powder has been alloyed in advance, it has a strong tendency to harden, resulting in a lower green compact density and, as a result, a decrease in sintered compact density. This is because when a predetermined proportion of fine powder is mixed according to the present invention, sinterability is improved and a high-density sintered body is obtained, which has a large effect of improving mechanical strength. Note that, in this case, it goes without saying that the fine powder may be a metal powder that is not alloyed.

次いで、この発明において、粉末の粒径、及びその配合
割合を前記の如くに数値限定した理由について説明する
Next, in this invention, the reason why the particle size of the powder and its blending ratio are numerically limited as described above will be explained.

■ 微細粉 微細粉は、原料粉末の焼結性を改善するために混入する
ものであるが、先に示した第2図からも明らかなように
、微細粉の粒径が1μ未満になると焼結性改善の効果が
飽和してしまう。一方、同じく第2図かられかるように
、焼結性改善の効果が顕著になるのは粉末の粒径が20
μ以下からである。
■ Fine powder Fine powder is mixed in to improve the sinterability of the raw material powder, but as is clear from Figure 2 shown above, if the particle size of the fine powder is less than 1 μm, sintering will occur. The effect of improving cohesion becomes saturated. On the other hand, as can be seen from Figure 2, the effect of improving sinterability becomes remarkable when the particle size of the powder is 20.
It is less than μ.

以上のような事実と11粒径1μ未満の超微粉はコスト
が余りにも高いことを考慮して一焼結性改善のために添
加する微細粉の粒径を1〜20μと定めた。
Considering the above facts and the fact that ultrafine powder with a particle size of less than 1 μm is too expensive, the particle size of the fine powder added to improve sinterability was determined to be 1 to 20 μm.

また、第3図は、粒径1〜20μの微細粉を、より粗大
な粉末と混合して使用したときの、微細粉添加量と圧縮
件、焼結性並びに寸法変化率との関係を示すグラフであ
るが、微細粉の添加量が3重量%以上で焼結性改善の効
果が顕著となり、その添加量が多い程焼結性は良好であ
ることがわかる。・一方、添加量が多過ぎる場合は圧縮
性の低下が顕著となり−そのため焼結体密度の増加が鈍
くなっている。そして、寸法変化率をも考慮すると微細
粉添加量は40重量%が限界である。
In addition, Figure 3 shows the relationship between the amount of fine powder added, compression conditions, sinterability, and dimensional change rate when fine powder with a particle size of 1 to 20 μ is mixed with coarser powder. The graph shows that the effect of improving sinterability becomes remarkable when the amount of fine powder added is 3% by weight or more, and the greater the amount added, the better the sinterability is. - On the other hand, if the amount added is too large, the compressibility decreases significantly - and therefore the increase in the density of the sintered body becomes slow. Considering the dimensional change rate, the maximum amount of fine powder to be added is 40% by weight.

このようなことから、粒径1〜20μの微細粉の配合割
合を3〜40重量%と定めた。
For this reason, the blending ratio of fine powder with a particle size of 1 to 20 μm was determined to be 3 to 40% by weight.

■ 粗粒 微細粉のみでは圧粉体密度の低下を避けられないことか
ら、この発明では、より粗大な粉末との混合使用とした
が、°より粗大な粉末″の粒度範囲としては、通常の噴
霧法(水アトマイズ、ガスアトマイズ、油アトマイズ)
で得られる範囲な対象とし、圧縮性、成形性及び焼結性
に極めて大きな悪影響を与えるとされる粒径500μ超
の粗大粒を除外することとした。
■ Coarse-grained fine powder alone cannot avoid a decrease in green compact density, so in this invention it is used in combination with coarser powder, but the particle size range of coarser powder is Spraying method (water atomization, gas atomization, oil atomization)
Coarse particles with a particle size of more than 500 μm, which are considered to have a very large adverse effect on compressibility, formability, and sinterability, were excluded.

しかし、このような粒径500μ以下の粉末であっても
、そのうちの粗粒部分は焼結性や圧縮性等を悪化させる
ので焼結機械部品製造用粉末としては好ましくないと一
般に考えられており、粉末冶金業界においては、150
メツシュC粒径100μ)、又は100′メツシユC粒
径150μ)、或いは60メツシュC粒径250μ)等
で篩い分けて粗粒を除去するのが通例である。この上う
なこ七から、この発明においても粉末冶金業界の通例に
従って粒度150メツシュ以上(粒径100μ超)の粉
末な粗粒と考え、粗粒の配合割合と焼結性並びに圧縮性
との関係を検削した。
However, even if the powder has a particle size of 500μ or less, it is generally considered that the coarse part of the powder deteriorates sinterability and compressibility, so it is not suitable as a powder for manufacturing sintered machine parts. , in the powder metallurgy industry, 150
It is customary to remove coarse particles by sieving with mesh C (particle size: 100 μm), 100' mesh C (particle size: 150 μm), or 60 mesh C (particle size: 250 μm). Based on the above, in this invention, according to the customary practice in the powder metallurgy industry, coarse particles with a particle size of 150 mesh or more (particle size of more than 100 μ) are considered, and the relationship between the blending ratio of coarse particles and sinterability and compressibility. was inspected.

第4図は、粒径1〜20μの微細粉を20重量%添加し
た際における、粒径100μ超の粗粒の配合量と圧縮性
並びに焼結性との関係を示すグラフである。
FIG. 4 is a graph showing the relationship between the amount of coarse particles with a particle size of more than 100 μm and compressibility and sinterability when 20% by weight of fine powder with a particle size of 1 to 20 μm is added.

第4図からは、粉末の圧縮性は100μ超の粗粒の配合
により若干向上するが、多配合においては低下すること
がわかるーまた、焼結性は、粗粒の配合とともに低下し
、40重量%の配合が限界であることがわかる。
From Figure 4, it can be seen that the compressibility of the powder is slightly improved by adding coarse particles of more than 100μ, but it decreases when a large number of particles are added.Also, the sinterability decreases with the addition of coarse particles, It can be seen that the weight percentage is the limit.

このようなことから、粒径100超〜500μの粗粒の
配合割合を40重量%以下と定めた。
For this reason, the blending ratio of coarse particles with a particle size of more than 100 to 500 μm was determined to be 40% by weight or less.

以上のように、この発明は、鉄系部品製造用粉末冶金原
料粉において、焼結性の良好な粒径1〜20μの微細粉
を3〜40重量%とし、圧縮性及び焼結性の良くない粒
径100μ超の粗粒な40重量%以下に制限することを
特徴としている。
As described above, the present invention uses 3 to 40% by weight of fine powder with a particle size of 1 to 20μ, which has good sinterability, in powder metallurgy raw material powder for manufacturing iron-based parts, and which has good compressibility and sinterability. It is characterized by limiting the content to 40% by weight or less of coarse particles with a particle size of more than 100 μm.

この場合、通常の焼結用金属粉末(特に噴霧法によ−っ
て得られた粉末)は、粒径1〜20μの微細粉を含んで
いないか、或いは含んでいたとしても量が少ない場合が
多く、このようなときには粒径1〜20μの微細粉を別
途準備してから混合し使用するのが良い。なお、粒径1
〜20μの微細粉は、還元法、粉砕法、アトマイズ法、
或いはそ □;の他の如何なる方法によって製造しても
良いことはもちろんである。
In this case, ordinary metal powder for sintering (particularly powder obtained by the spraying method) does not contain fine powder with a particle size of 1 to 20 μm, or even if it does contain it, the amount is small. In such cases, it is better to separately prepare fine powder with a particle size of 1 to 20 μm and then mix and use it. In addition, particle size 1
~20μ fine powder can be obtained by reduction method, pulverization method, atomization method,
Of course, it may be produced by any other method.

また、これまで説明した粒度構成の工夫に加えて、粉末
の粒子形状をも工夫すると、圧縮性の更なる改善が可能
である。即ち、粒径1〜20μの微細粉の粒子形状を球
形とすることにより、圧縮性が一段と向上するのである
Further, in addition to the modification of the particle size structure described above, if the particle shape of the powder is modified, further improvement in compressibility is possible. That is, by making the particle shape of the fine powder with a particle size of 1 to 20 microns spherical, the compressibility is further improved.

第5図は、20重量%の割合で配合した微細粉の形状指
数と、粉末の圧粉体密度並びに焼結体密度との関係を示
すグラフである。ここで、粉末の形状指数とは、式 %式% 第5図からも明らかなように、微細粉の形状指数が圧粉
体密度に影響し、形状指数1.5以下において圧縮性が
特に良好となっている。そして、その結果、焼結体密度
が向上していることもわかる。
FIG. 5 is a graph showing the relationship between the shape index of fine powder blended at a ratio of 20% by weight and the green compact density and sintered compact density of the powder. Here, the shape index of the powder is the formula %Formula %As is clear from Figure 5, the shape index of fine powder affects the green compact density, and the compressibility is particularly good when the shape index is 1.5 or less. It becomes. It can also be seen that as a result, the density of the sintered body is improved.

これは、微細な球状粉が銅粉の内部摩擦の低減に効果を
有しており、そのため圧粉成型に際して、粗大粒子同士
の隙間に効率良く微細球状粉が充填されるためと考えら
れる。
This is thought to be because the fine spherical powder has the effect of reducing the internal friction of the copper powder, and therefore the fine spherical powder is efficiently filled into the gaps between the coarse particles during powder compaction.

このように、粒度構成の工夫と、微細粉の形状を球状化
することとを組合せることにより、粉末に良好な焼結性
と一層良好な圧縮性を兼ね備えることが可能であり、こ
の効果は、粉末硬さの硬いプレアロイ合金鋼粉において
特に有効に発揮される。
In this way, by combining the particle size structure and making the fine powder spheroidal, it is possible to give the powder both good sinterability and better compressibility, and this effect is , is particularly effective in the case of pre-alloyed steel powder with hard powder hardness.

次に、この発明を実施例により従来例と対比しながら説
明する。
Next, the present invention will be explained using examples while comparing it with a conventional example.

〈実施例〉 まず、焼結体が第1表に示されるような化学成分組成と
なる粉末であって、かつ第2表に示される如き粒度構成
に調整した粉末P1〜P12を用意した。・°なお、粉
末P9〜P12は従来の鋼粉である。
<Example> First, powders P1 to P12 were prepared in which the sintered bodies were powders having chemical compositions as shown in Table 1 and particle size configurations as shown in Table 2.・°Note that powders P9 to P12 are conventional steel powders.

これらの鋼粉について、焼結性(焼結体密度)と圧縮性
(5t / caの圧縮条件での圧粉体密度)を測定し
、得られた結果も第2表に併せて示した。
The sinterability (sintered compact density) and compressibility (green compact density under compression conditions of 5 t/ca) were measured for these steel powders, and the obtained results are also shown in Table 2.

第2表に示される結果からも明らかなように、本発明鋼
粉は、粒度構成の調整により特に焼結性が優れており(
従来鋼粉P9.PIO,pH及びPl2と、それらの改
良鋼粉であるP5.P6゜Pl及びP8との比較から明
瞭である)、また粒子形状の工夫と組合せることにより
、圧縮性にも一段と優れていることがわかる。
As is clear from the results shown in Table 2, the steel powder of the present invention has particularly excellent sinterability by adjusting the particle size structure (
Conventional steel powder P9. PIO, pH and Pl2, and their improved steel powder P5. (This is clear from the comparison with P6°Pl and P8), and it can be seen that the compressibility is even more excellent by combining it with the particle shape.

更に、プレアロイ鋼粉を対象としたもの(Pl。Furthermore, those targeting pre-alloyed steel powder (Pl.

P2.P3及びP4)では、特に焼結体密度が優れてい
て、高密度・高強度機械部品への適用が可能であること
は明らかである。
P2. It is clear that P3 and P4) have particularly excellent sintered body density and can be applied to high-density, high-strength mechanical parts.

く総括的な効果〉 」−述のように、この発明によれば、焼結性と圧縮性が
ともに優れた鉄系部品製造用粉末冶金原料粉を安定・確
実に得ることができ、鉄系高強度機械部品の工業的規模
での量産が可能になるなど一産業上極めて有用な効果が
もたらされるのである。
As mentioned above, according to the present invention, it is possible to stably and reliably obtain powder metallurgy raw material powder for manufacturing iron-based parts that has excellent sinterability and compressibility, and This brings about extremely useful effects in one industry, such as making it possible to mass produce high-strength mechanical parts on an industrial scale.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、粉末冶金原料粉の粒子径と圧粉体密度、焼結
体密度並びに寸法変化率との関係を示すグラフ、 第2図は、粉末の粒子径と焼結体密度の増加率との関係
を示すグラフ、 第3図は、微細粉添加量と粉末の圧粉体密度、焼結体密
度並びに寸法変化率との関係を示すグラフ、 第4図は、粗粒の配合率と粉末の圧粉体密度、焼結体密
度並びに密度増加率との関係を示すグラフ、 第5図は、微細粉の形状指数と粉末の圧粉体密度並びに
焼結体密度との関係を示すグラフである。 出願人  住友金属工業株式会社 代理人  富 1)和 夫 はか1名 第1図 譚n獣−新不殉ず1子径(p) 第3図 JfEK  Jf 新4 ;つD t (’A)禦4図 $BsのaC/≦ト摩(%) 架5図 r、o      1.5     2.04tiXm
m’19イxtgt
Figure 1 is a graph showing the relationship between the particle size of powder metallurgy raw material powder, green compact density, sintered compact density, and dimensional change rate. Figure 2 is a graph showing the relationship between powder particle diameter and sintered compact density increase rate. Figure 3 is a graph showing the relationship between the amount of fine powder added and the green compact density, sintered compact density, and dimensional change rate of the powder. Figure 4 is a graph showing the relationship between the blending ratio of coarse particles and Graph showing the relationship between powder compact density, sintered compact density, and density increase rate. Figure 5 is a graph showing the relationship between fine powder shape index, powder compact density, and sintered compact density. It is. Applicant Sumitomo Metal Industries Co., Ltd. Agent Tomi 1) Kazuo Haka 1 person Figure 1 Tan n beast - Shinfusaizu 1 child diameter (p) Figure 3 JfEK Jf New 4 ;tsu D t ('A) Figure 4 $Bs aC/≦Toma (%) Figure 5 r, o 1.5 2.04tiXm
m'19ixtgt

Claims (4)

【特許請求の範囲】[Claims] (1)粒径1〜20μの微細粉:3〜40重量%、粒径
100超〜500μの粗粒: 40重量%以下、 粒径20超〜100μの中間粒子:残り、 なる粒度構成に調整されていることを特徴とする鉄系部
品製造用粉末冶金原料粉。
(1) Fine powder with a particle size of 1 to 20μ: 3 to 40% by weight, Coarse particles with a particle size of more than 100 to 500μ: 40% by weight or less, Intermediate particles with a particle size of more than 20 to 100μ: the remainder, adjusted to the following particle size composition. Powder metallurgy raw material powder for manufacturing iron-based parts.
(2)各粒度の粉末がそれぞれプレアロイ粉末である、
特許請求の範囲第1項に記載の鉄系部品製造用粉末冶金
原料粉。
(2) Powders of each particle size are prealloyed powders,
Powder metallurgy raw material powder for manufacturing iron-based parts according to claim 1.
(3)粗粒及び中間粒子がプレアロイ粉末であり、微細
粉が単体金属粉末である、特許請求の範囲第1項に記載
の鉄系部品製造用粉末冶金原料粉。
(3) The powder metallurgy raw material powder for manufacturing iron-based parts according to claim 1, wherein the coarse particles and intermediate particles are pre-alloyed powders, and the fine particles are single metal powders.
(4)粉末の形状指数を、式 形状指数=粉末粒子の表面積/粉末粒子と同じ体積の球
の表面積で表わした場合、微細粉の形状指数が1.5以
下である、特許請求の範囲第1乃至3項のいずれかに記
載の鉄系部品製造用粉末冶金原料粉。
(4) When the shape index of the powder is expressed by the formula shape index=surface area of powder particles/surface area of a sphere with the same volume as the powder particles, the shape index of the fine powder is 1.5 or less. Powder metallurgy raw material powder for manufacturing iron-based parts according to any one of items 1 to 3.
JP59143919A 1984-07-11 1984-07-11 Raw material powder of powder metallurgy for producing ferrous parts Pending JPS6123702A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59143919A JPS6123702A (en) 1984-07-11 1984-07-11 Raw material powder of powder metallurgy for producing ferrous parts

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59143919A JPS6123702A (en) 1984-07-11 1984-07-11 Raw material powder of powder metallurgy for producing ferrous parts

Publications (1)

Publication Number Publication Date
JPS6123702A true JPS6123702A (en) 1986-02-01

Family

ID=15350147

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59143919A Pending JPS6123702A (en) 1984-07-11 1984-07-11 Raw material powder of powder metallurgy for producing ferrous parts

Country Status (1)

Country Link
JP (1) JPS6123702A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01165701A (en) * 1987-09-30 1989-06-29 Kawasaki Steel Corp Mixture and manufacture of iron base powder for powder metallurgy
CN102935514A (en) * 2012-10-25 2013-02-20 无锡中彩新材料股份有限公司 Powder metallurgical gear and forming method thereof
JP2015183247A (en) * 2014-03-25 2015-10-22 トヨタ自動車株式会社 Ferrous powder mixture, ferrous sintered body obtained from ferrous powder mixture, and ferrous component obtained from ferrous sintered body
WO2020179377A1 (en) 2019-03-06 2020-09-10 Jfeスチール株式会社 Iron-based powder for powder magnetic core, and powder magnetic core

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01165701A (en) * 1987-09-30 1989-06-29 Kawasaki Steel Corp Mixture and manufacture of iron base powder for powder metallurgy
JPH0694563B2 (en) * 1987-09-30 1994-11-24 川崎製鉄株式会社 Iron-based powder mixture for powder metallurgy and method for producing the same
CN102935514A (en) * 2012-10-25 2013-02-20 无锡中彩新材料股份有限公司 Powder metallurgical gear and forming method thereof
JP2015183247A (en) * 2014-03-25 2015-10-22 トヨタ自動車株式会社 Ferrous powder mixture, ferrous sintered body obtained from ferrous powder mixture, and ferrous component obtained from ferrous sintered body
WO2020179377A1 (en) 2019-03-06 2020-09-10 Jfeスチール株式会社 Iron-based powder for powder magnetic core, and powder magnetic core
KR20210134024A (en) 2019-03-06 2021-11-08 제이에프이 스틸 가부시키가이샤 Iron powder for compact magnetic core and compact magnetic core

Similar Documents

Publication Publication Date Title
JP5920984B2 (en) Iron-based powder composition
JP5147184B2 (en) Iron-based sintered alloy and method for producing the same
JPH09511546A (en) High density sintered alloy
JP5535576B2 (en) Iron-based sintered alloy, method for producing the same, and iron-based sintered alloy member
JP5113555B2 (en) Iron-based sintered alloy and method for producing the same
WO2012089807A1 (en) Iron based powders for powder injection molding
JP5108531B2 (en) Iron-based composite powder
WO2005102564A1 (en) Mixed powder for powder metallurgy
JP5617529B2 (en) Iron-based mixed powder for powder metallurgy
TWI727021B (en) New powder
JPH10504353A (en) Iron-based powder containing chromium, molybdenum and manganese
JP4371003B2 (en) Alloy steel powder for powder metallurgy
JPH06510331A (en) Iron-based powder composition with good dimensional stability after sintering
JPS6123702A (en) Raw material powder of powder metallurgy for producing ferrous parts
KR102325463B1 (en) Partially diffusion-alloyed steel powder
WO2019111833A1 (en) Steel alloy powder
JPH11302787A (en) Alloy steel powder and powdery mixture for high strength sintered part
JP4715358B2 (en) Alloy steel powder for powder metallurgy
JPH06322470A (en) Cast iron powder for powder metallurgy and wear resistant ferrous sintered alloy
WO2000039353A1 (en) Iron-based powder blend for use in powder metallurgy
JP3392228B2 (en) Alloy steel powder for powder metallurgy
US20240207930A1 (en) Methods for making a sintered body
JPS61139601A (en) Low-alloy iron powder for sintering and its manufacture
JPS6123701A (en) Raw material powder of powder metallurgy for producing ferrous parts
JP4198226B2 (en) High strength sintered body