JPS6135136B2 - - Google Patents
Info
- Publication number
- JPS6135136B2 JPS6135136B2 JP57220429A JP22042982A JPS6135136B2 JP S6135136 B2 JPS6135136 B2 JP S6135136B2 JP 57220429 A JP57220429 A JP 57220429A JP 22042982 A JP22042982 A JP 22042982A JP S6135136 B2 JPS6135136 B2 JP S6135136B2
- Authority
- JP
- Japan
- Prior art keywords
- liquid
- pump
- waste liquid
- iron oxide
- tank
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N Iron oxide Chemical compound [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 claims description 29
- 239000002699 waste material Substances 0.000 claims description 28
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 claims description 22
- 238000005554 pickling Methods 0.000 claims description 19
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 10
- 239000000741 silica gel Substances 0.000 claims description 10
- 229910002027 silica gel Inorganic materials 0.000 claims description 10
- 238000004519 manufacturing process Methods 0.000 claims description 2
- 239000007788 liquid Substances 0.000 description 31
- 238000000034 method Methods 0.000 description 16
- 235000013980 iron oxide Nutrition 0.000 description 13
- 229910004298 SiO 2 Inorganic materials 0.000 description 12
- 239000002253 acid Substances 0.000 description 7
- 238000010586 diagram Methods 0.000 description 6
- 238000003860 storage Methods 0.000 description 6
- 238000002425 crystallisation Methods 0.000 description 5
- 230000008025 crystallization Effects 0.000 description 5
- 238000002156 mixing Methods 0.000 description 5
- 239000000126 substance Substances 0.000 description 5
- 238000000108 ultra-filtration Methods 0.000 description 5
- FBAFATDZDUQKNH-UHFFFAOYSA-M iron chloride Chemical compound [Cl-].[Fe] FBAFATDZDUQKNH-UHFFFAOYSA-M 0.000 description 4
- 239000000843 powder Substances 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- 239000000706 filtrate Substances 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 3
- 239000012528 membrane Substances 0.000 description 3
- 239000002994 raw material Substances 0.000 description 3
- 238000011084 recovery Methods 0.000 description 3
- 238000003756 stirring Methods 0.000 description 3
- 229910000859 α-Fe Inorganic materials 0.000 description 3
- 229910000831 Steel Inorganic materials 0.000 description 2
- 230000002378 acidificating effect Effects 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 238000001914 filtration Methods 0.000 description 2
- 239000008187 granular material Substances 0.000 description 2
- 239000013049 sediment Substances 0.000 description 2
- 239000010959 steel Substances 0.000 description 2
- 239000006228 supernatant Substances 0.000 description 2
- 238000005406 washing Methods 0.000 description 2
- 238000011001 backwashing Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000018044 dehydration Effects 0.000 description 1
- 238000006297 dehydration reaction Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- VBMVTYDPPZVILR-UHFFFAOYSA-N iron(2+);oxygen(2-) Chemical class [O-2].[Fe+2] VBMVTYDPPZVILR-UHFFFAOYSA-N 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 239000000049 pigment Substances 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 238000010992 reflux Methods 0.000 description 1
- 238000004062 sedimentation Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23G—CLEANING OR DE-GREASING OF METALLIC MATERIAL BY CHEMICAL METHODS OTHER THAN ELECTROLYSIS
- C23G1/00—Cleaning or pickling metallic material with solutions or molten salts
- C23G1/36—Regeneration of waste pickling liquors
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Separation Using Semi-Permeable Membranes (AREA)
- Compounds Of Iron (AREA)
Description
本発明は鋼材即ち鋼板や型、棒線材などを塩酸
酸洗した際に発生する塩酸酸洗廃液(以下単に酸
洗廃液と云う)から酸化鉄を製造する方法に関し
その目的は高品質な低Si酸化鉄を安定して製造す
る方法を提供することにある。
周知の通り、前記酸洗廃液には多量のFeが含
有されているため、ロースターを用いた焙焼方法
や結晶化処理方法によつて前記Feを酸化鉄とし
て回収する方法が採用され、得られた酸化鉄は顔
料や充填材、あるいはフエライト原料として有効
に利用されている。
しかしながら前記酸洗廃液にはFeのほか、少
量の非鉄金属やSiO2,MnO2,CaOのような酸化
物が含有されており、特に前記SiO2はフエライ
ト原料として利用する場合好ましくない成分であ
つて、前記SiO2含有量の多い酸化鉄の価格は著
しく低くなる。
そこで本発明者等は前記酸化鉄の品質向上につ
いて研究し、まず酸洗廃液の不純物特にSiO2を
焙焼前に低くする手段を探究した結果、前記酸洗
廃液を限外過して前記SiO2分を著しく低減
し、良質の酸化鉄を得ることに成功し、先に出願
した。
しかしながら、限外過によつてSiO2が減少
する理由は不明であつて、数多い操業において良
好な結果のなかにやや不満足な結果が混じると云
う知見があり、その改善に努力した結果、常に良
好な結果が得られる本発明法を開発した。
本発明は前記限外過を利用するものである
が、限外過とは溶液に圧力をかけ、高分子物質
やコロイド状物質を半透膜によつて過し、水お
よび水に含まれる低分子物質を半透膜の膜面に無
数に存在する微細な孔を通して透過させる手段で
あり、前記酸洗廃液中のSiO2がどのような形態
で存在するのか明白でないにしても、前記限外
過が有効なことから過がより効率的に行なわれ
るよう、過回数を増加させたり、過時間を長
くするなどの試みは時として全く無効であること
を知つた本発明者は逆にシリカゲルの微粉末を酸
洗廃液に投入撹拌し上澄液を限外過した結果、
意外にも常に良好な成績を得ることが出来た。
即ちSiO2を過するため逆にSiO2を濃化すれ
ば過効率が向上すると云う予測できない結果が
得られたことから、さらに本発明者等はシリカゲ
ルの粒状体を充填した過塔を酸洗廃液を通過さ
せたところ、やはり非常な好結果を得た。
このことから酸洗廃液中に存在するSiO2はシ
リカゲルに吸着される形態で存在しているものと
推定できる。
第1図は本発明の方法の1実施装置の概要説明
図であつて酸洗槽(図示していない)からポンプ
1によつて酸洗廃液は廃酸タンク2に注入され、
ポンプ3により混合タンク4に移され、ここでシ
リカゲル貯蔵庫5から適宜量のシリカゲル粉末が
該混合タンク4内の廃液中に計量投入される。6
は撹拌装置であり、ここで撹拌された酸洗廃液の
上澄液はポンプ7を経て沈澱貯留タンク8に移さ
れ、ついでポンプ9により予備過槽10を経て
限外過モジユール11(たとえば旭化成工業(株)
製のモジユールSIW−3014(商品名))に送給さ
れ、過液は開閉弁12を経て過タンク13に
貯められる。
ついで必要に応じポンプ14により汲み出され
て焙焼炉(図示していない)又は結晶化処理装置
(図示していない)に送られる。15は逆洗用の
ポンプで、16は逆止弁であり、一定期間経過後
モジユール11を逆洗する。また限外過モジユ
ール11から出た未過液はバルブ35又は36
から廃酸タンク2およびもしくは混合タンク4、
貯溜タンク8に還流する。
第2図は本発明にかかる異なつた実施例で、図
において第1図と同符号のものは同じ装置である
ので説明は省略する。ポンプ3からシリカゲル粒
状体充填塔17の頂部に給液し、該充填塔17の
下側から過液を沈澱貯留タンク8に移す。他は
第1図と同様に操作する。而してバルブ37,3
8は未過液の還流用のバルブである。
本発明の要点は酸洗廃液をシリカゲルに接触さ
せることと限外過を実施する点にあり、その限
りにおいて前記実施例に限定されるものではな
い。
さて、本発明における過効果について次に説
明する。
ポンプ1から送給される酸洗廃液は次の第1表
に示すような成分を含有している。
The present invention relates to a method for producing iron oxide from hydrochloric acid pickling waste liquid (hereinafter simply referred to as pickling waste liquid) generated when steel materials, such as steel plates, molds, rods and wires, are pickled with hydrochloric acid.The purpose of the present invention is to produce iron oxide with high quality and low Si. The object of the present invention is to provide a method for stably producing iron oxide. As is well known, since the pickling waste liquid contains a large amount of Fe, a method is adopted in which the Fe is recovered as iron oxide by a roasting method using a roaster or a crystallization treatment method. Iron oxides are effectively used as pigments, fillers, and raw materials for ferrite. However, in addition to Fe, the pickling waste liquid contains small amounts of nonferrous metals and oxides such as SiO 2 , MnO 2 , and CaO, and SiO 2 in particular is an undesirable component when used as a ferrite raw material. Therefore, the price of iron oxide with a high SiO 2 content becomes significantly lower. Therefore, the present inventors conducted research on improving the quality of the iron oxide, and first searched for a means to reduce impurities, particularly SiO 2 , in the pickling waste solution before roasting. We succeeded in obtaining high-quality iron oxide by significantly reducing the time required for 2 minutes, and filed an application earlier. However, the reason why SiO 2 decreases due to ultraviolet rays is unknown, and it is known that in many operations, good results are mixed with slightly unsatisfactory results. We have developed a method of the present invention that yields excellent results. The present invention utilizes the above-mentioned ultrafiltration, and ultrafiltration involves applying pressure to a solution, passing polymeric substances and colloidal substances through a semipermeable membrane, and removing water and the low-containing substances contained in the water. It is a means of permeating molecular substances through the countless minute pores that exist on the membrane surface of a semipermeable membrane, and even though it is not clear in what form SiO 2 in the pickling waste liquid exists, it does not exceed the above limit. The present inventor learned that attempts to increase the number of passes or lengthen the duration of the pass in order to make the pass more efficient were sometimes completely ineffective. As a result of adding the fine powder to the pickling waste liquid and stirring it, and ultrafiltrating the supernatant liquid,
Surprisingly, I was always able to get good results. In other words, the present inventors obtained the unexpected result that concentrating SiO 2 improves the efficiency of filtration in order to filtrate SiO 2 .The present inventors also conducted pickling of a filtrate column filled with silica gel particles. When the waste liquid was passed through, very good results were also obtained. From this, it can be inferred that SiO 2 present in the pickling waste liquid exists in the form of being adsorbed on silica gel. FIG. 1 is a schematic explanatory diagram of an apparatus for implementing one method of the present invention, in which pickling waste liquid is injected from a pickling tank (not shown) into a waste acid tank 2 by a pump 1.
The mixture is transferred to a mixing tank 4 by a pump 3, where an appropriate amount of silica gel powder is metered into the waste liquid in the mixing tank 4 from a silica gel storage 5. 6
is a stirring device, and the supernatant liquid of the pickling waste solution stirred here is transferred to a sedimentation storage tank 8 via a pump 7, and then passed through a preliminary filtration tank 10 by a pump 9 to an ultrafiltration module 11 (for example, an Asahi Kasei Co., Ltd. (KK)
The excess liquid is supplied to the module SIW-3014 (trade name) manufactured by Manufacturer Co., Ltd., and the excess liquid is stored in the excess tank 13 via the on-off valve 12. Then, if necessary, it is pumped out by a pump 14 and sent to a roasting furnace (not shown) or a crystallization treatment device (not shown). 15 is a pump for backwashing, and 16 is a check valve, which backwashes the module 11 after a certain period of time has elapsed. In addition, the residual liquid discharged from the ultrafiltration module 11 is transferred to the valve 35 or 36.
from waste acid tank 2 and/or mixing tank 4,
It is refluxed to the storage tank 8. FIG. 2 shows a different embodiment of the present invention. In the figure, the same reference numerals as in FIG. 1 indicate the same devices, so a description thereof will be omitted. The liquid is supplied from the pump 3 to the top of the silica gel granule packed tower 17, and the filtrate is transferred from the bottom of the packed tower 17 to the sediment storage tank 8. The other operations are the same as in FIG. Therefore, valve 37,3
8 is a valve for refluxing unfiltered liquid. The main points of the present invention are to bring the pickling waste liquid into contact with silica gel and to carry out ultrafiltration, and to this extent it is not limited to the above embodiments. Now, the overeffect in the present invention will be explained next. The pickling waste liquid fed from the pump 1 contains the components shown in Table 1 below.
【表】
ところで、シリカゲル粉末を投入する第1図例
示の方法において液タンク13での液では第
2表の如き成分となつていた。[Table] Incidentally, in the method illustrated in FIG. 1 for introducing silica gel powder, the liquid in the liquid tank 13 had the components as shown in Table 2.
【表】
第2表から明らかなようにSiO2のみが激減し
ている他は殆んど変化が認められない。この例に
おいて混合タンク4でのSiO2量は1000ppmとな
つていた。
さらに第2図の例示手段において同一の酸洗廃
液を用いて処理して得た液タンク13での液
成分は第3表の通りであつた。[Table] As is clear from Table 2, almost no changes were observed except for a drastic decrease in SiO 2 . In this example, the amount of SiO 2 in mixing tank 4 was 1000 ppm. Further, the liquid components in the liquid tank 13 obtained by processing using the same pickling waste liquid in the exemplary means shown in FIG. 2 were as shown in Table 3.
【表】
やはりSiO2量は激減していることが判る。
第1図、第2図の例示手段によつて処理した酸
洗廃液は18%濃度の塩酸溶液で、処理量は1200〜
1400/hrで得られた液は200/hr、次に焙
焼処理によつて高品質の酸化鉄60Kgを得ることが
出来た。その成分の1例を第4表に示す。[Table] It can be seen that the amount of SiO 2 has decreased dramatically. The pickling waste liquid treated by the illustrative means shown in Figures 1 and 2 is a hydrochloric acid solution with a concentration of 18%, and the treatment amount is 1200~
The liquid obtained at 1400/hr was then roasted at 200/hr, yielding 60 kg of high quality iron oxide. An example of the components is shown in Table 4.
【表】
次に焙焼処理装置の1例を第3図に示す。
第3図においてロースター18の側壁にはバー
ナー19が設けられ頂部の廃酸ノズル20からの
噴霧廃酸は前記バーナー19の火焔によつて焙焼
される。排ガスはダクト21からサイクロン22
に送られ酸化鉄微粉は下部の取出口23から排出
されるか、ロースター18の下部からも取出口2
4を経て酸化鉄が取出される。サイクロン22か
らの排ガスは塩酸回収塔25に送られ、酸性廃液
は図示していない送給装置を経て供給管26から
前記塩酸回収塔25に送られ、ここで前記排ガス
により加熱濃縮される。ついで塩酸回収塔25の
下部からポンプ27を介して前記ロースターの頂
部に設けられた廃酸ノズル20から噴霧又は滴下
される。28は水洗水供給管で、排ガスは該水洗
水によつて水洗され無害化されて排水管29から
排出される。30は回収酸排出管であり、回収さ
れた塩酸は再び酸洗に利用される。
次に結晶化処理について第4図の工程フロー線
図に従つて説明する。32は図示していない塩酸
廃液タンクから送給されて来る廃液を加熱濃縮し
て塩化鉄結晶を生成せしめる工程で、ここで得ら
れた塩化鉄結晶は次の加熱脱水工程33で無水塩
化鉄となり、次に該無水塩化鉄は加熱酸化工程3
4で加熱酸化され酸化鉄とされる。
本発明は如上の焙焼法あるいは結晶化処理法の
いずれも採用することが可能である。
而して第3図、第4図はいずれも周知技術手段
であり、これに限定されることなく、目的を逸脱
しない範囲で適宜な同効手段を採用することが可
能である。
以上詳細に述べた通り、本発明は酸性廃液から
フエライト原料として適当な高品質酸化鉄を得る
手段を提供するもので、その経済効果は極めて著
しい。[Table] Next, an example of a roasting treatment apparatus is shown in FIG. In FIG. 3, a burner 19 is provided on the side wall of the roaster 18, and the waste acid sprayed from the waste acid nozzle 20 at the top is roasted by the flame of the burner 19. Exhaust gas flows from duct 21 to cyclone 22
The iron oxide fine powder is discharged from the lower outlet 23 or is also discharged from the lower part of the roaster 18 through the outlet 2.
Iron oxide is extracted through step 4. The exhaust gas from the cyclone 22 is sent to the hydrochloric acid recovery tower 25, and the acidic waste liquid is sent to the hydrochloric acid recovery tower 25 from the supply pipe 26 via a feeder (not shown), where it is heated and concentrated by the exhaust gas. Then, the hydrochloric acid is sprayed or dripped from the lower part of the hydrochloric acid recovery tower 25 via the pump 27 from the waste acid nozzle 20 provided at the top of the roaster. Reference numeral 28 denotes a washing water supply pipe, and the exhaust gas is washed with the washing water, rendered harmless, and discharged from a drain pipe 29. 30 is a recovered acid discharge pipe, and the recovered hydrochloric acid is used again for pickling. Next, the crystallization treatment will be explained according to the process flow diagram of FIG. 32 is a process of heating and concentrating the waste liquid supplied from a hydrochloric acid waste liquid tank (not shown) to generate iron chloride crystals, and the iron chloride crystals obtained here are converted into anhydrous iron chloride in the next heating dehydration process 33. , then the anhydrous iron chloride undergoes a heating oxidation step 3.
4, it is heated and oxidized to form iron oxide. In the present invention, it is possible to employ either the above-mentioned roasting method or crystallization treatment method. Both FIG. 3 and FIG. 4 are well-known technical means, and the present invention is not limited thereto, and it is possible to adopt any suitable equivalent means without departing from the purpose. As described in detail above, the present invention provides a means for obtaining high quality iron oxide suitable as a ferrite raw material from acidic waste liquid, and its economic effects are extremely significant.
第1図、第2図は本発明の方法を実施するため
のそれぞれ異なつた設備概要を説明するブロツク
線図、第3図は焙焼法を説明する設備概要ブロツ
ク線図、第4図は結晶化処理法を説明する工程概
要ブロツク線図である。
1……ポンプ、2……廃酸タンク、3……ポン
プ、4……混合タンク、5……シリカゲル貯蔵
庫、6……撹拌装置、7……ポンプ、8……沈澱
貯留タンク、9……ポンプ、10……予備過
槽、11……限外過モジユール、12……開閉
弁、13……液タンク、14……ポンプ、15
……逆洗用ポンプ、16……逆止弁、17……シ
リカゲル粒状体充填塔。
Figures 1 and 2 are block diagrams explaining different equipment outlines for carrying out the method of the present invention, Figure 3 is an equipment outline block diagram explaining the roasting method, and Figure 4 is a crystallization diagram. FIG. 2 is a process outline block diagram illustrating a chemical treatment method. 1... Pump, 2... Waste acid tank, 3... Pump, 4... Mixing tank, 5... Silica gel storage, 6... Stirring device, 7... Pump, 8... Sediment storage tank, 9... Pump, 10...Preliminary excess tank, 11...Ultra excess module, 12...Opening/closing valve, 13...Liquid tank, 14...Pump, 15
... Backwash pump, 16 ... Check valve, 17 ... Silica gel granule packed column.
Claims (1)
外過液を焙焼または結晶化処理して低Si酸化鉄
を得ることを特徴とする塩酸酸洗廃液から酸化鉄
を製造する方法。1. A method for producing iron oxide from hydrochloric acid pickling waste, which comprises roasting or crystallizing the ultrafiltrate of hydrochloric acid pickling waste brought into contact with silica gel to obtain low-Si iron oxide.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP22042982A JPS59111930A (en) | 1982-12-16 | 1982-12-16 | Process for preparation of iron oxide from hydrochloric acid pickling waste solution |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP22042982A JPS59111930A (en) | 1982-12-16 | 1982-12-16 | Process for preparation of iron oxide from hydrochloric acid pickling waste solution |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS59111930A JPS59111930A (en) | 1984-06-28 |
JPS6135136B2 true JPS6135136B2 (en) | 1986-08-11 |
Family
ID=16750969
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP22042982A Granted JPS59111930A (en) | 1982-12-16 | 1982-12-16 | Process for preparation of iron oxide from hydrochloric acid pickling waste solution |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS59111930A (en) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6272530A (en) * | 1985-09-27 | 1987-04-03 | Nisshin Steel Co Ltd | Production of high purity iron oxide from acid cleaning waste liquid of hydrochloric acid |
FR2663344B1 (en) * | 1990-06-15 | 1992-10-09 | Lorraine Laminage | PROCESS FOR SEPARATING SILICON COMPOUNDS FROM STRIPPING BATHS AND INSTALLATION FOR ITS IMPLEMENTATION. |
DE4242619C2 (en) * | 1992-12-14 | 1996-01-25 | Mannesmann Ag | Process and device for acid sludge removal |
JP4654343B2 (en) * | 2005-10-14 | 2011-03-16 | 住友金属工業株式会社 | Liquid feeding equipment |
FR2916205A1 (en) * | 2007-05-16 | 2008-11-21 | Siemens Vai Metals Tech Sas | INSTALLATION AND PROCESS FOR TREATING SILICON STEEL BAND REMOVAL SOLUTIONS |
AT13601U1 (en) * | 2012-09-06 | 2014-04-15 | Astec Engineering Gmbh | Purification and desiccation of spent acid baths using combined microfiltration techniques |
-
1982
- 1982-12-16 JP JP22042982A patent/JPS59111930A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS59111930A (en) | 1984-06-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3932278A (en) | Filter cleaning method | |
JPS62191800A (en) | Method of processing waste water containing uranium and fluorine | |
CN106744721A (en) | The recovery separation method and application of sulfuric acid and dissolubility titanium in titanium white waste acid | |
JPS6135136B2 (en) | ||
CN108996807A (en) | A method of with nitrogen phosphorus in modified steel scoria-zeolite absorption degradation sanitary sewage | |
JP3577832B2 (en) | Method for removing Se from Se-containing liquid | |
JPS5815193B2 (en) | How to treat boron-containing water | |
CN113731515A (en) | Regeneration method of waste cation exchange resin | |
JPH11207365A (en) | Treatment of selenium-containing waste water | |
RU2658419C1 (en) | Method of underground water treatment | |
JPH0292828A (en) | Production of highly pure chromium hydroxide | |
JPS62274032A (en) | Removing method of mercury from mercury-containing selenium solution | |
JPS59222292A (en) | Treatment of waste liquid of chemical cleaning containing ethylenediamine tetraacetate | |
CN109160657A (en) | A kind of processing method of polyelectrolyte waste water | |
JP3306521B2 (en) | Exhaust gas purification method and apparatus | |
JPS58151335A (en) | Manufacture of iron oxide with low content of silicon | |
JPS6320311B2 (en) | ||
JPS6041007B2 (en) | Method for recovering aluminum compounds from aluminum-based wastewater | |
JPH0716564A (en) | Treatment of exhaust gas-desulfurization wastewater | |
JPH03254883A (en) | Water purifying treatment through activated carbon adsorption | |
JPS61141987A (en) | Treatment of water containing hydrazine | |
JPH0889949A (en) | Removing device for fluoride ion | |
RU1460901C (en) | Method of extracting iridium from industrial solutions | |
JPS5924669B2 (en) | Treatment method for wastewater containing heavy metals | |
JPS6023871B2 (en) | How to remove arsenic in water |