【発明の詳細な説明】[Detailed description of the invention]
本発明は塩酸酸洗廃液の過装置に関し、その
目的は前記塩酸酸洗廃液中の主としてSi等の成分
を除去し、前記塩酸酸洗廃液(以下単に廃液と云
う)をフエライト原料用として有効なものとする
機能を備えた装置を提供することにある。
周知の通り、前記廃液には多量のFeが含まれ
ているためロースターを用いて焙焼したり、結晶
化処理方法によつて前記Feを酸化鉄として回収
し、顔料や充填材あるいはフエライト原料として
利用している。
ところで前記廃液にはFeのほか、ごく少量で
あるがSiO2,MnCl2,CaCl2などの金属酸化物,
金属塩化物が含有されており、そのため高級な用
途たとえば磁性材料などへの利用が妨げられてき
た。
そこで本発明者等は前記廃液を主として限外
過する手段により前記金属酸化物,金属塩化物を
減少せしめる手段をすでに開発しているが、今回
さらに簡易な装置によつて、前記金属酸化物,金
属塩化物を容易に減少せしめ純度の高い酸化鉄を
回収する手段を開発した。
以下図面に従つて本発明を説明する。
第1図は本発明にかかる1実施例装置で、耐酸
容器即ち耐酸槽1は支持枠2a,2bを介して炉
材保持板3を着脱自在に保持しており、該炉材保
持板3の上には通液材4、即ち耐酸フイルター
が載置されており、さらに該通液材4の上には
粒径4mm以下のシリカゲル粒粉末5が層状に充填
されている。
廃液は図示していない送給ポンプからバルブ
6,送液管7からなる給液口8から耐酸槽1に供
給され、前記シリカゲル粒粉末5からなる過層
5a,通液材4、炉材保持板3を通つて材保
持板3と耐酸槽1の底面1aとの空間9に貯り、
ついで排出管10,バルブ11からなる排液口1
2から図示していない貯留タンクに排出される。
前記通液材4はシリカゲル粒粉末5の逸失を
防止するために設けられるもので、さらに材保
持板3は前記通液材4を支承しシリカゲル粒粉
末5の逸失を防止する機能を有する。
通液材4としてはたとえば耐酸性のネツト
(ポリピロピレン製ネツト)を用い材保持板3
としては、たとえば塩ビプレート加工板などを用
いるとよい。
さて、かかる装置に廃液として下記第1表に示
す成分のものを給液し、過させると第2表に示
す如き成分のものとなり、特にSiO2の含有量が
激減する。
このSiO2が磁性材料として好ましくない特性
を与えるので、この量が少ないことは即ち得られ
る酸化鉄の品質がフエライト原料として適性を有
することを意味する。
The present invention relates to a filtering device for hydrochloric acid pickling waste liquid, the purpose of which is to remove mainly components such as Si from the hydrochloric acid pickling waste liquid, and to make the hydrochloric acid pickling waste liquid (hereinafter simply referred to as waste liquid) as an effective material for ferrite raw material. The purpose of this invention is to provide a device with the desired functions. As is well known, the waste liquid contains a large amount of Fe, so it can be roasted using a roaster or recovered as iron oxide using a crystallization treatment method, and used as a pigment, filler, or ferrite raw material. We are using. By the way, in addition to Fe, the waste liquid also contains metal oxides such as SiO 2 , MnCl 2 , CaCl 2 , etc., although in very small amounts.
It contains metal chlorides, which has prevented its use in high-end applications such as magnetic materials. Therefore, the present inventors have already developed a means for reducing the metal oxides and metal chlorides mainly by ultrafiltration of the waste liquid, but this time we have developed a method for reducing the metal oxides and metal chlorides using a simpler device. We have developed a method to easily reduce metal chlorides and recover highly pure iron oxide. The present invention will be explained below with reference to the drawings. FIG. 1 shows a device according to an embodiment of the present invention, in which an acid-resistant container, that is, an acid-resistant tank 1, detachably holds a furnace material holding plate 3 via support frames 2a and 2b. A liquid-permeable material 4, that is, an acid-resistant filter, is placed on top of the liquid-permeable material 4, and a layer of silica gel powder 5 having a particle size of 4 mm or less is filled on the liquid-permeable material 4. The waste liquid is supplied to the acid-resistant tank 1 from a feed pump (not shown) through a liquid supply port 8 consisting of a valve 6 and a liquid supply pipe 7, and is then fed to the acid-resistant tank 1 through a liquid supply port 8 consisting of a valve 6 and a liquid supply pipe 7, and is then connected to an overlayer 5a consisting of the silica gel granules 5, a liquid passing material 4, and a furnace material holding member. It passes through the plate 3 and accumulates in the space 9 between the material holding plate 3 and the bottom surface 1a of the acid-resistant tank 1,
Next, a drain port 1 consisting of a drain pipe 10 and a valve 11
2 to a storage tank (not shown). The liquid passing material 4 is provided to prevent the silica gel granules 5 from being lost, and the material holding plate 3 has the function of supporting the liquid passing material 4 and preventing the silica gel granules 5 from being lost. For example, acid-resistant net (polypropylene net) is used as the liquid passing material 4, and the material holding plate 3
For example, a processed PVC plate may be used. Now, when a waste liquid having the components shown in Table 1 below is supplied to such an apparatus and allowed to pass through, it becomes a liquid having the components shown in Table 2, and in particular, the content of SiO 2 is drastically reduced. Since this SiO 2 gives unfavorable properties as a magnetic material, a small amount means that the quality of the obtained iron oxide is suitable as a ferrite raw material.
【表】【table】
【表】
前述の本発明装置がSiO2を主として選択的に
除去する理由については明らかではないが数多く
の実験によつて同一の結果が得られるところか
ら、酸洗廃液中のSiO2はシリカゲル粉末に吸着
される特質を有するものと認められる。
而してシリカゲル粒粉末について4mmより大き
い粒径のものは吸着性能が著しく減少し、粒径が
小さいほど良い結果が得られる。これが本発明に
おいてシリカゲル粉末を粒径4mm以下と限定する
理由である。
過後の廃液の処理については、焙焼もしくは
結晶化処理など周知手段を用いて酸化鉄とするな
ど任意な処理が可能である。
次に本発明にかかる他の実施例装置について説
明する。
第2図は竪型の過装置で、耐酸容器即ち耐酸
槽13は筒形で、頂部に補修用マンホール14を
有し、上部にバルブ6,送液管7からなる給液口
8を、下部に排出管10,バルブ11からなる排
液口12を備えており、該排液口12の槽内側は
通液材4で廃液通過自在に塞がれている。槽内
にはシリカゲル粉末5が充填されており、シリカ
ゲル粉末5は通液材4によつて排出を妨げられ
る結果、排液口12から槽外に逸失する恐れはな
い。
第3図は竪型耐酸槽13a,13b,13cを
通液管14a,14b,14cを介して直列に接
続し、送給ポンプ15a,15b,15cを介し
て廃液を過する装置の概略図であつて、16a
〜16fはバルブである。このように複数個の耐
酸槽に連続的に廃液を供給して過を実施すると
過効果は向上するが3槽を超えて直列化しても
効果が飽和することが認められた。
実施例として耐酸槽(径80mm,高さ600mm)4
槽を用いてそれぞれに100μ粒径以下のシリカゲ
ル粉末を2.7Kg充填し、廃液(SiO2濃度33ppm)
を過した結果、
第1槽排出液のSiO2濃度 13 ppm
第2槽 〃 〃 9.8ppm
第3槽 〃 〃 9.1ppm
第4槽 〃 〃 9.1ppm
と云う結果を得た。繰返しての実験でも同様な結
果が確認された。これからも明らかな通り3槽を
超えての直列化は経済的でないと判断される。
而して、耐酸槽中での廃液の流量について直径
20mm,高さ800mmの竪型耐酸槽を用いて2.0/hr
〜0.1/hrの実験を実施した結果、単位時間当
りの流量を少なくする方が良い結果が得られるこ
とが判つた。たとえば廃液(SiO2濃度40ppm)
を用いた例で、
2.0/hrでは 18ppm
0.7/hrでは 9.6ppm
と云う結果が得られた。
また廃液(SiO2濃度50ppm)を用いて温度に
よる差異について実験を行つた結果、
50〜60℃に加熱後の過で36.5ppm
常温(20℃)で37ppm
と云う成積で、有意差は認められなかつた。
以上述べた通り、本発明は簡易な構成である
が、過し難いと考えられていた酸洗廃液中の
SiO2を容易に過する技術手段を提供するもの
で工業的に極めて有用なものである。[Table] It is not clear why the device of the present invention mainly selectively removes SiO 2 , but the same results have been obtained in numerous experiments. It is recognized that it has the property of being adsorbed to. Therefore, if the silica gel powder has a particle size larger than 4 mm, the adsorption performance will be significantly reduced, and the smaller the particle size, the better the results. This is the reason why the particle size of the silica gel powder is limited to 4 mm or less in the present invention. As for the treatment of the waste liquid after filtration, any treatment such as converting it into iron oxide using well-known means such as roasting or crystallization treatment is possible. Next, another example device according to the present invention will be explained. Fig. 2 shows a vertical filtering device, in which the acid-proof container, i.e., the acid-proof tank 13, is cylindrical, has a repair manhole 14 at the top, a valve 6 at the top, a liquid supply port 8 consisting of a liquid supply pipe 7, and a tank 13 at the bottom. A drain port 12 consisting of a discharge pipe 10 and a valve 11 is provided at the drain port 12, and the inside of the tank of the drain port 12 is closed with a liquid-permeable material 4 so that the waste liquid can freely pass therethrough. The inside of the tank is filled with silica gel powder 5, and as a result of the silica gel powder 5 being prevented from being discharged by the liquid passing material 4, there is no risk of it escaping to the outside of the tank through the drain port 12. FIG. 3 is a schematic diagram of a device in which vertical acid-resistant tanks 13a, 13b, and 13c are connected in series through liquid passage pipes 14a, 14b, and 14c, and waste liquid is passed through feed pumps 15a, 15b, and 15c. Atsute, 16a
~16f is a valve. It has been found that when filtration is carried out by continuously supplying waste liquid to a plurality of acid-resistant tanks in this way, the filtration effect is improved, but even if more than three tanks are connected in series, the effect becomes saturated. As an example, acid-resistant tank (diameter 80 mm, height 600 mm) 4
Using a tank, fill each tank with 2.7 kg of silica gel powder with a particle size of 100 μ or less, and drain the waste liquid (SiO 2 concentration 33 ppm).
As a result, the following results were obtained: SiO 2 concentration in the effluent from the first tank: 13 ppm, 2nd tank: 9.8ppm, 3rd tank: 9.1ppm, and 4th tank: 9.1ppm. Similar results were confirmed in repeated experiments. As is clear from this, serialization of more than three tanks is judged to be uneconomical. Therefore, regarding the flow rate of waste liquid in the acid-resistant tank, the diameter
2.0/hr using a vertical acid-proof tank with a height of 20 mm and a height of 800 mm.
As a result of conducting experiments with ~0.1/hr, it was found that better results could be obtained by lowering the flow rate per unit time. For example, waste liquid ( SiO2 concentration 40ppm)
In the example using , the results were 18ppm at 2.0/hr and 9.6ppm at 0.7/hr. In addition, as a result of conducting an experiment on the difference due to temperature using waste liquid (SiO 2 concentration 50 ppm), the concentration was 36.5 ppm after heating to 50 to 60 °C, and 37 ppm at room temperature (20 °C), with no significant difference. I couldn't help it. As described above, although the present invention has a simple structure, it can be used to clean the pickling waste liquid, which was thought to be difficult to clean.
It provides a technical means to easily pass through SiO 2 and is extremely useful industrially.
【図面の簡単な説明】[Brief explanation of the drawing]
第1図,第2図,第3図は本発明にかかるそれ
ぞれ異なつた実施例装置の概略図である。
1…耐酸容器(耐酸槽)、2a,2b…支持枠、
3…材保持板、4…通液材、5…シリカゲル
粉末、6…バルブ、7…送液管、8…給液口、1
0…排出管、11…バルブ、12…排液口、1
3,13a,13b,13c…竪型耐酸槽、14
a〜14c…通液管、15a〜15c…送給ポン
プ、16a〜16f…バルブ。
1, 2, and 3 are schematic views of different embodiments of the present invention. 1... Acid-resistant container (acid-resistant tank), 2a, 2b... Support frame,
3... Material holding plate, 4... Liquid passing material, 5... Silica gel powder, 6... Valve, 7... Liquid feeding pipe, 8... Liquid supply port, 1
0...Drain pipe, 11...Valve, 12...Drain port, 1
3, 13a, 13b, 13c...Vertical acid-resistant tank, 14
a to 14c...Liquid pipe, 15a to 15c...Feeding pump, 16a to 16f...Valve.