JPS613475A - Photovolatic element - Google Patents

Photovolatic element

Info

Publication number
JPS613475A
JPS613475A JP59124103A JP12410384A JPS613475A JP S613475 A JPS613475 A JP S613475A JP 59124103 A JP59124103 A JP 59124103A JP 12410384 A JP12410384 A JP 12410384A JP S613475 A JPS613475 A JP S613475A
Authority
JP
Japan
Prior art keywords
film
boride
carbide
nitride
conductive film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59124103A
Other languages
Japanese (ja)
Inventor
Takeo Fukatsu
深津 猛夫
Masaru Takeuchi
勝 武内
Kazuyuki Goto
一幸 後藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Sanyo Denki Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Sanyo Denki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd, Sanyo Denki Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP59124103A priority Critical patent/JPS613475A/en
Publication of JPS613475A publication Critical patent/JPS613475A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0392Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate
    • H01L31/03921Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate including only elements of Group IV of the Periodic Table
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Photovoltaic Devices (AREA)

Abstract

PURPOSE:To contrive the improvement in photoelectric conversion efficiency and in quality by a method wherein a film made of one or more of boride, carbide and nitride having optical band gaps of more than a specific value is interposed between a clear electrode film and an amorphous Si layer. CONSTITUTION:One or a plurality of films 3 made of at least one of boride, carbide and nitride having an optical band gap of 2eV or more are interposed between the clear conductive film 3 and the amorphous Si layer 4 to a thickness of 10-100Angstrom . Then, the title element is constructed by forming the clear conductive film 2, protection film 3 composed of boride, carbide, nitride, and the like, amorphous Si layer 4 and a back electrode film 5 by lamination on a photo transmitting insulation substrate 1 in this order. H5B2, TiB2, LaB2 or NbB2 is used as the boride which is a constituent of the protection film 3, SiC, TiC, WC or ZrC as the carbide, and BN, TaN, TiN or ZnN as the nitride.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は非晶質太陽電池として用いられる光起電力素子
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a photovoltaic element used as an amorphous solar cell.

〔従来技術〕[Prior art]

一般に光起電力素子は透光性絶縁基板上に透明導電膜、
アモルファスシリコン層、裏面電極をこの順序で積層形
成した構造となっている。ところでこのような光起電力
素子の透明導電膜としては通常酸化インジウム・錫、或
いは酸化錫が用いられるがこれらの中の酸素原子、錫原
子がアモルファスシリコン層の形成中にこの層内に熱拡
散し、光電変換効率を低下させる他、アモルファスシリ
コン層形成の際のプラズマ中における電子等の高速荷電
粒子のため透明導電膜表面が損傷され光透過性の低下等
を招き太陽電池としての特性を低下させるという問題が
あった。
Generally, a photovoltaic element has a transparent conductive film on a transparent insulating substrate.
It has a structure in which an amorphous silicon layer and a back electrode are laminated in this order. By the way, indium tin oxide or tin oxide is usually used as the transparent conductive film of such photovoltaic elements, but oxygen and tin atoms in these are thermally diffused into the amorphous silicon layer during formation. However, in addition to reducing the photoelectric conversion efficiency, the surface of the transparent conductive film is damaged due to high-speed charged particles such as electrons in the plasma during the formation of the amorphous silicon layer, leading to a decrease in light transmittance and reducing the characteristics as a solar cell. There was a problem with letting it happen.

ちなみにアモルファスシリコン層の1層内における0原
子が2×1019cffl−3の場合変換効率は8.4
9%であるが、0原子が1 ×1020cm−3では変
換効率は7.14%に低下する。
By the way, if the number of 0 atoms in one amorphous silicon layer is 2 x 1019 cffl-3, the conversion efficiency is 8.4.
However, when 0 atoms are 1 x 1020 cm-3, the conversion efficiency decreases to 7.14%.

〔目的〕〔the purpose〕

本発明はかかる事情に鑑みなされたものであって、その
目的とするところは透明導電膜とアモルファスシリコン
層との間にホウ化物、炭化物、窒化物等の膜を介在させ
、透明導電膜構成原子のアモルファスシリコン層内への
混入を防止すると共に、アモルファスシリコン層形成に
際しての透明導電膜の損傷もあわせて防止出来、光電変
換効率並びに品質の大幅な向上を図れるようにした光起
電力素子を提供するにある。
The present invention has been made in view of the above circumstances, and its purpose is to interpose a film of boride, carbide, nitride, etc. between a transparent conductive film and an amorphous silicon layer, and to remove atoms constituting the transparent conductive film. Provides a photovoltaic device that prevents the mixing of the silica into the amorphous silicon layer and also prevents damage to the transparent conductive film during the formation of the amorphous silicon layer, thereby significantly improving photoelectric conversion efficiency and quality. There is something to do.

〔構成〕〔composition〕

本発明に係る光起電力素子は透光性絶縁基板上に透明導
電膜5アモルファスシリコン層及び裏面電極をこの順序
で積層形成した光起電力素子において、前記透明導電膜
とアモルファスシリコン層間に光学的バンドギャップが
2eV以上のホウ化物。
The photovoltaic device according to the present invention is a photovoltaic device in which a transparent conductive film 5, an amorphous silicon layer, and a back electrode are laminated in this order on a light-transmitting insulating substrate, and an optical layer is formed between the transparent conductive film and the amorphous silicon layer. A boride with a band gap of 2 eV or more.

炭化物、窒化物の少なくとも1つを素材とする1又は複
数の膜を10〜100人の厚さに介在せしめたこiを特
徴とする。
It is characterized by interposing one or more films made of at least one of carbide and nitride to a thickness of 10 to 100 layers.

〔実施例〕〔Example〕

以下本発明をその実施例を示す図面に基づき具体的に説
明する。第1図は本発明に係る光起電力素子(以下本発
明品という)を示す断面構造図であり、図中1はガラス
等の透光性絶縁基板、2は5n02+ Tn203  
・5n02等を素材とする透明導電膜、護膜、4はアモ
ルファスシリコン層、5はへ1等を素材とする裏面電極
膜を示している。本発明品は透光性絶縁基板1上に透明
導電膜2、ホウ化物。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be specifically described below based on drawings showing embodiments thereof. FIG. 1 is a cross-sectional structural diagram showing a photovoltaic device according to the present invention (hereinafter referred to as the product of the present invention), in which 1 is a transparent insulating substrate such as glass, and 2 is a 5n02+Tn203
・The transparent conductive film and protective film are made of 5n02 or the like, 4 is an amorphous silicon layer, and 5 is the back electrode film made of H1 or the like. The product of the present invention includes a transparent conductive film 2 and a boride on a transparent insulating substrate 1.

炭化物、窒化物等で構成される保護膜3、アモルファス
シリコン層4、裏面電極膜5をこの順序で積層形成して
構成されている。上記保護膜3の素材であるホウ化物と
してはB5H2、TiB2、LaB2、NbB2等が、
また炭化物としてはSiC、TiC、W(:  、 Z
rC等が、更に窒化物としてはBN  、 TaN 、
 TiN 、 ZnN等が用いられる。
It is constructed by laminating a protective film 3 made of carbide, nitride, etc., an amorphous silicon layer 4, and a back electrode film 5 in this order. The borides that are the material of the protective film 3 include B5H2, TiB2, LaB2, NbB2, etc.
In addition, carbides include SiC, TiC, W (:, Z
rC, etc., and nitrides such as BN, TaN,
TiN, ZnN, etc. are used.

保護膜3はホウ化物、炭化物5窒化物夫々単独のものを
素材とする非晶質膜を単一、又は複数積層形成してもよ
い。また複数素材の混合状態の非晶質膜であってもよい
The protective film 3 may be formed by laminating a single amorphous film or a plurality of amorphous films made of boride or carbide penta-nitride. Alternatively, it may be an amorphous film made of a mixture of a plurality of materials.

保護膜3は光学的バンドギャップが2eV以上の絶縁性
の大きい物質であって膜厚は10人〜100人程度であ
る。バンドギャップを20ν以上としたのは光透過性が
高く、しかも抵抗率を低く維持すべく両者の均衡を図っ
たことによる。
The protective film 3 is a highly insulating material with an optical bandgap of 2 eV or more, and has a thickness of about 10 to 100 nanometers. The reason why the bandgap is set to 20ν or more is to achieve a balance between high light transmittance and low resistivity.

膜厚さを10人〜100人としたのは10Å以下では厚
さの均一性確保が難しく、また100A);l上では抵
抗が大きくなり過ぎることによる。   −ちなみに膜
厚は単独素材の場合はSiC:10〜100人、  T
iC:10〜30人、  WC:10〜30人、  B
P:10〜50人程程度ある。
The reason why the film thickness is set to 10 to 100 is because it is difficult to ensure uniformity of the thickness below 10 Å, and the resistance becomes too large above 100 Å). -By the way, the film thickness is SiC: 10 to 100 when using a single material, T
iC: 10-30 people, WC: 10-30 people, B
P: There are about 10 to 50 people.

以下に窒化物、炭化物、ホウ化物についてこれをグロー
放電法、熱CVD法により製造する場合の製造条件を示
す。   −・ (11a−BNの製造条件(グロー放電法)成長ガス成
分   B2H6+NH3+H2基板温度     2
00〜350℃ RFパワー      10〜100 Wガス圧   
  0.1〜I Torr。
The manufacturing conditions for manufacturing nitrides, carbides, and borides by the glow discharge method and thermal CVD method are shown below. - (11a-BN manufacturing conditions (glow discharge method) Growth gas component B2H6+NH3+H2 Substrate temperature 2
00~350℃ RF power 10~100W gas pressure
0.1 to I Torr.

(2)a−5iC(DH造条件(グロー放電法)成長ガ
ス成分   S:H4+CH4 CM4に代えてC2H2,’C2H4,C2)16等で
−もよい基板温度     200〜350℃ ゛RF
パワー     10〜100W ガス圧     0.1〜ITorr。
(2) a-5iC (DH forming conditions (glow discharge method) Growth gas component S: H4 + CH4 Instead of CM4, C2H2, 'C2H4, C2) 16 etc. may be used - Substrate temperature 200 to 350℃゛RF
Power 10~100W Gas pressure 0.1~ITorr.

+3)  BPの製造条件(熱CVD法による場合)成
長ガス     B2H6+PH3 基板温度     1000℃ 第2図は本発明品の試験結果を示すグラフであって、横
軸に透明導電膜側のアモルファスシリコン層表面から裏
面電極膜側への距離を、また縦軸には不純物濃度を1.
M、A、 (イオンマイクロアナライザ)によって測定
したO、Snの濃度をとって示しである。
+3) BP manufacturing conditions (thermal CVD method) Growth gas: B2H6+PH3 Substrate temperature: 1000°C Figure 2 is a graph showing the test results of the product of the present invention, in which the horizontal axis is from the surface of the amorphous silicon layer on the transparent conductive film side. The distance to the back electrode film side is plotted, and the impurity concentration is plotted on the vertical axis.
The concentrations of O and Sn measured by M, A, (ion microanalyzer) are shown.

なお参照のため第3図に従来品におけるアモルファスシ
リコン層中のO,Snの濃度を示しである。
For reference, FIG. 3 shows the concentrations of O and Sn in the amorphous silicon layer of a conventional product.

このグラフから明らかなように本発明品に依った場合に
はアモルファスシリコン層内における01Sn原子とも
従来品による場合に比較して格段に低下していることが
解る。なお、アモルファスシリコン層形成に際しての高
速荷電粒子の影響も保護膜3の遮蔽機能によって透明導
電膜2の表面損傷も全く生じなかった。そして光起電力
素子としてその特性が10〜20%向上することが確認
された。
As is clear from this graph, when using the product of the present invention, the number of 01Sn atoms in the amorphous silicon layer is significantly reduced compared to when using the conventional product. Note that no damage to the surface of the transparent conductive film 2 occurred due to the influence of high-speed charged particles during the formation of the amorphous silicon layer and due to the shielding function of the protective film 3. It was confirmed that the properties of the photovoltaic device were improved by 10 to 20%.

〔効果〕〔effect〕

以上の如く本発明品に依れば、透明導電膜とアモルファ
スシリコン層との間に介在させることとしたから、透明
導電膜中の酸素、錫原子が熱拡散によって非晶質シリコ
ン膜中に混入するのを防止し得ることは勿論、アモルフ
ァスシリコン層の形成に際し、ての尚速荷電粒子による
透明導電膜の損傷をも併せて防止出来、太陽電池特性の
向上を図れるなど本発明は優れた効果を奏するものであ
る。
As described above, according to the product of the present invention, since the transparent conductive film is interposed between the transparent conductive film and the amorphous silicon layer, oxygen and tin atoms in the transparent conductive film are mixed into the amorphous silicon film by thermal diffusion. The present invention has excellent effects such as being able to prevent damage to the transparent conductive film caused by charged particles during the formation of the amorphous silicon layer, and improving solar cell characteristics. It is something that plays.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明品の断面構造図、第2図は本発明品の試
験結果を示すグラフ、第3図は従来品の結果を示すグラ
フである。 1・・・透光性絶縁基板 2・・・透明導電膜3・・・
保護膜 4・・・アモルファスシリコン層5・・・裏面
電極膜 特 許 出願人  三洋電機株式会社 代理人 弁理士  河 野  登 夫 第 1 図 2?ご方向 第 2 図 ;1 y 8句 第 3 図
FIG. 1 is a cross-sectional structural diagram of the product of the present invention, FIG. 2 is a graph showing the test results of the product of the present invention, and FIG. 3 is a graph showing the results of the conventional product. 1... Transparent insulating substrate 2... Transparent conductive film 3...
Protective film 4... Amorphous silicon layer 5... Back electrode film patent Applicant Sanyo Electric Co., Ltd. Representative Patent attorney Noboru Kono No. 1 Figure 2? Directions Figure 2; 1 y 8th verse Figure 3

Claims (1)

【特許請求の範囲】 1、透光性絶縁基板上に透明導電膜、アモルファスシリ
コン層及び裏面電極膜をこの順序で積層形成した光起電
力素子において、前記透明導電膜とアモルファスシリコ
ン層間に光学的バンドギャップが2eV以上のホウ化物
、炭化物、窒化物の少なくとも1つを素材とする1又は
複数の膜を10〜100Åの厚さに介在せしめたことを
特徴とする光起電力素子。 2、前記ホウ化物、炭化物、窒化物は非晶質である特許
請求の範囲第1項記載の光起電力素子。
[Claims] 1. In a photovoltaic element in which a transparent conductive film, an amorphous silicon layer, and a back electrode film are laminated in this order on a light-transmitting insulating substrate, an optical layer is formed between the transparent conductive film and the amorphous silicon layer. 1. A photovoltaic device comprising one or more films made of at least one of borides, carbides, and nitrides having a band gap of 2 eV or more and having a thickness of 10 to 100 Å. 2. The photovoltaic device according to claim 1, wherein the boride, carbide, and nitride are amorphous.
JP59124103A 1984-06-15 1984-06-15 Photovolatic element Pending JPS613475A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59124103A JPS613475A (en) 1984-06-15 1984-06-15 Photovolatic element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59124103A JPS613475A (en) 1984-06-15 1984-06-15 Photovolatic element

Publications (1)

Publication Number Publication Date
JPS613475A true JPS613475A (en) 1986-01-09

Family

ID=14876996

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59124103A Pending JPS613475A (en) 1984-06-15 1984-06-15 Photovolatic element

Country Status (1)

Country Link
JP (1) JPS613475A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5741533A (en) * 1995-12-22 1998-04-21 W. R. Grace & Co.-Conn. Method of cooking a food product and product thereof
JP2001291878A (en) * 2000-04-05 2001-10-19 Tdk Corp Photovoltaic element and its manufacturing method
JP2001291883A (en) * 2000-04-05 2001-10-19 Tdk Corp Photovoltaic element and its manufacturing method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55108780A (en) * 1979-02-14 1980-08-21 Sharp Corp Thin film solar cell
JPS5830147A (en) * 1981-08-18 1983-02-22 Toshiba Corp Semiconductor device
JPS58192387A (en) * 1982-04-27 1983-11-09 ア−ルシ−エ− コ−ポレ−シヨン Photocell
JPS60216588A (en) * 1984-04-11 1985-10-30 Hitachi Maxell Ltd Semiconductor photoelectric conversion device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55108780A (en) * 1979-02-14 1980-08-21 Sharp Corp Thin film solar cell
JPS5830147A (en) * 1981-08-18 1983-02-22 Toshiba Corp Semiconductor device
JPS58192387A (en) * 1982-04-27 1983-11-09 ア−ルシ−エ− コ−ポレ−シヨン Photocell
JPS60216588A (en) * 1984-04-11 1985-10-30 Hitachi Maxell Ltd Semiconductor photoelectric conversion device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5741533A (en) * 1995-12-22 1998-04-21 W. R. Grace & Co.-Conn. Method of cooking a food product and product thereof
US6117464A (en) * 1995-12-22 2000-09-12 Cryovac, Inc. Cook-in food package with peelable laminate
JP2001291878A (en) * 2000-04-05 2001-10-19 Tdk Corp Photovoltaic element and its manufacturing method
JP2001291883A (en) * 2000-04-05 2001-10-19 Tdk Corp Photovoltaic element and its manufacturing method
JP4730678B2 (en) * 2000-04-05 2011-07-20 Tdk株式会社 Photovoltaic element manufacturing method

Similar Documents

Publication Publication Date Title
US4591892A (en) Semiconductor photoelectric conversion device
US5646050A (en) Increasing stabilized performance of amorphous silicon based devices produced by highly hydrogen diluted lower temperature plasma deposition
JPH0370183A (en) Photovoltaic element
US4591893A (en) Photoelectric conversion device utilizing fibrous silicon
US4781765A (en) Photovoltaic device
JP2989923B2 (en) Solar cell element
US4721535A (en) Solar cell
US4768072A (en) Multilayer semiconductor device having an amorphous carbon and silicon layer
WO2005109526A1 (en) Thin film photoelectric converter
JPS613475A (en) Photovolatic element
JPH0658970B2 (en) Semiconductor device
US4696702A (en) Method of depositing wide bandgap amorphous semiconductor materials
US4531015A (en) PIN Amorphous silicon solar cell with nitrogen compensation
JPH01201968A (en) Photoelectric conversion device
JP5404604B2 (en) Method for forming transparent conductive oxide layer, transparent conductive oxide layer, and photoelectric conversion device using transparent conductive oxide layer
JP2896793B2 (en) Method for manufacturing photovoltaic device
JP4187328B2 (en) Photovoltaic element manufacturing method
JP2948236B2 (en) Photovoltaic device
JPH0346377A (en) Solar cell
JP2545066B2 (en) Semiconductor device
JP3649948B2 (en) Photovoltaic device and manufacturing method thereof
JPH0685291A (en) Semiconductor device and its manufacture
JPS61224368A (en) Semiconductor device
JPS62165374A (en) Amorphous photovoltaic element
JPH04133356A (en) Photoelectric transducer