JPS6134637Y2 - - Google Patents

Info

Publication number
JPS6134637Y2
JPS6134637Y2 JP8229082U JP8229082U JPS6134637Y2 JP S6134637 Y2 JPS6134637 Y2 JP S6134637Y2 JP 8229082 U JP8229082 U JP 8229082U JP 8229082 U JP8229082 U JP 8229082U JP S6134637 Y2 JPS6134637 Y2 JP S6134637Y2
Authority
JP
Japan
Prior art keywords
pattern
magnetic
layer
bubble
magnetic film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP8229082U
Other languages
Japanese (ja)
Other versions
JPS58187097U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP8229082U priority Critical patent/JPS58187097U/en
Publication of JPS58187097U publication Critical patent/JPS58187097U/en
Application granted granted Critical
Publication of JPS6134637Y2 publication Critical patent/JPS6134637Y2/ja
Granted legal-status Critical Current

Links

Description

【考案の詳細な説明】 (技術分野) 本考案は多層導体シート型電流駆動法による磁
気バブル素子に於いて、駆動電流の低減を得る事
が出来る伝播パターン穴の形状に関するものであ
る。
[Detailed Description of the Invention] (Technical Field) The present invention relates to a shape of a propagation pattern hole that can reduce the driving current in a magnetic bubble element using a multilayer conductor sheet type current driving method.

(背景技術) 本考案が直接に関係する電流駆動型磁気バブル
素子の駆動原理、方式等の詳細について文献
(The Bell System Technical Journal Vol58,
No.6,1453′79)に詳しい。従来は第1導体層の
パターンの穴の形状と第2導体層のパターン穴の
形状とが全く同一であつた。
(Background Art) Details of the drive principle and method of the current-driven magnetic bubble element, which is directly related to the present invention, can be found in the literature (The Bell System Technical Journal Vol. 58,
No. 6, 1453'79). Conventionally, the shape of the holes in the pattern of the first conductor layer and the shape of the holes in the pattern of the second conductor layer were exactly the same.

図1は従来の素子に於ける層構造を示す。1は
ガーネツト等の磁気バブル用磁性膜、2は第1導
体シート層、3は第2導体シート層、4はSiO2
等の絶縁層である。5は第1導体層に穿かれた開
口パターンを、6は第2導体層に穿かれた開口パ
ターンを示す。図2は素子の平面図を示す。11
は磁性膜1の上に積層された第1、第2導体シー
ト層を示す。実線で示したパターン、例えば16
は第2導体シートに、破線で示したパターン例え
ば17は第1導体シートに穿かれている。この様
な2つの開口パターンを合せて1bitとし、多数個
配する。10はバイアス磁界の印加方向を示す。
20,21は第1導体シートへの通電方向、2
2,23は第2導体シートへの通電方向を示す。
通電20で磁気バブル15は開口パターン端25
に、通電22で開口パターン端26に、更に21
で27に、23で28に磁気バブル15は伝播さ
れ、更に通電20で次の開口パターン端29に伝
播されて1bit転送される。この方式では第1導体
シート層のパターン穴17と第2導体シート層の
パターン穴16とが全く同一である。為に磁性膜
1より離れた第2層のパターン16による誘起磁
界を第1層のパターン17による値と同等に得る
為には、駆動電流密度は第1層への駆動電流密度
の約2倍を必要とする。すなわち多層構造になれ
ば、上層程その電流効率が低下する。上層程、駆
動電流が増し、導体シートの発熱の問題が生じ、
更に大電流ドライバーの製作が困難となる。例え
ば2μmバブルの伝播にはバブル素子全体で数A
の駆動電流が必要であり、これは電子デバイスと
しては由々しき問題である。
FIG. 1 shows the layer structure in a conventional device. 1 is a magnetic film for magnetic bubbles such as garnet, 2 is a first conductor sheet layer, 3 is a second conductor sheet layer, 4 is SiO 2
It is an insulating layer such as. Reference numeral 5 indicates an opening pattern formed in the first conductor layer, and 6 indicates an opening pattern formed in the second conductor layer. FIG. 2 shows a plan view of the device. 11
1 shows the first and second conductive sheet layers laminated on the magnetic film 1. Patterns shown in solid lines, e.g. 16
is perforated in the second conductive sheet, and the pattern shown by broken lines, for example, 17, is perforated in the first conductive sheet. The combination of these two aperture patterns constitutes 1 bit, and a large number of them are arranged. 10 indicates the direction in which the bias magnetic field is applied.
20 and 21 indicate the current direction to the first conductor sheet;
2 and 23 indicate the direction in which electricity is applied to the second conductive sheet.
When energized 20, the magnetic bubble 15 moves to the opening pattern end 25.
Then, energization 22 is applied to the opening pattern end 26, and further 21
The magnetic bubble 15 is propagated to 27 at 27 and 28 at 23, and further propagated to the next aperture pattern end 29 by energization 20, where 1 bit is transferred. In this method, the pattern holes 17 in the first conductive sheet layer and the pattern holes 16 in the second conductive sheet layer are completely identical. Therefore, in order to obtain a magnetic field induced by the pattern 16 in the second layer, which is located away from the magnetic film 1, to be equal to the value caused by the pattern 17 in the first layer, the driving current density should be approximately twice that of the driving current density to the first layer. Requires. In other words, in a multilayer structure, the current efficiency decreases as the layer increases. The higher the layer, the more the drive current increases, causing the problem of heat generation in the conductor sheet.
Furthermore, it becomes difficult to manufacture a large current driver. For example, for the propagation of a 2 μm bubble, the entire bubble element requires several A
This is a serious problem for electronic devices.

(考案の課題) 本考案の目的は従来の技術の上記欠点を改善す
ることにあり、その特徴は磁気バブル用磁性膜の
上にバブル伝播用の開口パターンを有する複数の
導体シート層を絶縁層を介して重ねた構造を有す
る電流駆動型磁気バブル素子において、磁性膜か
ら遠い導体シート層の開口パターンが磁性膜に近
い導体シート層の開口パターンより大きい磁気バ
ブル素子にある。
(Problem for the invention) The purpose of the invention is to improve the above-mentioned drawbacks of the conventional technology.The feature is that a plurality of conductive sheet layers having an opening pattern for bubble propagation are formed on a magnetic film for magnetic bubbles as an insulating layer. In a current-driven magnetic bubble element having an overlapping structure with the conductive sheet layer separated from the magnetic film, the opening pattern in the conductive sheet layer farther from the magnetic film is larger than the opening pattern in the conductive sheet layer closer to the magnetic film.

(考案の構成および作用) 本考案のバブル素子層構造の断面図は従来のと
同じである。本説明では2層構造について述べる
が、多数構造でも同等である。図3は本考案素子
の平面図を示す。従来技術と同様に11はバブル
磁性膜上に積層された第1、第2導体シート層を
示す。破線で示したパターン例えば31は第1導
体シートに、実線で示したパターン例えば32は
第2導体シートに穿かれている。従来技術と異る
点はパターン32がパターン31より大きい事で
ある。すなわち、バブル磁性膜より導体シート層
が遠ざかる程、その層のパターン形状を大きくす
る点である。この事により、駆動電流密度に対す
る誘起磁界が増大し、電流効率が改善される。バ
ブルを伝播させる為の原理方式は従来技術と全く
同一である。図4はパターン穴の形状の大小によ
る誘起磁界の様子を示したものである。41はバ
ブル磁性膜からの距離、42は誘起磁界の垂直成
分をそれぞれ任意目盛で示した。43は例えば
1bitのセル面積が(8×8)μm2であり、パター
ン穴は(2×4)μm2の矩形である。他方44は
セル面積43と同一であるが、パターン穴は(3
×5)μm2の矩形である。この場合パターン穴を
大きくする事により、単位電流当り誘起磁界が約
60%増大する。すなわち誘起磁界が距離と共に減
少するが、パターン穴を少しづつ大きくする事に
よりその減少が緩和される事が示され、極めて有
効な方法である事が分る。故に導体シートを用い
た電流駆動法に於いては磁性膜より遠ざかる導体
層のパターン穴程、少しづつ大きくする事が駆動
電流効率を増す有効な方法である。特に多層構造
を用いた帰還型の導体シートによる電流駆動法に
は極めて有効である。然し本考案ではパターン穴
が大きくなる故、当然導体層の抵抗は増大する。
駆動電流は低減するが、抵抗が増大する故、消費
電力の比較が重要である。図4の例の場合、同じ
誘起磁界を得るための消費電力を比較すると
P43/P44≒1.5となり、消費電力の点からもパタ
ーン形状を大きくする方が有利である。
(Structure and operation of the invention) The cross-sectional view of the bubble element layer structure of the invention is the same as the conventional one. In this description, a two-layer structure will be described, but a multi-layer structure is also equivalent. FIG. 3 shows a plan view of the device of the present invention. Similarly to the prior art, reference numeral 11 indicates first and second conductor sheet layers laminated on the bubble magnetic film. A pattern shown by a broken line, for example 31, is perforated in the first conductive sheet, and a pattern shown by a solid line, for example 32, is perforated in the second conductive sheet. The difference from the prior art is that the pattern 32 is larger than the pattern 31. That is, the farther the conductive sheet layer is from the bubble magnetic film, the larger the pattern shape of that layer becomes. This increases the induced magnetic field relative to the drive current density and improves current efficiency. The principle method for propagating bubbles is exactly the same as in the prior art. FIG. 4 shows the state of the induced magnetic field depending on the size of the pattern hole shape. Reference numeral 41 indicates the distance from the bubble magnetic film, and 42 indicates the perpendicular component of the induced magnetic field, respectively, on an arbitrary scale. 43 is for example
The cell area of 1 bit is (8×8) μm 2 and the pattern hole is a rectangle of (2×4) μm 2 . On the other hand, the cell area 44 is the same as the cell area 43, but the pattern hole is (3
×5) It is a rectangle of μm 2 . In this case, by making the pattern holes larger, the induced magnetic field per unit current can be reduced to approximately
Increase by 60%. In other words, although the induced magnetic field decreases with distance, it has been shown that this decrease can be alleviated by gradually enlarging the pattern holes, indicating that this is an extremely effective method. Therefore, in the current drive method using a conductor sheet, an effective method for increasing the drive current efficiency is to gradually enlarge the pattern holes in the conductor layer that are farther away from the magnetic film. In particular, it is extremely effective for current driving methods using feedback type conductor sheets using a multilayer structure. However, in the present invention, since the pattern hole becomes larger, the resistance of the conductor layer naturally increases.
Although the drive current is reduced, the resistance increases, so it is important to compare the power consumption. In the case of the example in Figure 4, comparing the power consumption to obtain the same induced magnetic field,
P 43 /P 44 ≈1.5, and it is advantageous to make the pattern larger in terms of power consumption as well.

以上説明した様に2層、或いは多層構造による
導体シート極電流駆動磁気バブル素子に於いて
は、バブル磁性膜から離れた導体シートに穿かれ
るパターン穴ほど少しづつ大きくするのが有効で
ある。但し、消費電力を増大させない範囲で考え
るべきである。本考案を用いる事により駆動電流
が減少し、ドライバーの製作も有利となる。
As explained above, in a conductor sheet pole current-driven magnetic bubble element having a two-layer or multilayer structure, it is effective to make the pattern holes drilled in the conductor sheet farther away from the bubble magnetic film gradually larger. However, this should be considered within a range that does not increase power consumption. By using the present invention, the driving current is reduced and the manufacturing of the driver is also advantageous.

(考案の効果) 本考案は駆動電流効率の良いパターン穴の形状
に関するもので、低駆動電流化の利点があり、高
速電流駆動型磁気バブルメモリに利用する事が出
来る。
(Effects of the invention) The present invention relates to the shape of pattern holes with high drive current efficiency, and has the advantage of low drive current, and can be used in high-speed current-driven magnetic bubble memories.

【図面の簡単な説明】[Brief explanation of the drawing]

図1は磁気バブル素子の断面図、図2は従来の
素子の第1及び第2導体層におけるパターン穴の
平面図、図3は本考案の素子の第1及び第2導体
層におけるパターン穴の平面図、図4はパターン
穴の大小による誘起磁界の変化を示す図である。
FIG. 1 is a cross-sectional view of a magnetic bubble element, FIG. 2 is a plan view of pattern holes in the first and second conductor layers of the conventional element, and FIG. 3 is a plan view of pattern holes in the first and second conductor layers of the element of the present invention. The plan view of FIG. 4 is a diagram showing changes in the induced magnetic field depending on the size of the pattern hole.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 磁気バブル用磁性膜の上にバブル伝播用の開口
パターンを有する複数の導体シート層を絶縁層を
介して重ねた構造を有する電流駆動型磁気バブル
素子において、磁性膜から遠い導体シート層の開
口パターンが磁性膜に近い導体シート層の開口パ
ターンより大きいことを特徴とする磁気バブル素
子。
In a current-driven magnetic bubble element that has a structure in which multiple conductor sheet layers each having an aperture pattern for bubble propagation are stacked on a magnetic film for magnetic bubbles with an insulating layer interposed therebetween, the aperture pattern in the conductor sheet layer far from the magnetic film A magnetic bubble element characterized in that the opening pattern is larger than the opening pattern of a conductive sheet layer close to the magnetic film.
JP8229082U 1982-06-04 1982-06-04 magnetic bubble element Granted JPS58187097U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8229082U JPS58187097U (en) 1982-06-04 1982-06-04 magnetic bubble element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8229082U JPS58187097U (en) 1982-06-04 1982-06-04 magnetic bubble element

Publications (2)

Publication Number Publication Date
JPS58187097U JPS58187097U (en) 1983-12-12
JPS6134637Y2 true JPS6134637Y2 (en) 1986-10-08

Family

ID=30091364

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8229082U Granted JPS58187097U (en) 1982-06-04 1982-06-04 magnetic bubble element

Country Status (1)

Country Link
JP (1) JPS58187097U (en)

Also Published As

Publication number Publication date
JPS58187097U (en) 1983-12-12

Similar Documents

Publication Publication Date Title
JP2002031883A5 (en)
US3602635A (en) Micro-circuit device
JPH07321463A (en) Thin-film multilayer wiring board
JP2000277354A (en) Laminted common-mode choke coil
JPS6134637Y2 (en)
JPS6343895B2 (en)
JP2000058341A (en) Planer transformer
JPH07302979A (en) Multilayer interconnection board
US3436814A (en) Method of fabricating magnetic core memory planes
JP3227828B2 (en) Connection method between multilayer thin film device and thin film
JPS5913103B2 (en) magnetic bubble memory element
JPS5832291A (en) Magnetic bubble storage device
JPH02132616A (en) Thin film magnetic head
JPS6265345A (en) Manufacture of semiconductor device
JPH0346185A (en) Magnetic storage element
JPH02186660A (en) Multilayered interconnection semiconductor device
JPH0719778B2 (en) Semiconductor integrated circuit device
JPH0653441A (en) Cell structure and sram memory cell structure having thin film transistor and formation thereof
JPH0576783B2 (en)
US3482225A (en) Fabrication of magnetic devices
JPH0434965A (en) Semiconductor device
JPS58185087A (en) Generator of rotating magnetic field
JPS5941839A (en) Forming method of pattern
JPS61178711A (en) Thin film magnetic head
JPH034593A (en) Thin film substrate