JPS6134604B2 - - Google Patents

Info

Publication number
JPS6134604B2
JPS6134604B2 JP3684679A JP3684679A JPS6134604B2 JP S6134604 B2 JPS6134604 B2 JP S6134604B2 JP 3684679 A JP3684679 A JP 3684679A JP 3684679 A JP3684679 A JP 3684679A JP S6134604 B2 JPS6134604 B2 JP S6134604B2
Authority
JP
Japan
Prior art keywords
magnetized
current path
magnetic field
magnetoresistive element
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP3684679A
Other languages
Japanese (ja)
Other versions
JPS55130104A (en
Inventor
Akyoshi Narimatsu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP3684679A priority Critical patent/JPS55130104A/en
Publication of JPS55130104A publication Critical patent/JPS55130104A/en
Publication of JPS6134604B2 publication Critical patent/JPS6134604B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/06Measuring direction or magnitude of magnetic fields or magnetic flux using galvano-magnetic devices
    • G01R33/09Magnetoresistive devices

Description

【発明の詳細な説明】 本発明は、方向の異なる複数の磁界を明確な境
界をもつて隣接せしめて発生するような発磁体に
関し、特に、磁気抵抗効果を有する磁気抵抗素子
を用いた変位センサにおける発磁部等として最適
な発磁体を提供するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a magnet generating body that generates a plurality of magnetic fields in different directions adjacent to each other with clear boundaries, and particularly relates to a displacement sensor using a magnetoresistive element having a magnetoresistive effect. The present invention provides a magnet-generating body that is suitable for use as a magnet-generating part, etc.

従来より、モータ等の回転制御用周波数発生器
や磁気スケールの読み取り装置、あるいは無接点
スイツチや無接点ボリユーム等を構成するため
に、通常判導体磁気抵抗素子を用いた磁電変換装
置が用いられている。
Conventionally, magnetoelectric transducers using regular-sized conductor magnetoresistive elements have been used to construct frequency generators for controlling the rotation of motors, magnetic scale readers, non-contact switches, non-contact volumes, etc. There is.

ところで、半導体磁気抵抗素子は、GaASや
InSb等の半導体材料から形成されているため
に、キヤリアの数及び易移度の温度依存性が高
く、温度特性が悪いとともに、素子毎の抵抗値の
バラツキが大きいので、温度補償や抵抗値のバラ
ツキを補償するための外部補償回路を必要とす
る。また、半導体磁気抵抗素子は、磁界が小さい
ときには磁界の強さに略2乗に比例するような抵
抗の磁界依存性を有しているため、通常1KG以上
の磁気バイアスを必要とし、また、大きな磁界領
域においても十分な直線性を得ることができな
い。従つて、このような半導体磁気抵抗素子を用
いた磁電換装置では、良好な直線性をもつて微小
変位を検出するような変位センサを実現すること
が極めて困難である。
By the way, semiconductor magnetoresistive elements include GaAS and
Since it is formed from a semiconductor material such as InSb, the number and mobility of carriers are highly temperature dependent, resulting in poor temperature characteristics and large variations in resistance value from element to element. Requires external compensation circuit to compensate for variations. In addition, semiconductor magnetoresistive elements have a magnetic field dependence of resistance that is approximately proportional to the square of the magnetic field strength when the magnetic field is small, so they usually require a magnetic bias of 1 KG or more, and also require a large magnetic bias. Sufficient linearity cannot be obtained even in the magnetic field region. Therefore, in a magnetoelectric transducer using such a semiconductor magnetoresistive element, it is extremely difficult to realize a displacement sensor that can detect minute displacements with good linearity.

このような半導体磁気抵抗素子を用いた磁電変
換装置に比較して、磁気抵抗効果を有する強磁性
体から成る磁気抵抗素子を用いた磁電変換装置に
よれば、方向の異なる複数の磁界を明確な境界を
もつて隣接せしめた信号磁界として検出すること
により、外部補償回路を用いずとも温度特性が良
好で且つ抵抗値のバラツキの少ない極めて検出特
性の良好な変位センサを実現することができる。
Compared to such a magnetoelectric transducer using a semiconductor magnetoresistive element, a magnetoelectric transducer using a magnetoresistive element made of a ferromagnetic material having a magnetoresistive effect can clearly convert multiple magnetic fields in different directions. By detecting signal magnetic fields that are adjacent to each other with a boundary, it is possible to realize a displacement sensor that has excellent temperature characteristics and very good detection characteristics with little variation in resistance value without using an external compensation circuit.

しかし、一般に、ある境界線を挟んで不連続的
に方向が変化するような磁界を発生することは、
殆ど不可能な技術であるとされている。
However, in general, generating a magnetic field whose direction changes discontinuously across a certain boundary line is
It is said to be an almost impossible technique.

そこで、本発明は、方向の異なる複数の磁界を
明確な境界をもつて隣接せしめて発生し得るよう
な発磁体を提供しようとするものである。
SUMMARY OF THE INVENTION Therefore, an object of the present invention is to provide a magnet generating body that can generate a plurality of magnetic fields having different directions adjacent to each other with clear boundaries.

以下、本発明について一実施例を示す図面に従
い詳細に説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described in detail below with reference to the drawings showing one embodiment.

なお、以下に説明する各実施例において共通な
各構成要素については、共通番号を用いて説明す
る。
Note that common components in each of the embodiments described below will be described using common numbers.

本発明に係る発磁体を用いて構成した磁電変換
装置の第1の実施例について、原理的な構成を第
1図に示す。
FIG. 1 shows the basic structure of a first embodiment of a magnetoelectric transducer constructed using a magnetic body according to the present invention.

この実施例において、磁気抵抗素子MRは、
NiCo合金、NiFe合金、NiAl合金、NiMn合金ある
いはNiZn合金等の磁気抵抗効果を有する異方性
の強磁性体から成る折線パターン状の電流通路部
ICの長手方向両端の電源供給端子T1,T2間に定
電流源CSが接続されており、この定電流源CSか
らバイアス用の定電流Iが電流通路部ICに流さ
れている。なお、上記電源供給端子T1,T2の一
方(電源供給端子T2)は、接地されている。
In this example, the magnetoresistive element MR is
A current path portion in the form of a broken line pattern made of an anisotropic ferromagnetic material having a magnetoresistive effect such as NiCo alloy, NiFe alloy, NiAl alloy, NiMn alloy, or NiZn alloy.
A constant current source CS is connected between power supply terminals T 1 and T 2 at both ends of the IC in the longitudinal direction, and a constant current I for bias is caused to flow from this constant current source CS to the current path section IC. Note that one of the power supply terminals T 1 and T 2 (power supply terminal T 2 ) is grounded.

そして、上記磁気抵抗素子MRは、その電流通
路部ICを形成している強磁性体を飽和磁化させ
るに十分な強さを有し且つ該電流通路部ICの長
手方向を横切る境界線をもつて方向の異なる第
1の磁界Hsおよび第2の磁界Hnを発生する発磁
体MGに対向配設されている。上記第1の磁界Hs
の領域Msを第1図中に破線で示し、また、上記
第2の磁界Hnの領域Mnを第1図中に一点鎖線で
示す。
The magnetoresistive element MR has sufficient strength to saturate magnetize the ferromagnetic material forming the current path portion IC, and has a boundary line that crosses the longitudinal direction of the current path portion IC. It is disposed opposite to a magnet generator MG that generates a first magnetic field Hs and a second magnetic field Hn having different directions. The first magnetic field H s
The region M s of the second magnetic field H n is indicated by a broken line in FIG. 1, and the region M n of the second magnetic field H n is indicated by a chain line in FIG.

ここで、第2図に、境界線をもつて互いに方
向の異なる第1の磁界Hsの領域Msおよび第2の
磁界Hnの領域Mnを有する発磁体MGの具体的な
構成例を示す。すなわち、第2図において、Ns
は上記第1の磁界Hsを発生するためにN極に着
磁された着磁帯、Ssは同じくS極に着磁された
着磁帯であり、また、Nnは上記第2の磁界Hn
発生するためにN極に着磁された着磁帯、Sn
同じくS極に着磁された着磁帯である。上記各着
磁帯Ns,Ssは、間隔Pをもつて互いに平行し且
つ効互に配列されている。また、同様に、上記各
着磁帯Hn,Snは、互いに平行し且つ交互に配列
されている。そして、上記着磁帯Ns,Ssと着磁
帯Nn,Snとは、各長手方向の各端部が境界線
に対して互いに異なる角度θおよび角度θ
もつて当接されている。このような構成の発磁体
MGは、上記着磁帯Ns,Ssに直交する方向の第1
の磁界Hsを発生するとともに、上記着磁帯Nn
nに直交する第2の磁界Hmを発生する。さら
に、各着磁帯Ns,Ssおよび着磁帯Nn,Snの間
隔Pを小さくすることによつて、境界線近傍に
おける各磁界の相互作用を及ぼす範囲が狭くなる
ので、第1の磁界Hsと第2の磁界Hnとの境界を
明確に与えることができる。
Here, FIG. 2 shows a specific example of the configuration of a magnetizing body MG having a region M s of a first magnetic field H s and a region M n of a second magnetic field H n having boundary lines and different directions. show. That is, in Figure 2, Ns
is a magnetized belt magnetized to the north pole to generate the first magnetic field Hs, S s is a magnetized belt also magnetized to the south pole, and N n is the magnetized belt magnetized to the north pole to generate the first magnetic field Hs. The magnetized belt is magnetized to the north pole to generate H n , and S n is also the magnetized belt magnetized to the south pole. The magnetized belts N s and S s are arranged parallel to each other and mutually with an interval P between them. Similarly, the magnetized bands H n and S n are arranged parallel to each other and alternately. The magnetized bands N s , S s and the magnetized bands N n , S n are brought into contact with each other at different angles θ 1 and θ 2 with respect to the boundary line, respectively, at their longitudinal ends. has been done. Magnetic generating body with such a configuration
MG is the first magnetic field in the direction orthogonal to the above magnetized zones Ns and Ss.
The magnetic field H s is generated, and the magnetized belt N n ,
A second magnetic field Hm orthogonal to S n is generated. Furthermore, by reducing the distance P between the magnetized bands N s , S s and the magnetized bands N n , S n , the range in which each magnetic field interacts near the boundary line becomes narrower. A clear boundary between the magnetic field H s and the second magnetic field H n can be provided.

そして、この実施例において、磁気抵抗素子
MRと発磁体MGとは、電流通路部ICの長手方向
(第1図中矢印X,)方向に相対移動査在に設
けられており、該発磁体MSが移動されることに
よつて、上記電流通路部ICを横切る境界線の
位置が移動する。
In this example, the magnetoresistive element
MR and the magnet generating body MG are provided so as to be relatively movable in the longitudinal direction (arrow X in FIG. 1) of the current passage section IC, and by moving the magnet generating body MS, the above-mentioned The position of the boundary line that crosses the current path section IC moves.

ここで、一般に強磁性金属にあつては、電流と
磁化方向が平行になつたときに最大の抵抗値ρ‖
を呈し、直交したときに最小の抵抗値ρ⊥を呈す
るような、磁気抵抗効果を有し、その単位長さ当
たりの抵抗値ρ(θ)を電流と磁化方向とのなす
角度θの関数 ρ(θ)=ρ⊥sin2θ+ρ‖con2θ………第1式
なる第1式のViogt―Thomsonの式にて表すこと
ができる。
Generally, for ferromagnetic metals, the maximum resistance value ρ‖ is reached when the current and magnetization direction become parallel.
It has a magnetoresistance effect such that it exhibits a minimum resistance value ρ⊥ when they are perpendicular to each other, and its resistance value per unit length ρ(θ) is a function of the angle θ between the current and the magnetization direction ρ (θ)=ρ⊥sin 2 θ+ρ‖con 2 θ...It can be expressed by the Viogt-Thomson equation of the first equation.

そこで、上述の如き構成の実施例においては、
磁気抵抗素子MRの電流通路部ICを形成している
強磁性体が、該電流通路部ICを流れるバイアス
電流Iの方向に対して角度θを有する方向の第
1の磁界Hsにより、単位長さ当たり rs=r⊥sin2θ+r‖cos2θ………第2式
なる抵抗値rsを呈し、また、同様に角度θ
有する第2の磁界Hnにより、単位長さ当たり rn=r⊥sin2θ+r‖con2θ………第3式
なる抵抗値rnを呈することになる。
Therefore, in the embodiment with the above-mentioned configuration,
The ferromagnetic material forming the current passage part IC of the magnetoresistive element MR is caused to have a unit length by a first magnetic field Hs in a direction having an angle θ 1 with respect to the direction of the bias current I flowing through the current passage part IC. Hitting r s = r⊥sin 2 θ 1 + r‖cos 2 θ 1 ......Exhibits the resistance value r s of the second formula, and also due to the second magnetic field H n having an angle θ 2 , the unit length Hitting r n =r⊥sin 2 θ 2 +r‖con 2 θ 2 . . . The resistance value r n is expressed by the third formula.

このような磁気抵抗素子MRの電流通路部ICに
定電流源CSから一定なバイアス電流Iが流され
ているので、該バイアス電流Iの電流値をi、該
電流通路部ICの長手方向の全長をL、第2の磁
界Hn中に位置される該電通路部ICの長さをxと
すれば、上記電流通路部ICの両端に設けられて
いる端子T1,T2には、 Vx=i・{x・rn+(L―X)・rs} =i・(α―1)・rs・x+i・L・rs …………第4式 なる第4式にて示される出力電圧Vxが得られる
ことになる。
Since a constant bias current I is passed from a constant current source CS to the current path IC of the magnetoresistive element MR, the current value of the bias current I is defined as i, and the total length in the longitudinal direction of the current path IC. If L is the length of the current path section IC located in the second magnetic field Hn , then the terminals T 1 and T 2 provided at both ends of the current path section IC have Vx. = i . _ This results in the output voltage Vx being obtained.

ここで、上記第4式におけるαは、 α=r/r ………第5式 なる第5式にて表される定数であり、rsが最小
でrnが最大のときに最大値をとる。つまりHs
直交磁界のときにrsが最小でHnが平行磁界のと
きにonが最大でα=r‖/r⊥となり、上記定数
αは最大値をとる。すなわち、この定数αは、電
流通路部ICに対して、磁界Hsが直交し、磁界Hn
が平行になつているときに最大値をとる。ここ
で、発磁体の位置が入れ換わつて相対的に同じに
なるから、上記定数αは、電流通路部ICに流れ
る電流Iの方向に対して、各磁界Hs,Hnのうち
の一方が直交し、他方が平行になつているときに
最大値をとる。なお、本発明に係る実施例におい
ては、電流Iの方向に対する各磁界Hs,Hnの方
向を異ならしめてあるので、上記定数αは1とな
ることはない。
Here , α in the fourth equation above is a constant expressed by the fifth equation, α=r n / rs . Takes a value. That is, when H s is an orthogonal magnetic field, r s is minimum, and when H n is a parallel magnetic field, on is maximum, α=r‖/r⊥, and the constant α takes the maximum value. In other words, this constant α is such that the magnetic field H s is orthogonal to the current path portion IC, and the magnetic field H n
It takes the maximum value when the two are parallel. Here, since the positions of the magnetizing bodies are swapped and become relatively the same, the above constant α is determined by one of the magnetic fields H s and H n with respect to the direction of the current I flowing through the current path portion IC. The maximum value is obtained when the two are orthogonal and the other is parallel. In the embodiment according to the present invention, the directions of the magnetic fields H s and H n with respect to the direction of the current I are made different, so the constant α is never equal to 1.

上記第4式から明らかなように、各端子T1
T2間に得られる出力電圧Vxは、長さxに比例し
た電圧値を有し、第1および第2の磁界Hs,Hn
間の境界線が磁気抵抗素子MRの電流通路部IC
を横切る位置に対応させて得ることができる。
As is clear from the fourth equation above, each terminal T 1 ,
The output voltage Vx obtained during T 2 has a voltage value proportional to the length x, and the output voltage Vx obtained during T 2 has a voltage value proportional to the length
The boundary line between them is the current path IC of the magnetoresistive element MR.
can be obtained corresponding to the position across the .

また、強磁性体から成る電流通路部ICは、そ
の抵抗値の温度特性が半導体磁気抵抗素子に比較
して極めて小さく、且つ、直線性の良い温度特性
を有し、さらに、強磁性体薄膜の蒸着とホトエツ
チングプロセスによつて極めて精度の高い形状に
且つ簡単に製造するとができるので、温度特性に
優れ且つ素子の抵抗値のバラツキの小さな磁気抵
抗素子MRを形成することができる。
In addition, the current path IC made of a ferromagnetic material has an extremely small temperature characteristic of its resistance value compared to a semiconductor magnetoresistive element, and has a temperature characteristic with good linearity. Since it can be easily manufactured into an extremely precise shape by vapor deposition and photoetching processes, it is possible to form a magnetoresistive element MR with excellent temperature characteristics and small variations in element resistance.

従つて、上述の如き構成の実施例では、外部補
償回路を用いずとも、発磁体MGと磁気抵抗素子
MRとにより微少相対変位を直線性の良い出力電
圧Vxに変換して各端子T1,T2間に得ることがで
きる。
Therefore, in the embodiment with the above-mentioned configuration, the magnetizing body MG and the magnetoresistive element can be easily connected without using an external compensation circuit.
Using MR, a minute relative displacement can be converted into an output voltage V x with good linearity, which can be obtained between each terminal T 1 and T 2 .

なお、この実施例において、上述の第4式にて
表される出力電圧Vxが最大になるときは、バイ
アス電流Iの電流値は一定であるから(rn―r
s)が最大すなわちrnとrsの比によつて決まる
上記定数αが最大になるときである。相対変化の
比が最大になることは検出感度が最大になること
であるから、電流通路部ICに流れる電流Iの方
向に対して第1の磁界Hsおよび第2の磁界Hn
うちの一方の方向を垂直にし他方の方向を平行に
するように上記発磁体を形成して、上述の定数α
が最大値をとるようにすると、発磁体MGと磁気
抵抗素子MRとの相対変位の検出感度が最高にな
る。このような発磁体MGの具体的な構成を第3
図に示す。
Note that in this embodiment, when the output voltage V
s ) is at its maximum, that is, when the constant α determined by the ratio of r n and r s becomes maximum. Since the maximum ratio of relative changes means the maximum detection sensitivity, the difference between the first magnetic field H s and the second magnetic field H n with respect to the direction of the current I flowing through the current path IC. The above magnetizing body is formed so that one direction is perpendicular and the other direction is parallel, and the above-mentioned constant α is
When is set to take the maximum value, the detection sensitivity of the relative displacement between the magnetizing body MG and the magnetoresistive element MR becomes the highest. The specific configuration of such a magnetizing body MG is explained in the third section.
As shown in the figure.

すなわち、第3図に示す発磁体MG1において
は、領域Ms中に各着磁帯Ns,Ssを境界線に
対して平行に配置し、領域Mn中に各着磁帯Nn
nを上記境界線に対して平行に配置してあ
る。しかも、上記各着磁帯Nn,Sn間の間隔P
は、磁気抵抗素子MRの折線パターン状の電流通
路部ICの各素片ic1,ic2,……icoの間隔λに対し
て P=n・λ/2 ………第6式 なる第6式にて示されるように設定してある。
That is, in the magnetizing body MG 1 shown in FIG. 3, each magnetized belt N s and S s are arranged in a region M s parallel to the boundary line, and each magnetized belt N n is arranged in a region M n . ,
S n is arranged parallel to the boundary line. Moreover, the distance P between each of the above magnetized belts N n and S n
is the interval λ between the individual pieces ic 1 , ic 2 , . It is set as shown in Equation 6.

なお、第6式におけるnは、任意の正の整数で
ある。
Note that n in the sixth formula is any positive integer.

第4図は、本発明に係る発磁体を用いて構成し
た磁電変換装置の第2の実施例を示す構成図であ
る。
FIG. 4 is a configuration diagram showing a second embodiment of a magnetoelectric conversion device constructed using a magnetizing body according to the present invention.

この実施例は、強磁体から成る電流通路部IC
を2個直列接続して、その接続中点に出力端子を
設けることによつて、ポテンシヨメータを構成す
るようにしたものである。
In this embodiment, a current path IC made of a ferromagnetic material is used.
A potentiometer is constructed by connecting two in series and providing an output terminal at the midpoint of the connection.

すなわち、この実施例においては、第4図の示
すように、強磁性体から成る各々の平面帯状の第
1の電流通路部ICaと第2の電流通路部ICbとが直
列接続されているとともに、その接続中点に出力
端子T3が設けられ、且つ両端に電源供給端子
T1,T2が設けられた磁気抵抗素子MR1が用いら
れている。そして、上記磁気抵抗素子MR1は、各
電源供給端子T1,T2間に定電圧源VSが接続され
ているとともに、第1の電流通路部ICaを横切る
第1の境界線aと第2の電流通路部ICbを横切る
第2の境界線bとの間の第1の領域M1では各電
流通路部ICa,ICbの長手方向に直交する方向の第
1の磁界H1を発生し、上記各境界線abを介
して隣接する第2の磁界領域M2および第3の磁
界領域M3では各電流通路部ICa,ICbの長手方向
に平行な方向の第2および第3の磁界H2,H3
発生する発磁体MG2が相対移動自在に対向破設さ
れている。
That is, in this embodiment, as shown in FIG. 4, each planar band-shaped first current path section IC a and second current path section IC b made of a ferromagnetic material are connected in series. In addition, an output terminal T3 is provided at the midpoint of the connection, and power supply terminals are provided at both ends.
A magnetoresistive element MR 1 provided with T 1 and T 2 is used. The magnetoresistive element MR 1 has a constant voltage source VS connected between each power supply terminal T 1 and T 2 , and a first boundary line a and a first boundary line a crossing the first current path part IC a . In the first region M 1 between the second boundary line b that crosses the current path portion IC b of 2, the first magnetic field H 1 in the direction perpendicular to the longitudinal direction of each current path portion IC a and IC b is applied. In the second magnetic field region M 2 and the third magnetic field region M 3 which are adjacent to each other via the boundary lines a and b , the second magnetic field region M 2 and the third magnetic field region M 3 in the direction parallel to the longitudinal direction of each current path portion IC a and IC b Magnetizers MG 2 that generate third magnetic fields H 2 and H 3 are disposed facing each other so as to be relatively movable.

上記第1ないし第3の磁界H1,H2,H3を発生
するには、例えば、第5図に示す如き構成の発磁
体MG2を用いる。すなわち、第5図において、各
境界線abに対する直交方向を長手方向とし
て各着磁帯S1,N1が互いに平行且つ交互に配列
されている領域M1では、上記各境界線ab
平行な第1の磁界H1が発生できる。また、各境
界線abに平行な方向を長手方向として各着
磁帯S2,N2およびS3,N3が互いに平行且つ交互
に配列されている各領域M2,M3では、上記各境
界線abに直交する方向の第2および第3の
磁界H1,H3を発生することができる。
In order to generate the first to third magnetic fields H 1 , H 2 , H 3 , for example, a magnet generator MG 2 having a configuration as shown in FIG. 5 is used. That is, in FIG. 5, in the region M 1 where the magnetized bands S 1 and N 1 are arranged parallel to each other and alternately with the longitudinal direction being orthogonal to the boundaries a and b, the boundaries a , A first magnetic field H 1 parallel to b can be generated. In addition, in each region M 2 and M 3 where the magnetized bands S 2 and N 2 and S 3 and N 3 are arranged parallel to each other and alternately with the longitudinal direction parallel to each boundary line a and b , Second and third magnetic fields H 1 and H 3 in directions perpendicular to the boundary lines a and b can be generated.

このような発磁体MG2により発生される第1な
いし第3の磁界H1,H2,H3中に配置されている
第1および第2の電流通路部ICa,ICbは、上記磁
界H1,H2,H3の境界線abの長手方向への
移動に伴い、一方の抵抗値RAが増加すると、他
方の抵抗値RBが減少するような差動的な変化特
性を呈し、端子T1,T2間の全抵抗値(RA+R
B)は変化しないので、定電圧源VSによつて、 i=Vio/R+R ………第7式 なる第7式で示される電流値iを有する定電流I
が流されることになる。ここで、第7式におい
て、Vioは定電電圧源VSより磁気抵抗素子MR1
両端子T1,T2間に印加される電圧、RAは第1の
電流通路部ICaにおける抵抗値、RBは第2の電流
通路部ICbにおける抵抗値である。なお、上記各
抵抗値RA,RBは、上述の第1式によつて求める
ことができる。
The first and second current path portions IC a and IC b arranged in the first to third magnetic fields H 1 , H 2 , H 3 generated by such a magnet generator MG 2 are connected to the magnetic field. As the boundaries a and b of H 1 , H 2 , and H 3 move in the longitudinal direction, the resistance value R A of one increases and the resistance value R B of the other decreases. , and the total resistance value between terminals T 1 and T 2 (R A + R
B ) does not change, so the constant voltage source VS generates a constant current I having a current value i expressed by the seventh equation: i=V io /R A +R B
will be washed away. Here, in the seventh equation, V io is the voltage applied between both terminals T 1 and T 2 of the magnetoresistive element MR 1 from the constant voltage source VS, and R A is the resistance in the first current path section IC a. The value R B is the resistance value in the second current path portion IC b . Note that each of the resistance values R A and R B can be determined by the first equation described above.

そこで、上述の如き構成の実施例においては、
直列接続された各電流通路部ICa,ICbの接続中点
に設けた出力端子T3と接地との間に、発磁体
MG2と磁気抵抗素子MR1との相対変位に応じて電
圧レベルの変化するような出力電圧Vputを得る
ことができる。
Therefore, in the embodiment with the above-mentioned configuration,
A magnet is connected between the output terminal T 3 provided at the midpoint of the connection between the series-connected current path sections IC a and IC b and the ground.
It is possible to obtain an output voltage Vput whose voltage level changes depending on the relative displacement between MG 2 and magnetoresistive element MR 1 .

第6図は、本発明に係る発磁体を用いて構成し
た第3の実施例を示す構成図である。
FIG. 6 is a configuration diagram showing a third embodiment constructed using a magnetizing body according to the present invention.

この実施例は、直列接続された第1および第2
の電流通路部から成るポテンシヨメータを一対用
いて、ブリツジ回路を構成し、発磁体と磁気抵抗
素子との相対変化の検出感度を向上するようにし
たものである。
In this embodiment, the first and second
A bridge circuit is constructed by using a pair of potentiometers each having a current path section of 1, to improve the detection sensitivity of relative changes between the magnetoresistive element and the magnetoresistive element.

すなわち、第6図に示す第3の実施例では、互
いに平行に配列された第1ないし第4の電流通路
部ICa1,ICb1,ICa2,ICb2のうち、第1および第
2の電流通路部ICa1,ICb1が直列接続され第1の
ポテンシヨメータを形成し、また、第3および第
4の電流通路部ICa2,ICb2が直列接続され第2の
ポテンシヨメータを形成するようにした磁気抵抗
素子MR2が用いられている。上記第1の電流通路
部ICa1の一端には正側電源供給端子T1aが設けら
れ、また、第2の電流通路部ICb1の一端には負側
電源供給端子T2aが設けられ、さらに、各電流通
路部ICa1,ICb1の各他端を接続した接続中点には
第1の出力端子T3aが設けられている。また、上
記第3の電流通路部ICb1の一端には負側電源供給
端子T2bが設けられ、また、第4の電流通路部
ICb2の一端には正側電源供給端子T1bが設けら
れ、さらに、各電流通路部ICa2,ICb2の各他端を
接続した接続中点には第2の出力端子T3bが設け
られている。
That is , in the third embodiment shown in FIG . Passage portions IC a1 and IC b1 are connected in series to form a first potentiometer, and third and fourth current path portions IC a2 and IC b2 are connected in series to form a second potentiometer. A magnetoresistive element MR 2 is used. A positive power supply terminal T 1a is provided at one end of the first current path IC a1 , a negative power supply terminal T 2a is provided at one end of the second current path IC b1 , and , a first output terminal T 3a is provided at a connection midpoint connecting the other ends of each of the current path portions IC a1 and IC b1 . Further, a negative side power supply terminal T2b is provided at one end of the third current path section IC b1 , and a fourth current path section IC b1 is provided with a negative side power supply terminal T2b .
A positive power supply terminal T 1b is provided at one end of IC b2 , and a second output terminal T 3b is provided at the connection midpoint connecting the other ends of each current path section IC a2 and IC b2 . ing.

そして、上記各電流通路部ICa1,ICa2,ICb1
ICb2を横切る境界線および第1および第2の
電流通路部ICa1,ICb1間を分割する境界線2を
もつて互いに方向の異なる第1ないし第4の磁界
a,Hb,Hc,Hdを発生する発磁体G3と上記磁
気抵抗素子MR2とが図中矢印X―方向に相対移
動自在に対向配設されている。
Then, each of the above current path portions IC a1 , IC a2 , IC b1 ,
First to fourth magnetic fields H a , H b , H having mutually different directions with a boundary line 1 crossing IC b2 and a boundary line 2 dividing between the first and second current path portions IC a1 and IC b1 The magnet G 3 that generates C and H d and the magnetoresistive element MR 2 are arranged opposite to each other so as to be relatively movable in the direction of the arrow X-- in the figure.

ここで、上記第1ないし第4の磁界Ha,Hb
c,Hdを発生するには、第7図に示す如き構成
の発磁体MG3が用いられる。
Here, the first to fourth magnetic fields H a , H b ,
To generate H c and H d , a magnet generator MG 3 having a configuration as shown in FIG. 7 is used.

すなわち、発磁体MG3は、直交する境界線
により4分割された第1ないし第4の領
域Ma,Mb,Mc,Mdのうちの第1および第3の
領域Ma,Mcには、N極の着磁帯NacとS極の着
磁帯Sacとを境界線に対して平行で且つ交互
に配列し、また、第2および第4の領域Mb,Md
には、N極の着磁帯NbdとS極の着磁帯Sbdとを
境界に対して平行で且つ交互に配列して成
る。このような構成の発磁体MG3は、上記各境界
を境に隣接する各領域Ma,Mb,M
c,Mdにおいて互いに直交する方向の第1ないし
第4の磁界Ha,Hb,Hc,Hdを発生することが
できる。なお、第1および第3の磁界Ha,Hc
各方向は互いに平行であり、また、第2および第
4の領域Hb,Hdの各方向は互いに平行でり、さ
らに、上記第1および第3の磁界Ha,Hcの各方
向と第2および第4の領域Hb,Hdの各方向とは
互いに直交している。
That is, the magnet generator MG 3
In the first and third regions M a , M c of the first to fourth regions M a , M b , M c , M d divided into four by 1 and 2, an N- pole magnetized zone is formed. The N ac and the S-pole magnetized belt S ac are arranged parallel to the boundary line 1 and alternately, and the second and fourth regions M b , M d
, N-pole magnetized belts N bd and S-pole magnetized belts S bd are arranged parallel to boundary 1 and alternately. The magnetizing body MG 3 having such a configuration has adjacent regions M a , M b , M
It is possible to generate first to fourth magnetic fields Ha , Hb , Hc , and Hd in mutually orthogonal directions at C and Md . Note that the directions of the first and third magnetic fields H a and H c are parallel to each other, and the directions of the second and fourth regions H b and H d are parallel to each other; The directions of the first and third magnetic fields H a and H c and the directions of the second and fourth regions H b and H d are orthogonal to each other.

そこで、上述の如き発磁体MG3によつて発生さ
れる各磁界Ha,Hb,Hc,Hdの境界線が磁
気抵抗素子MR2の各電流通路部ICa2,ICa1
ICb1,ICb2を横切る位置を、該発磁体MG3と磁気
抵抗素子MR2との相対移動により変位せしめる
と、その変位量に応じて、第1の電流通路部ICa1
および第2の電流通路部ICb1で形成される第1の
ポテンシヨメータと第3の電流通路部ICa2および
第4の電流通路部ICb2で形成される第2のポテン
シヨメータとが差動的に動作し、第1の出力端子
T3aと第2の出力端子T3bとの間に上記変位量に
応じた出力電圧Vputを得ることできる。
Therefore, the boundary line 1 of each magnetic field H a , H b , H c , H d generated by the magnetizing body MG 3 as described above corresponds to each current path portion IC a2 , IC a1 ,
When the position across IC b1 and IC b2 is displaced by the relative movement of the magnetoresistive element MG 3 and the magnetoresistive element MR 2 , the first current path section IC a1 changes according to the amount of displacement.
The first potentiometer formed by the second current path section IC b1 and the second potentiometer formed by the third current path section IC a2 and the fourth current path section IC b2 are different from each other. operates dynamically and the first output terminal
An output voltage V put can be obtained between T 3a and the second output terminal T 3b according to the amount of displacement.

このような構成の実施例においては、第1およ
び第2のポテンシヨメータ間の差動出力として出
力電圧Vputを得ているので、各ポテンシヨメー
タにける温度特性が相殺され磁気抵抗素子MR2
しての温度特性を向上させることができるととも
に、上述の第1図や第3図に示した各実施例に比
較して、変位量の検出感度を倍増することができ
る。
In an embodiment with such a configuration, since the output voltage V put is obtained as a differential output between the first and second potentiometers, the temperature characteristics of each potentiometer are canceled out, and the magnetoresistive element MR In addition to improving the temperature characteristics as shown in FIG .

上述の各実施例から明らかなように、本発明に
よれば、隣接する各々が互いに逆極性に着磁され
た着磁帯を平行に配列して成る少なくとも二つの
着磁領域を有し、各着磁領域における着磁帯の平
行配列方向を互に異ならしめるとともに、境界線
をもつて各着磁領域を隣接配置せしめたことを特
徴とすることによつて、方向の異なる複数の磁界
を明確な境界をもつて隣接せしめて発生するよう
な発磁体を提供することができる。従つて、磁気
抵抗効果を有する強磁性体から成る磁気抵抗素子
を用いた変位センサに本発明に係る発磁体を適用
することによつて、極めて検出特性の良好な変位
センサを実現することが可能となり所期の目的を
十分に達成できる。なお、本発明は上述の実施例
における磁電変換装置にのみ適用されるものでな
く、磁気作用を利用する他の装置にも適用し得る
ことはいうまでもない。
As is clear from the above-mentioned embodiments, according to the present invention, there are at least two magnetized regions in which adjacent magnetized regions are arranged in parallel, each of which is magnetized with opposite polarity, and each By making the parallel arrangement directions of the magnetized bands in the magnetized regions different from each other, and by arranging each magnetized region adjacent to each other with a boundary line, it is possible to clearly distinguish multiple magnetic fields with different directions. It is possible to provide magnetic generating bodies that are generated adjacently with a boundary. Therefore, by applying the magnetizing body of the present invention to a displacement sensor using a magnetoresistive element made of a ferromagnetic material having a magnetoresistive effect, it is possible to realize a displacement sensor with extremely good detection characteristics. Therefore, the intended purpose can be fully achieved. It goes without saying that the present invention is not only applicable to the magnetoelectric conversion device in the above-described embodiments, but also to other devices that utilize magnetic action.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明に係る発磁体を用いて構成し
た磁電変換装置の第1の実施例を示す構成図であ
る。第2図は、第1の実施例に適用した本発明に
係る発磁体の具体的な構成を示す要部平面図であ
る。第3図は、上記第1の実施例において検出感
度を最高にせしめる場合の本発明に係る発磁体の
具体的な構成を示す要部平面図である。第4図
は、本発明に係る発磁体を用いて構成した磁電変
換装置の第2の実施例を示す構成図である。第5
図は、第2の実施例に適用した本発明に係る発磁
体の具体的な構成を示す平面図である。第6図
は、本発明に係る発磁体を用いて構成した磁電変
換装置の第3の実施例を示す構成図である。第7
図は、第3の実施例に適用した本発明に係る発磁
体の具体的な構成を示す平面図である。 1…バイアス電流、IC,ICa,ICb,ICa1
ICb1,ICa2,ICb2…電流通路、MR,MR1,MR2
…磁気抵抗素子、,ab…境
界線、MG,MG1,MG2,MG3…発磁体、Ns,S
s,Nn,Sn,N1,S1,N2,S2,N3,S3,Nac
ac,Nbd,Sbd…着磁帯、Hs,Hn,H1,H2
a,Hb,Hc,Hd…磁界。
FIG. 1 is a configuration diagram showing a first embodiment of a magnetoelectric conversion device constructed using a magnetizing body according to the present invention. FIG. 2 is a plan view of a main part showing a specific configuration of the magnetizing body according to the present invention applied to the first embodiment. FIG. 3 is a plan view of a main part showing a specific configuration of the magnetizing body according to the present invention when the detection sensitivity is maximized in the first embodiment. FIG. 4 is a configuration diagram showing a second embodiment of a magnetoelectric conversion device constructed using a magnetizing body according to the present invention. Fifth
The figure is a plan view showing a specific configuration of the magnetizing body according to the present invention applied to the second embodiment. FIG. 6 is a configuration diagram showing a third embodiment of a magnetoelectric conversion device constructed using a magnetizing body according to the present invention. 7th
The figure is a plan view showing a specific configuration of the magnetizing body according to the present invention applied to the third embodiment. 1...Bias current, IC, IC a , IC b , IC a1 ,
IC b1 , IC a2 , IC b2 ...Current path, MR, MR 1 , MR 2
... Magnetoresistive element, , a , b , 1 , 2 ... Boundary line, MG, MG 1 , MG 2 , MG 3 ... Magnetizing body, N s , S
s , N n , S n , N 1 , S 1 , N 2 , S 2 , N 3 , S 3 , N ac ,
S ac , N bd , S bd ... Magnetized zone, H s , H n , H 1 , H 2 ,
Ha , Hb , Hc , Hd ...magnetic field.

Claims (1)

【特許請求の範囲】[Claims] 1 隣接する各々が互いに逆極性に着磁された着
磁帯を平行に配列して成る少なくとも二つの着磁
領域を有し、各着磁領域における着磁帯の平行配
列方向を互に異ならしめるとともに、境界線をも
つて各着磁領域を隣接配置せしめたことを特徴と
する発磁体。
1. It has at least two magnetized regions, each of which is made up of parallelly arranged magnetized bands that are magnetized with opposite polarities, and the parallel arrangement directions of the magnetized bands in each magnetized region are different from each other. Also, a magnetizing body characterized in that each magnetized region is arranged adjacent to each other with a boundary line.
JP3684679A 1979-03-30 1979-03-30 Generator of magnetic field Granted JPS55130104A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3684679A JPS55130104A (en) 1979-03-30 1979-03-30 Generator of magnetic field

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3684679A JPS55130104A (en) 1979-03-30 1979-03-30 Generator of magnetic field

Publications (2)

Publication Number Publication Date
JPS55130104A JPS55130104A (en) 1980-10-08
JPS6134604B2 true JPS6134604B2 (en) 1986-08-08

Family

ID=12481118

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3684679A Granted JPS55130104A (en) 1979-03-30 1979-03-30 Generator of magnetic field

Country Status (1)

Country Link
JP (1) JPS55130104A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0727645B1 (en) * 1994-08-23 2001-08-08 Matsushita Electric Industrial Co., Ltd. Magnetic signal detector

Also Published As

Publication number Publication date
JPS55130104A (en) 1980-10-08

Similar Documents

Publication Publication Date Title
EP0705421B1 (en) Magnetoresistive proximity sensor
US6300758B1 (en) Magnetoresistive sensor with reduced output signal jitter
JP3465059B2 (en) Magnetic field sensor comprising magnetization reversal conductor and one or more magnetoresistive resistors
JP4411319B2 (en) Magnetoresistive sensor for angle or position determination
US6831456B2 (en) Angle sensor and method of increasing the anisotropic field strength of a sensor unit of an angle sensor
JP6773726B2 (en) Magnetic field sensor
GB2034053A (en) Magneto resistive displacement sensors
JP3560821B2 (en) Encoder with giant magnetoresistive element
EP3764115B1 (en) Magnetic field sensor with magnetoresistance elements arranged in a bridge and having a common reference direction and opposite bias directions
US20030128031A1 (en) Magnetoresistive sensor
JPWO2014111976A1 (en) Magnetic sensor and manufacturing method thereof
RU2279737C1 (en) Variable-resistance transducer
JPS59147213A (en) Magnetic rotary sensor
JPS6134604B2 (en)
JPS6040196B2 (en) Magnetoelectric conversion device
JPS63212803A (en) Measuring device for displacement
JPS6344730Y2 (en)
JP7341454B2 (en) magnetic sensor
JPS6214956B2 (en)
JPS6134606B2 (en)
JPS63205514A (en) Device for detecting position and speed magnetically
JPH0141226B2 (en)
JPH03221814A (en) Magnetoelectric converter
JP2016109472A (en) Magnetic sensor
JPS6033002A (en) Position sensor