JPS63212803A - Measuring device for displacement - Google Patents

Measuring device for displacement

Info

Publication number
JPS63212803A
JPS63212803A JP4517687A JP4517687A JPS63212803A JP S63212803 A JPS63212803 A JP S63212803A JP 4517687 A JP4517687 A JP 4517687A JP 4517687 A JP4517687 A JP 4517687A JP S63212803 A JPS63212803 A JP S63212803A
Authority
JP
Japan
Prior art keywords
displacement
magnetoresistive element
sensitivity
magnetoresistance
measuring device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4517687A
Other languages
Japanese (ja)
Inventor
Yuzo Seo
雄三 瀬尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Kasei Corp
Original Assignee
Mitsubishi Kasei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Kasei Corp filed Critical Mitsubishi Kasei Corp
Priority to JP4517687A priority Critical patent/JPS63212803A/en
Publication of JPS63212803A publication Critical patent/JPS63212803A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To enable the attainment of an electric output proportional to displacement with high reliability, by making the field of a magnet distributed in a small width and by making a magnetoresistance element have a linear sensitivity distribution in relation to the direction of the displacement ranging from a small width to a large width. CONSTITUTION:A magnetic circuit comprising yokes 13-1 and 13-2 and a permanent magnet 12 is fitted to a moving body 11, and a magnetoresistance element 14 disposed opposite to said circuit with a gap between them is provided. Magnetoresistance bodies 15 having terminals 15 and arranged in a pattern shown in the figure are used as the element 14. The magnetoresistance bodies 15 are thin film conductors having a magnetoresistance effect respectively and have a sensitivity characteristic varying linearly in the direction of movement. The variation of the sensitivity of the magnetoresistance bodies 15 can be set arbitrarily by giving a linear variation to the length of the bodies 15. According to this construction, the magnet 12 moves as the movement of the body 11, a variation of magnetoresistance proportional to the movement of the magnet is obtained in the element 14, and thus the measurement of the displacement can be implemented.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、変位を電気信号に変換する変位計測装置に
関し、特に、変位量に比例する出力信号が得られ、かつ
信頼性の高い変位計測装置に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a displacement measurement device that converts displacement into an electrical signal, and in particular, a displacement measurement device that can obtain an output signal proportional to the amount of displacement and that is highly reliable. It is related to the device.

〔従来の技術〕[Conventional technology]

変位(位置)を計測するための装置は、変位、振動、幅
、厚み、凹凸等の計測の他、位置決め制御のフィードバ
ック用センサとして広く工業分野に使用されている。
Devices for measuring displacement (position) are widely used in the industrial field as sensors for measuring displacement, vibration, width, thickness, unevenness, etc., as well as feedback for positioning control.

変位に対して直線的に変化する電気信号を得る装置とし
て、可変抵抗器の原理を応用した「ポテンショメータ」
が多く用いられるが、これは安価な反面、接触部を有す
るため、寿命がみじかく、ノイズが発生する等の問題が
あり、移動頻度の大きい用途や信頼性を要求される用途
には向かない。信頼性の要求される分野には「差動トラ
ンス」が用いられるが、巻線と精密な磁気回路を必要と
するため、高価であり、形状も大きいという問題があっ
た。
A "potentiometer" is a device that applies the principle of a variable resistor to obtain an electrical signal that changes linearly with displacement.
are often used, but while they are inexpensive, they have problems such as short lifespans and noise generation because they have contact parts, and are not suitable for applications that require frequent movement or applications that require reliability. Differential transformers are used in fields where reliability is required, but because they require windings and precise magnetic circuits, they are expensive and bulky.

また、永久磁石と感磁性素子とを組合せたセンサも、小
形、軽量、安価で信頼性も高いことから広く使用されて
いるが、変位に対して直線的に変化する信号を得ること
ができず、用途はオン、オフ制御用等に限られていた。
Sensors that combine a permanent magnet and a magnetically sensitive element are also widely used because they are small, lightweight, inexpensive, and highly reliable; however, they cannot obtain a signal that changes linearly with displacement. However, its use was limited to on/off control, etc.

この発明は上記の点にかんがみなされたもので、変位量
に比例する出力信号が得られる変位計測装置を提供する
ことを目的とする。
The present invention has been made in consideration of the above points, and an object of the present invention is to provide a displacement measuring device that can obtain an output signal proportional to the amount of displacement.

〔問題点を解決するための手段〕[Means for solving problems]

この発明にかかる変位計測装置は、永久磁石若しくはこ
れを含む磁気回路と磁気抵抗素子とを空隙を介して移動
自在に対向配置してなる変位計測装置であって、永久磁
石若しくはこれを含む磁気回路の発生する磁界のうち磁
気抵抗素子に感応する成分が移動方向に関して狭い幅を
もって分布するように構成し、磁気抵抗素子を移動方向
に関して前記幅より広い幅に、移動方向に関し線形の感
度分布を持って配設したものである。
A displacement measuring device according to the present invention is a displacement measuring device in which a permanent magnet or a magnetic circuit including the same and a magnetoresistive element are movably arranged opposite to each other with an air gap between the permanent magnet or the magnetic circuit including the permanent magnet. The component of the magnetic field generated by the magnetoresistive element that is sensitive to the magnetoresistive element is distributed with a narrow width in the direction of movement, and the magnetoresistive element has a linear sensitivity distribution in the direction of movement with a width wider than the above width in the direction of movement. It was arranged as follows.

〔作用〕[Effect]

この発明においては、磁気抵抗素子に変位に対して直線
的に変化する電気信号が得られる。
In this invention, an electric signal that changes linearly with displacement can be obtained from the magnetoresistive element.

(実施例) この発明の詳細な説明する前に、この発明の測定原理を
第8図によって説明する。
(Example) Before explaining the present invention in detail, the measurement principle of the present invention will be explained with reference to FIG.

第8図(a)は永久磁石1と磁気抵抗体2との相対関係
を示し、第8図(b)は第8図(a)における磁気抵抗
体の抵抗変化を示す図である。X第8図(a)に示すよ
うに移動方向に座標Xをとり、位置x、)に置かれた単
位感度を有する磁気抵抗体2の抵抗変化をγとする。こ
の発明では、磁気抵抗体2に感応する磁界成分は移動方
向に関して狭い幅dとされるため、抵抗変化γも、第8
図(b)に示すように、ある幅の内部でのみ大きな値を
とり、これ以外ではほとんど0になる。
FIG. 8(a) shows the relative relationship between the permanent magnet 1 and the magnetic resistor 2, and FIG. 8(b) is a diagram showing the resistance change of the magnetic resistor in FIG. 8(a). As shown in FIG. 8(a), the coordinate X is taken in the moving direction, and the resistance change of the magnetoresistive element 2 having unit sensitivity placed at the position x, ) is assumed to be γ. In this invention, since the magnetic field component sensitive to the magnetoresistive element 2 has a narrow width d in the moving direction, the resistance change γ also
As shown in Figure (b), it takes a large value only within a certain width, and becomes almost 0 outside of this range.

この発明では、移動方向Xに対して線形の感度分布を有
する磁気抵抗素子(この図では磁気抵抗体2と同じ)を
使用する。したがって、位置Xにおける感度Sは変位を
χとして、一般式3式%: :) で表わされる。磁気抵抗体2全体の抵抗変化drは前記
抵抗変化γと感度Sの積を磁気抵抗体2の全長にわたっ
て積分することにより与えられ、少なくともγが0でな
い区間では感度の直線性が満足されるものとすれば、全
長にわたる積分は無限区間積分と等価になり、次式で計
算される。
In this invention, a magnetoresistive element (same as magnetoresistive element 2 in this figure) having a linear sensitivity distribution with respect to the moving direction X is used. Therefore, the sensitivity S at the position X is expressed by the general formula 3, where χ is the displacement. The resistance change dr of the entire magnetoresistive element 2 is given by integrating the product of the resistance change γ and the sensitivity S over the entire length of the magnetoresistive element 2, and the linearity of sensitivity is satisfied at least in the section where γ is not 0. Then, the integral over the entire length is equivalent to the infinite interval integral, and is calculated by the following formula.

=α・I8・χ+α・I2・β・11 で、いずれも定数であるため、変位χと抵抗変化drと
の間には比例関係が成り立つ。
=α·I8·χ+α·I2·β·11 Since both are constants, a proportional relationship holds between the displacement χ and the resistance change dr.

なお、βは0の方が感度はよい。Note that sensitivity is better when β is 0.

次にこの発明の実施例について説明する。Next, embodiments of the invention will be described.

第1図はこの発明の一実施例を示すものであって、移動
物体11に取り付けた永久磁石12とヨーク13−1.
13−2からなる磁気回路と、これに空隙を介して対向
配置した磁気抵抗素子14からなる。なお、永久磁石1
2だけでもよいが、図示のように永久磁石12を含む磁
気回路でもよい。磁気抵抗素子14として、第2図(a
)または第3図(a)に示すパターン配置の磁気抵抗体
15を使用する。16は磁気抵抗体15の端子である。
FIG. 1 shows an embodiment of the present invention, in which a permanent magnet 12 attached to a moving object 11 and a yoke 13-1.
It consists of a magnetic circuit 13-2 and a magnetoresistive element 14 placed opposite to the magnetic circuit 13-2 with an air gap in between. In addition, permanent magnet 1
2 may be sufficient, but a magnetic circuit including a permanent magnet 12 as shown in the figure may be used. As the magnetoresistive element 14, as shown in FIG.
) or the magnetic resistor 15 having the pattern arrangement shown in FIG. 3(a) is used. 16 is a terminal of the magnetic resistor 15.

第2図(a)、第3図(a)の磁気抵抗体15はそれぞ
れ磁気抵抗効果を有する薄膜導体で、移動方向に対して
線形に変化する感度特性を持つ。
The magnetoresistive elements 15 in FIGS. 2(a) and 3(a) are thin film conductors having a magnetoresistive effect, and have sensitivity characteristics that vary linearly with respect to the direction of movement.

感度の変化は、第2図(a)のように、磁気抵抗体15
の長さに線形変化を持たせることによって、あるいは第
3図(a)のように、磁気抵抗体15の傾きに線形変化
を持たせることによって、任意に設定することができる
。例えば、第3図のパターンでは、放物線状の磁気抵抗
体15を折曲げて形成したものであり、折曲げられた多
片はいずれも放物線の一部をなしている。したたがって
、傾きの変化は線形となる。なお、磁気抵抗体15のパ
ターンは放物線に限定されるものでなく、これに近似の
形状であればよい。これらの感度特性はそれぞれ第2図
(b)と第3図(b)に示すように直線的に変化するも
のとなる。
As shown in FIG. 2(a), the change in sensitivity is caused by the magnetic resistance element 15.
It can be set arbitrarily by linearly changing the length of , or by linearly changing the inclination of the magnetic resistor 15 as shown in FIG. 3(a). For example, the pattern shown in FIG. 3 is formed by bending a parabolic magnetic resistor 15, and each of the bent pieces forms a part of the parabola. Therefore, the change in slope is linear. Note that the pattern of the magnetoresistive element 15 is not limited to a parabola, but may have a shape approximating this. These sensitivity characteristics change linearly as shown in FIG. 2(b) and FIG. 3(b), respectively.

上記の構成によれば移動物体11の移動につれて永久磁
石12が動き、この動きと比例した抵抗変化が磁気抵抗
素子14に得られるので、変位計測を行うことができる
According to the above configuration, the permanent magnet 12 moves as the moving object 11 moves, and a resistance change proportional to this movement is obtained in the magnetoresistive element 14, so that displacement measurement can be performed.

一般に、磁気抵抗体15の抵抗は温度によっても変化す
る。これを補償するため、第4図に示すように、変位に
よる抵抗変化が逆方向になるように、第2図のパターン
の二つの磁気抵抗素子14A、14Bを設け、抵抗器R
1電圧計Vを用いてブリッジを構成するのが好ましい。
Generally, the resistance of the magnetoresistive element 15 also changes depending on the temperature. To compensate for this, as shown in FIG. 4, two magnetoresistive elements 14A and 14B with the pattern shown in FIG. 2 are provided so that the resistance changes due to displacement are in opposite directions, and the resistor R
Preferably, one voltmeter V is used to construct the bridge.

なお、Eは電池、16は端子である。このようにすれば
、温度による抵抗変化は互いにキャンセルされ、磁界に
よる抵抗変化は互いに強め合うため、温度変化に左右さ
れず、変位の計測が可能である。
Note that E is a battery and 16 is a terminal. In this way, resistance changes due to temperature cancel each other out, and resistance changes due to a magnetic field strengthen each other, so displacement can be measured without being affected by temperature changes.

第5図(a)は磁気抵抗体15の傾きを変えて構成した
ブリッジ用の磁気抵抗素子14A、14Bの例を示し、
第3図のパターンに対応している。第5図(b)に感度
特性を示す。点線はブリッジ構成時の見掛けの感度を示
す。
FIG. 5(a) shows an example of bridge magnetoresistive elements 14A and 14B configured by changing the inclination of the magnetoresistive element 15,
This corresponds to the pattern shown in FIG. FIG. 5(b) shows the sensitivity characteristics. The dotted line shows the apparent sensitivity in the bridge configuration.

変位量あたりの抵抗変化は移動方向の感度勾配αに比例
し、この値が大きいほどノイズの影響を受けにくく好ま
しい。感度勾配αは感度の変化幅を長さで割った値であ
るが、一般に感度は負の値を取りえず、また、材料や形
状で定まる上限があり、感度の変化幅には一定の限界が
ある。ところで、ブリッジ構成をとる場合、一方の磁気
抵抗体14Aの感度は他方の磁気抵抗体14Bにとって
負の感度であると見做すことができる。これを利用すれ
ば、感度変化幅を二倍に拡大することができる。これを
行う場合、上記第5図(b)に示すように、接続部で感
度Oとなるようにパターンを形成することで線形範囲が
磁気抵抗素子14A。
The change in resistance per displacement is proportional to the sensitivity gradient α in the movement direction, and the larger this value is, the less susceptible to the influence of noise, which is preferable. The sensitivity gradient α is the value obtained by dividing the width of change in sensitivity by the length, but in general, sensitivity cannot take a negative value, and there is an upper limit determined by the material and shape, so there is a certain limit to the width of change in sensitivity. There is. By the way, when a bridge configuration is adopted, the sensitivity of one magnetoresistive element 14A can be regarded as negative sensitivity for the other magnetoresistive element 14B. By utilizing this, the sensitivity change range can be doubled. When this is done, as shown in FIG. 5(b) above, by forming a pattern so that the sensitivity is O at the connection part, the linear range of the magnetoresistive element 14A is adjusted.

14B全体に広がり、見掛は上の感度を負の上限から正
の上限まで拡大することができる。
14B, and the apparent sensitivity can be expanded from the negative upper limit to the positive upper limit.

この発明による変位計測装置は、磁気抵抗素子14部分
での磁界パターンの移動を検出している。被計測物であ
る永久磁石12(第1図)の変位と磁界パターンの移動
は、同一にすることもできるが、分けることもできる。
The displacement measuring device according to the present invention detects the movement of the magnetic field pattern in the magnetoresistive element 14 portion. The displacement of the permanent magnet 12 (FIG. 1), which is the object to be measured, and the movement of the magnetic field pattern can be the same, or they can be separated.

第6図はこれを模式的に示したものであって、被計測物
である8’!II物体11がYの方向に移動すると磁界
パターンはXの方向に移動する。これを利用すれば、同
一の素子であっても磁界発生部分と移動方向のなす角度
(σ)を調整することで任意の大きさの変位が計測可能
であり、また、小さな磁気抵抗素子14で大きな変位を
計測することが可能である。
FIG. 6 schematically shows this, and shows the object to be measured, 8'! II When the object 11 moves in the Y direction, the magnetic field pattern moves in the X direction. By using this, it is possible to measure displacement of any size even with the same element by adjusting the angle (σ) between the magnetic field generating part and the moving direction. It is possible to measure large displacements.

第7図は、この発明による変位計測装置を用いて回転角
計測装置を構成した例を示すものであって3磁極を有す
るロータ17と、これに空隙を介して対向配置された二
組の磁気抵抗素子14A。
FIG. 7 shows an example of a rotation angle measuring device constructed using the displacement measuring device according to the present invention, in which a rotor 17 having three magnetic poles and two sets of magnetic Resistance element 14A.

14Bから構成される。ロータ17の着磁は磁極境界部
が式 %式% で表わされる位置にくるように行う。ただし、Yは高さ
方向の位置、Y −、Y b 、はそれぞれの磁気抵抗
素子14A、14Bの中心高さ、Aは定数、θは回転角
とする。それぞれの磁気抵抗素子14A、14Bの両端
に正負の同じ電圧の電源を接続すると、中点には一方が
sinθに、他方がCOSθに比例する電圧が得られる
。また、磁気抵抗素子14Aの駆動を士cosωt、磁
気抵抗素子14Bの駆動を±sinωtに比例する交流
電圧で行い、画素子の中点電位を加算すると、駆動交流
に対してθだけ位相のずれた交流信号が得られ、位相差
を測定することにより、回転角を高い分解能で計測する
ことが可能である。
Consists of 14B. The rotor 17 is magnetized so that the magnetic pole boundary is located at the position expressed by the formula %. Here, Y is the position in the height direction, Y − and Y b are the center heights of the respective magnetoresistive elements 14A and 14B, A is a constant, and θ is the rotation angle. When power supplies with the same positive and negative voltages are connected to both ends of each of the magnetoresistive elements 14A and 14B, a voltage proportional to sin θ is obtained at one end, and a voltage proportional to COS θ at the other end is obtained at the midpoint. In addition, when the magnetoresistive element 14A is driven by an AC voltage proportional to +/-sinωt and the magnetoresistive element 14B is driven by an AC voltage proportional to ±sinωt, and the midpoint potential of the pixel element is added, the phase is shifted by θ with respect to the driving AC. By obtaining an AC signal and measuring the phase difference, it is possible to measure the rotation angle with high resolution.

〔発明の効果) 以上詳細に説明したように、この発明は、永久磁石若し
くはこれを含む磁気回路と磁気抵抗素子とを空隙を介し
て穆勤自在に対向配置してなる変位計測装置であって、
永久磁石若しくはこれを含む磁気回路の発生する磁界の
うち磁気抵抗素子に感応する成分が変位の方向に関して
狭い幅をもって分布しており、磁気抵抗素子が狭い幅よ
り広い幅にわたって変位の方向に関し線形の感度分布を
持っている構成としたので、変位に比例する電気出力が
得られ、かつ信頼性の高い変位計測装置を安価に構成す
ることが可能である。また、直線性は感度分布の精度に
よって決まるが、磁気抵抗素子はフォトエツチングによ
り製造されるため、感度分布を目標値に合わせることは
容易であり、安価に高精度の計測装置を得ることができ
る。また、構成を工夫することにより、大きな変位を計
測したり、回転角を計測したりすることも可能であり、
幅広い分野にわたって応用できる優れた利点を有する。
[Effects of the Invention] As explained in detail above, the present invention is a displacement measuring device in which a permanent magnet or a magnetic circuit including the permanent magnet and a magnetoresistive element are arranged opposite to each other with a gap in between. ,
Of the magnetic field generated by a permanent magnet or a magnetic circuit including the permanent magnet, the component sensitive to the magnetoresistive element is distributed with a narrow width in the direction of displacement, and the magnetoresistive element has a linear distribution in the direction of displacement over a wider width than the narrow width. Since the configuration has a sensitivity distribution, it is possible to obtain an electrical output proportional to displacement and to construct a highly reliable displacement measuring device at low cost. In addition, linearity is determined by the accuracy of the sensitivity distribution, but since magnetoresistive elements are manufactured by photoetching, it is easy to adjust the sensitivity distribution to the target value, making it possible to obtain a high-precision measurement device at low cost. . In addition, by devising the configuration, it is also possible to measure large displacements and rotation angles.
It has excellent advantages that can be applied in a wide range of fields.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例を示す構成略図、第2図(
a)、(b)はこの発明に用いる磁気抵抗素子のパター
ン配置とその感度特性を示す図、第3図(a)、(b)
は同じく他の例を示す磁気抵抗素子のパターン配置とそ
の感度特性を示す図、第4図はこの発明の一実施例の回
路を示す図、第5図(a)、(b)はこの発明に用いる
ブリッジ用の磁気抵抗素子のパターン配置とその感度特
性を示す図、第6図、第7図はこの発明の他の実施例を
それぞれ示す構成略図、第8図はこの発明の原理説明の
ための磁石と磁気抵抗体との関係、ならびに抵抗変化特
性を示す図である。 図中、11は移動物体、12は永久磁石13−1.13
−2はヨーク、14は磁気抵抗素子、15は磁気抵抗体
、16は端子である。 FOp几ゴーj、H 第1図 第2図    第3図 (b)                      
(b)−変位              −変イ立第
4図
FIG. 1 is a schematic diagram showing the configuration of an embodiment of the present invention, and FIG. 2 (
a) and (b) are diagrams showing the pattern arrangement of the magnetoresistive element used in the present invention and its sensitivity characteristics; Fig. 3 (a), (b)
4 is a diagram showing a pattern arrangement of a magnetoresistive element and its sensitivity characteristics, similarly showing another example, FIG. 4 is a diagram showing a circuit of an embodiment of the present invention, and FIGS. Figures 6 and 7 are schematic diagrams showing other embodiments of the invention, and Figure 8 is a diagram explaining the principle of the invention. FIG. 4 is a diagram showing the relationship between a magnet and a magnetoresistive body, as well as resistance change characteristics. In the figure, 11 is a moving object, 12 is a permanent magnet 13-1.13
-2 is a yoke, 14 is a magnetoresistive element, 15 is a magnetoresistive body, and 16 is a terminal. FOp 几Go j, H Figure 1 Figure 2 Figure 3 (b)
(b) - Displacement - Displacement Figure 4

Claims (3)

【特許請求の範囲】[Claims] (1)永久磁石若しくはこれを含む磁気回路と磁気抵抗
素子とを空隙を介して移動自在に対向配置してなる変位
計測装置であって、前記永久磁石若しくはこれを含む磁
気回路の発生する磁界のうち前記磁気抵抗素子に感応す
る成分が変位の方向に関して狭い幅をもって分布してお
り、前記磁気抵抗素子が前記狭い幅より広い幅にわたっ
て変位の方向に関し線形の感度分布を持っていることを
特徴とする変位計測装置。
(1) A displacement measuring device in which a permanent magnet or a magnetic circuit including the same and a magnetoresistive element are movably arranged opposite to each other with an air gap, the magnetic field generated by the permanent magnet or the magnetic circuit including the permanent magnet is Among them, a component sensitive to the magnetoresistive element is distributed with a narrow width in the direction of displacement, and the magnetoresistive element has a linear sensitivity distribution in the direction of displacement over a width wider than the narrow width. Displacement measuring device.
(2)磁気抵抗素子は、移動方向に関して感度が線形に
増加する磁気抵抗体と前記移動方向に関して感度が線形
に減少する磁気抵抗体を接続して構成され、両端の端子
にそれぞれ異なる電圧を印加し、接続部に変位に比例す
る電圧変化を得ることを特徴とする特許請求の範囲第(
1)項記載の変位計測装置。
(2) A magnetoresistive element is constructed by connecting a magnetoresistive element whose sensitivity increases linearly with respect to the direction of movement and a magnetoresistive element whose sensitivity linearly decreases with respect to the direction of movement, and applies different voltages to terminals at both ends. and obtains a voltage change proportional to the displacement at the connection part.
1) Displacement measuring device described in section 1).
(3)接続点に対して対称な形状を有し、かつ接続部で
の感度がゼロであるような二つの磁気抵抗体から構成さ
れる磁気抵抗素子を用いることを特徴とする特許請求の
範囲第(2)項記載の変位計測装置。
(3) A claim characterized by using a magnetoresistive element composed of two magnetoresistive bodies that have a symmetrical shape with respect to the connection point and have zero sensitivity at the connection point. The displacement measuring device according to item (2).
JP4517687A 1987-03-02 1987-03-02 Measuring device for displacement Pending JPS63212803A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4517687A JPS63212803A (en) 1987-03-02 1987-03-02 Measuring device for displacement

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4517687A JPS63212803A (en) 1987-03-02 1987-03-02 Measuring device for displacement

Publications (1)

Publication Number Publication Date
JPS63212803A true JPS63212803A (en) 1988-09-05

Family

ID=12711960

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4517687A Pending JPS63212803A (en) 1987-03-02 1987-03-02 Measuring device for displacement

Country Status (1)

Country Link
JP (1) JPS63212803A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0712505A (en) * 1993-06-28 1995-01-17 Ckd Corp Magnetic linear scale
JPH08145613A (en) * 1994-11-22 1996-06-07 Ckd Corp Piston position detector
JP2005308432A (en) * 2004-04-19 2005-11-04 Matsushita Electric Ind Co Ltd Position detection sensor
JP2008530541A (en) * 2005-02-08 2008-08-07 コンティネンタル オートモーティヴ フランス Use of magneto-impedance in non-contact position sensors and related sensors
JP2008241368A (en) * 2007-03-26 2008-10-09 Tdk Corp Magnet structure for angle sensor and angle sensor using the same
JP2010515880A (en) * 2007-01-08 2010-05-13 キョントン ネットワーク コーポレーション リミテッド Precision pressure sensor
JP2010243287A (en) * 2009-04-03 2010-10-28 Tokai Rika Co Ltd Shift position detection device of vehicle

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6034048A (en) * 1983-08-04 1985-02-21 Matsushita Electric Ind Co Ltd Manufacture of carrier tape

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6034048A (en) * 1983-08-04 1985-02-21 Matsushita Electric Ind Co Ltd Manufacture of carrier tape

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0712505A (en) * 1993-06-28 1995-01-17 Ckd Corp Magnetic linear scale
JPH08145613A (en) * 1994-11-22 1996-06-07 Ckd Corp Piston position detector
JP2005308432A (en) * 2004-04-19 2005-11-04 Matsushita Electric Ind Co Ltd Position detection sensor
JP2008530541A (en) * 2005-02-08 2008-08-07 コンティネンタル オートモーティヴ フランス Use of magneto-impedance in non-contact position sensors and related sensors
JP2010515880A (en) * 2007-01-08 2010-05-13 キョントン ネットワーク コーポレーション リミテッド Precision pressure sensor
JP2008241368A (en) * 2007-03-26 2008-10-09 Tdk Corp Magnet structure for angle sensor and angle sensor using the same
JP2010243287A (en) * 2009-04-03 2010-10-28 Tokai Rika Co Ltd Shift position detection device of vehicle

Similar Documents

Publication Publication Date Title
US4725776A (en) Magnetic position detector using a thin film magnetoresistor element inclined relative to a moving object
JP3465059B2 (en) Magnetic field sensor comprising magnetization reversal conductor and one or more magnetoresistive resistors
US4361805A (en) Magnetoresistive displacement sensor arrangement
US6300758B1 (en) Magnetoresistive sensor with reduced output signal jitter
US4480248A (en) Temperature and aging compensated magnetoresistive differential potentiometer
US5680042A (en) Magnetoresistive sensor with reduced output signal jitter
US4849696A (en) Apparatus for determinig the strength and direction of a magnetic field, particularly the geomagnetic field
JPH0246901B2 (en)
US4733177A (en) High resolution high output magneto resistive transducer for determining static and dynamic position
CN210142176U (en) Magnetic field sensing device
JPH02503718A (en) Shaft angular position sensing device
JPS63212803A (en) Measuring device for displacement
DE3680435D1 (en) CONTACTLESS ANGLE SENSOR.
JPS6344730Y2 (en)
JPS5856408B2 (en) magnetic sensor
JPH02189484A (en) Magnetic sensor
CN108195365B (en) Dynamic tuning gyroscope and angular position sensor thereof
CA1236543A (en) High resolution high output transducer
JP2556851B2 (en) Magnetoresistive element
JPH069306Y2 (en) Position detector
RU2307427C2 (en) Magnetoresistive field sensor
JPH06147816A (en) Angle sensor
JP2000055930A (en) Acceleration sensor
JP2576136B2 (en) Magnetic direction measurement device
JPS6034048B2 (en) displacement detection device