JPS6132051A - Wavelength selecting optical storage material - Google Patents

Wavelength selecting optical storage material

Info

Publication number
JPS6132051A
JPS6132051A JP59152659A JP15265984A JPS6132051A JP S6132051 A JPS6132051 A JP S6132051A JP 59152659 A JP59152659 A JP 59152659A JP 15265984 A JP15265984 A JP 15265984A JP S6132051 A JPS6132051 A JP S6132051A
Authority
JP
Japan
Prior art keywords
compound
optical storage
storage material
wavelength
halogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59152659A
Other languages
Japanese (ja)
Inventor
Toshihiro Nishi
西 俊弘
Koichi Arishima
功一 有島
Hiroaki Hiratsuka
平塚 廣明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP59152659A priority Critical patent/JPS6132051A/en
Publication of JPS6132051A publication Critical patent/JPS6132051A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/242Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
    • G11B7/244Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising organic materials only
    • G11B7/246Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising organic materials only containing dyes
    • G11B7/248Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising organic materials only containing dyes porphines; azaporphines, e.g. phthalocyanines

Landscapes

  • Non-Silver Salt Photosensitive Materials And Non-Silver Salt Photography (AREA)
  • Optical Record Carriers And Manufacture Thereof (AREA)

Abstract

PURPOSE:To obtain a wavelength selecting optical storage material having high sensitively and high efficiency of isomerization and enabling high density recording with monochromatic light from dye laser by dispersing a specified tetraphenylporphin or phthalocyanine deriv. as an optically isomerizing compound in a proper matrix. CONSTITUTION:An optically isomerizing compound having a principal skeleton represented by formula I (where each of E<1>-E<4> is N or C) and contg. halogen or a metallic complex in the molecule or an optically isomerizing compound represented by formula II (where X is halogen or a metallic complex, and each of k, l, m and n is 1-5) is synthesized. The compound is dispersed in a polymer causing no absorption in the electron absorption region of the compound and capable of uniformly dispersing the compound to obtain a wavelength selecting optical storage material. Polymethyl methacrylate, polystyrene or the like is used as the polymer. The optical storage material enables high density recording with monochromatic light of 610-670nm from dye laser, and it can be provided with sensitivity more than several times the sensitivity of a conventional material.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、フォトケミカルホールバーニング現象を利
用した高密度記録が可能な波長選択性光学記憶材料に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a wavelength-selective optical storage material capable of high-density recording using the photochemical hole burning phenomenon.

〔従来の技術〕[Conventional technology]

この種の波長選択的光学記憶材料として、従来テトラフ
ェニルポルフィンやフタロシアニンなどの洸県性化分子
を適当なマトリックスに分散させ丸材料が知られている
。これは極低温領域における不可逆な光異性化反応を利
用したものであル、反応前後の光学物性の相違により不
揮発性メモリとして使用できるものアある。
As a wavelength-selective optical storage material of this type, a round material is known in which a macromolecule such as tetraphenylporphine or phthalocyanine is dispersed in a suitable matrix. This method utilizes an irreversible photoisomerization reaction in an extremely low temperature region, and can be used as a nonvolatile memory due to the difference in optical properties before and after the reaction.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら、このような波長選択的光学記憶材料にあ
っては、光異性化反応が励起三重現状態を経由して進行
するため、異性化効率が低く、よって感度が十分でない
という欠点があった。
However, such wavelength-selective optical storage materials have the disadvantage that the photoisomerization reaction proceeds via an excited triple state, resulting in low isomerization efficiency and therefore insufficient sensitivity.

〔問題を解決するための手段〕[Means to solve the problem]

そこで、本発明では光異性化分子にハロゲンあるいは金
属錯体を導入することにより高感度な波長選択的光学記
憶材料を得るようにした。
Therefore, in the present invention, a highly sensitive wavelength-selective optical memory material is obtained by introducing a halogen or a metal complex into photoisomerizable molecules.

本発明の波長選択的光学記憶材料は、次の一般式(11
に 〔式中&E  fk=1.2,3.4)は窒素原子ある
いは炭素原子を表わす。〕 で表わされる基本骨格を有し、分子内にハロゲンあるい
は金属錯体を含む光異性化分子を適当なマトリックスに
分散せしめたものである。この光異性化分子としては、
具体的に例えば次の式(2)〔式中Xはハロゲンあるい
は金属錯体を表わし、k、t、m、nは1から5までの
整数を表わす。〕で表わされるテトラ7工4ルボルフイ
ン誘導体や次の式(3) 〔式中Xはハロゲンを表わし、に、t、m、nは1から
4までの整数である。〕 で表わされるフタロシアニン誘導体などがある。
The wavelength selective optical storage material of the present invention has the following general formula (11
In the formula, &E fk = 1.2, 3.4 represents a nitrogen atom or a carbon atom. ] It has a basic skeleton represented by the following, and photoisomerizable molecules containing a halogen or a metal complex within the molecule are dispersed in an appropriate matrix. This photoisomerizable molecule is
Specifically, for example, the following formula (2) [wherein X represents a halogen or a metal complex, and k, t, m, and n represent integers from 1 to 5. ] or a tetra-7-4-ruvolufine derivative represented by the following formula (3) [wherein X represents a halogen, t, m, and n are integers from 1 to 4. ] There are phthalocyanine derivatives represented by the following.

これら誘導体の無置換化合物は、いずれも波長選択性光
学記憶材料の構成要素である光異性化分子としては公知
であるが、これらにハロゲンあるいは金属錯体を置換基
として導入することにょり感度が向上する。この高感度
化はへpゲンあるいは金属錯体が光異性化分子内に置換
することによシ三重項状態を経由する反応の確率が高く
なったためと考えられ、前記の2種の光異性化分子に限
定されず種々の光異性化分子にハロゲンあるいは金属錯
体を置換することにより無置換化合物の高感度化が図れ
る。
Unsubstituted compounds of these derivatives are all known as photoisomerizable molecules that are components of wavelength-selective optical storage materials, but sensitivity is improved by introducing halogen or metal complexes into them as substituents. do. This increase in sensitivity is thought to be due to the substitution of the hep-gen or metal complex within the photoisomerizable molecule, which increases the probability of the reaction passing through the triplet state. The sensitivity of unsubstituted compounds can be increased by substituting halogen or metal complexes in various photoisomerizable molecules without being limited to.

このような置換光異性化分子の合成法としては、次のよ
うな反応が挙げられる。
Examples of methods for synthesizing such substituted photoisomerizable molecules include the following reactions.

C式中、Xはハロゲンまたは金属錯体を表わし、k、t
、m、nは1〜4または1〜5の整数を表わす。】 Xがハロゲンの場合には、 (a) 、 ((3)の反
応が好ましく%Xが金属錯体の場合は(b)、 (〜の
反応が好ましい。得られた化合物の構造は通常用いられ
る元素分析および電子吸収あるいはIRにより確認する
ことができる。
In the C formula, X represents a halogen or a metal complex, k, t
, m, and n represent integers of 1 to 4 or 1 to 5. ] When X is a halogen, the reaction of (a), ((3) is preferable. If X is a metal complex, the reaction of (b), It can be confirmed by elemental analysis and electronic absorption or IR.

上記化合物を波長選択的光学記憶材料として使用するに
は、適当なポリマーに分散させる必要がある。具体的に
はポリメチルメタクリレイトあるいはポリスチレン等が
あるが、これに限定させず一般式(2)および(3)の
化合物の電子吸収領域中に吸収を持九ないポリマーで且
つ上記化合物を均一に分散さぜるポリマーならなんでも
良い。
In order to use the above compound as a wavelength-selective optical storage material, it is necessary to disperse it in a suitable polymer. Specific examples include polymethyl methacrylate and polystyrene, but are not limited thereto. Polymers that do not have absorption in the electron absorption region of the compounds of general formulas (2) and (3) and that can be used to uniformly absorb the above compounds Any polymer that can be dispersed is fine.

本発明の波長選択性光学記憶材料の光照射はYAG励起
の色素レーザなどを用いて行われる。
The wavelength-selective optical storage material of the present invention is irradiated with light using a YAG-excited dye laser or the like.

照射光は出力3yaW/cm2程度の単色光が用いられ
る。照射波長は光異性化分子により選なるが、一般式(
2)の化合物では930〜650 nm 、一般式(3
)の化合物では610〜670 nmの範囲である。
Monochromatic light with an output of about 3 yaW/cm 2 is used as the irradiation light. The irradiation wavelength is selected depending on the photoisomerizable molecule, but the general formula (
In the compound of 2), the wavelength is 930 to 650 nm, and the general formula (3) is 930 to 650 nm.
) is in the range of 610 to 670 nm.

以下、実施例および比較例について説明する。Examples and comparative examples will be described below.

実施例1 モノヨードベンズアルデヒド12.5F(54mmo!
、 )とピロール3.6 f (54mmol )をプ
ロピオン酸中還流した後、析出した結晶をろ取し、紫色
結晶のテトラ(モノヨードフェニル)ポリフィンを得た
。収量は2.45’で収率は16チであつ九。元素分析
” 44H26N4 I 4に対する計算値:C947
,26;H,2,34;N、5.01;実測値:C,4
7,35;)I、2.41;N、4.95;電子吸収(
CH2C6z  中):419,515,548゜59
2 m 647 nm  、 IR: CH2−I+1
055cIn−1。
Example 1 Monoiodobenzaldehyde 12.5F (54mmo!
, ) and pyrrole 3.6 f (54 mmol) were refluxed in propionic acid, and the precipitated crystals were collected by filtration to obtain purple crystal tetra(monoiodophenyl)polyfin. The yield was 2.45' and the yield was 16 cm. Elemental analysis" Calculated value for 44H26N4 I4: C947
, 26; H, 2, 34; N, 5.01; Actual value: C, 4
7,35;) I, 2.41; N, 4.95; Electron absorption (
CH2C6z medium): 419,515,548°59
2 m 647 nm, IR: CH2-I+1
055cIn-1.

得られた生成物をポリメチルメタクリレイト/クロロホ
ルム溶液に溶解し、スピンコーティング法によシ濃度I
 X l O” 3moA / L 、膜厚1×10−
2−の薄膜を作製した。この薄膜を温度4.2Kに保ち
、光源として色素レーザを用い出力3mWつ単色光(波
長641nm)を照射したところ、その波長に吸収を有
する分子の10憾を変化させるのに5秒の照射時間を要
し、感度が15mJ / cm2であることがわかつ九
The obtained product was dissolved in a polymethyl methacrylate/chloroform solution and applied to a concentration of I by spin coating.
X l O" 3moA/L, film thickness 1x10-
A thin film of 2- was prepared. When this thin film was kept at a temperature of 4.2 K and irradiated with monochromatic light (wavelength 641 nm) with an output of 3 mW using a dye laser as a light source, it took 5 seconds of irradiation time to change 10 molecules that absorb at that wavelength. It was found that the sensitivity was 15 mJ/cm2.

実施例2 テトラフェニルボルフ(:/1.5 t (2,5mm
ot )とタングステンヘキサカルボニル3.57(1
0mmol )とをジメトキシエタン100 cm” 
中10時間加熱還流した後、ヘキサンより再結晶するこ
とにより、紫色結晶のテトラキス(トリカルボニル(η
−ベニ/ゼン)タングステニル)ポルフィンを得た。元
素分析C56H30N4W40□2に対する計算値:C
,39,89;1(,1,79:N、3.32:実測値
:C,39□9 s ; Hl、70 ; N 、 3
.38;電子吸収(CH2CA2):  420 、5
16 、548 。
Example 2 Tetraphenylborf (:/1.5 t (2,5 mm
ot) and tungsten hexacarbonyl 3.57(1
0 mmol) and dimethoxyethane 100 cm”
After heating under reflux for 10 hours, recrystallization from hexane yields purple crystals of tetrakis(tricarbonyl(η
- Beni/zene)tungstenyl)porphine was obtained. Calculated value for elemental analysis C56H30N4W40□2: C
,39,89;1(,1,79:N,3.32:Actual value:C,39□9s; Hl,70;N,3
.. 38; Electron absorption (CH2CA2): 420, 5
16, 548.

593 、648nm ; IR:W(Co 1180
0cm−”。
593, 648nm; IR:W(Co 1180
0cm-”.

実施例1と同様の薄膜を作製し、同一条件で測定した感
度はlomJ/am2 であった。
A thin film similar to that in Example 1 was prepared and the sensitivity measured under the same conditions was lomJ/am2.

実施例3 テトラヨード無水フタル酸32.6 P (50mmo
t)と尿゛素3 P (50mmotlと塩化亜鉛1.
7?(I Z* 5 mmotlを5000 のニトロ
ペンゼ。
Example 3 Tetraiodophthalic anhydride 32.6 P (50 mmo
t) and urea 3P (50 mmotl and zinc chloride 1.
7? (IZ* 5 mmotl of 5000 nitropenze.

中触媒量のモリブデン酸アンモニウム存在下18時間加
熱還流した後、沈澱物をろ取し、濃硫酸10の3に加え
、激しく3時間攪拌した。反応溶液を200:*3の水
に加え沈澱物をろ取し、クロロホルムより再結晶するこ
とによシ目的物であるヨード置換フタロシアニンを得九
。収量は26Fで収率は801で舎った。元素分析C3
゜H2N8 ” 16に対する計算値:C,15,20
;N、4.43;実測値: C、1!5.10 ;N、
 4.38 s電子吸収(クロロベンゼン中);368
.571.650nm0生成物をポリメチルメタクリレ
イト/クロロホルム溶液に溶解し、スピンコーティング
により濃度I X 1 G−5m0t/l  膜厚IX
IQ−2cmの試試料を作製した。この薄膜を温度4.
2Kに保ち、光源として色素レーザを用い出力3mWの
単色光(波長55Qnml を照射したところ、その波
長に吸収を有する分子の1096を変化させるのに5.
0X1G−1秒の照射時間を要し、感度が1.5m J
/ t=r 2  であることがわかる。
After heating under reflux for 18 hours in the presence of a medium catalytic amount of ammonium molybdate, the precipitate was collected by filtration, added to 10 parts of concentrated sulfuric acid, and vigorously stirred for 3 hours. The reaction solution was added to 200:*3 water, and the precipitate was filtered and recrystallized from chloroform to obtain the desired iodo-substituted phthalocyanine. The yield was 26F and the yield was 801. Elemental analysis C3
゜H2N8 ” Calculated value for 16: C, 15, 20
;N, 4.43;Actual value: C, 1!5.10;N,
4.38 s electron absorption (in chlorobenzene); 368
.. 571.650nm0 product was dissolved in polymethyl methacrylate/chloroform solution and spin-coated to a concentration I X 1 G-5m0t/l film thickness IX
A sample of IQ-2cm was prepared. This thin film was heated to 4.
When the temperature was maintained at 2K and irradiated with monochromatic light (wavelength 55Qnml) using a dye laser as a light source and an output of 3mW, it took 5.5cm to change 1096 molecules that absorb at that wavelength.
0x1G - 1 second irradiation time required, sensitivity 1.5m J
It can be seen that / t=r 2 .

実施例4 7タ0シアー7sS’ (12,5mmot)とタング
ステンヘキサカルボニル17.6 ff (50mmo
t)を実施例2と同様にしてタングステン置換化合物を
得た。収量は15.91であり、収率は80%であツf
Co元素分析c44H18N、3w4o12 ノ計算値
:cI33.32;H,1,14;N、7.06;実測
*:c。
Example 4 7ta0 shear 7sS' (12,5 mmot) and tungsten hexacarbonyl 17.6 ff (50 mmot)
t) in the same manner as in Example 2 to obtain a tungsten-substituted compound. The yield was 15.91, and the yield was 80%.
Co element analysis c44H18N, 3w4o12 Calculated value: cI 33.32; H, 1,14; N, 7.06; Actual measurement *: c.

33.41;H,1,10;N、7.01;電子吸収〔
クロロベンゼン中1 :360,568,642nち実
施例3と同様の薄膜を作製し、波長642nmの単色光
を用いて同様の実験により感度を求め九ところ1. O
m J / on 2であった。
33.41; H, 1, 10; N, 7.01; Electron absorption [
1:360,568,642n in chlorobenzene A thin film similar to that in Example 3 was prepared, and the sensitivity was determined by the same experiment using monochromatic light with a wavelength of 642 nm. O
mJ/on 2.

比較例、1 同人化学層テトラクエニルポルフィリンの実施例1と同
一条件のボ11メチルメタクリレイト分散薄膜を作製し
た。実施例1と同様の実検を行い感度を測定したところ
30 m J 10R2であった。
Comparative Example 1 A methyl methacrylate-dispersed thin film was prepared under the same conditions as in Example 1 using doujin chemical layer tetraquenylporphyrin. The same actual test as in Example 1 was carried out and the sensitivity was measured to be 30 m J 10R2.

比較例2 東京化成製フタロシアニンの実施例3と同一条件のポリ
メチル−メタクリレイト分散薄膜を作製し九。波長62
0 nmの単色光を用い実施例3と同様の実験を行い感
度を測定したところ6 mJ/LIn”であった。
Comparative Example 2 A polymethyl-methacrylate dispersed thin film was prepared under the same conditions as in Example 3 using phthalocyanine manufactured by Tokyo Kasei. wavelength 62
An experiment similar to that in Example 3 was conducted using monochromatic light of 0 nm, and the sensitivity was measured to be 6 mJ/LIn''.

〔発明の効果〕〔Effect of the invention〕

本発明の波長選択性光学記憶材料は、ハロゲンまたは金
属錯体を含む光異性化分子よりなるものであるので、従
来の光異性化分子よりなる波長選択性光学記憶材料に比
べてその感度が数倍以上に高いものとなる。
Since the wavelength-selective optical storage material of the present invention is made of photoisomerizable molecules containing halogen or metal complexes, its sensitivity is several times higher than that of conventional wavelength-selective optical storage materials made of photoisomerizable molecules. It will be higher than that.

Claims (3)

【特許請求の範囲】[Claims] (1)一般式 ▲数式、化学式、表等があります▼ 〔式中、E^k(k=1、2、3、4)は窒素原子ある
いは炭素原子を表わす。〕 で表わされる基本骨格を有し、分子内にハロゲンあるい
は金属錯体を含む光異性化分子より構成される波長選択
性光学記憶材料。
(1) General formula ▲ There are mathematical formulas, chemical formulas, tables, etc. ▼ [In the formula, E^k (k = 1, 2, 3, 4) represents a nitrogen atom or a carbon atom. ] A wavelength-selective optical memory material comprising a photoisomerizable molecule having a basic skeleton represented by the following and containing a halogen or a metal complex within the molecule.
(2)光異性化分子が一般式 ▲数式、化学式、表等があります▼ 〔式中Xはハロゲンあるいは金属錯体を表わし、k、l
、m、nは1から5までの整数を表わす。〕 で表わされる化合物であることを特徴とする特許請求の
範囲第1項記載の波長選択性光学記憶材料。
(2) The photoisomerizable molecule has a general formula ▲ There are mathematical formulas, chemical formulas, tables, etc. ▼ [In the formula, X represents a halogen or a metal complex, k, l
, m, and n represent integers from 1 to 5. ] The wavelength-selective optical memory material according to claim 1, which is a compound represented by:
(3)光異性化分子が一般式 ▲数式、化学式、表等があります▼ 〔式中Xはハロゲンを表わし、k、l、m、nは1から
4までの整数である。〕 で表わされる化合物であることを特徴とする特許請求の
範囲第1項記載の波長選択性光学記憶材料。
(3) The photoisomerizable molecule has a general formula ▲ There are mathematical formulas, chemical formulas, tables, etc. ▼ [In the formula, X represents a halogen, and k, l, m, and n are integers from 1 to 4. ] The wavelength-selective optical memory material according to claim 1, which is a compound represented by:
JP59152659A 1984-07-23 1984-07-23 Wavelength selecting optical storage material Pending JPS6132051A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59152659A JPS6132051A (en) 1984-07-23 1984-07-23 Wavelength selecting optical storage material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59152659A JPS6132051A (en) 1984-07-23 1984-07-23 Wavelength selecting optical storage material

Publications (1)

Publication Number Publication Date
JPS6132051A true JPS6132051A (en) 1986-02-14

Family

ID=15545270

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59152659A Pending JPS6132051A (en) 1984-07-23 1984-07-23 Wavelength selecting optical storage material

Country Status (1)

Country Link
JP (1) JPS6132051A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1988009958A1 (en) * 1986-01-17 1988-12-15 Mitsubishi Denki Kabushiki Kaisha Optical recording material
JPS6456434A (en) * 1987-05-27 1989-03-03 Agency Ind Science Techn Wavelength multiple recording material
JPH01291246A (en) * 1988-05-18 1989-11-22 Agency Of Ind Science & Technol Phthalocyanine type recording material
JPH01297292A (en) * 1988-05-26 1989-11-30 Agency Of Ind Science & Technol Porphin-series optical recording material
JPH0245A (en) * 1987-06-10 1990-01-05 Agency Of Ind Science & Technol Porphin type recording material
JPH0259738A (en) * 1988-08-26 1990-02-28 Agency Of Ind Science & Technol Optical recording medium
US5204215A (en) * 1987-05-27 1993-04-20 Agency Of Industrial Science And Technology Wavelength multiplexed optical recording material

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1988009958A1 (en) * 1986-01-17 1988-12-15 Mitsubishi Denki Kabushiki Kaisha Optical recording material
JPS6456434A (en) * 1987-05-27 1989-03-03 Agency Ind Science Techn Wavelength multiple recording material
US5204215A (en) * 1987-05-27 1993-04-20 Agency Of Industrial Science And Technology Wavelength multiplexed optical recording material
JPH0245A (en) * 1987-06-10 1990-01-05 Agency Of Ind Science & Technol Porphin type recording material
JPH0529899B2 (en) * 1987-06-10 1993-05-06 Kogyo Gijutsuin
JPH01291246A (en) * 1988-05-18 1989-11-22 Agency Of Ind Science & Technol Phthalocyanine type recording material
JPH0529898B2 (en) * 1988-05-18 1993-05-06 Kogyo Gijutsuin
JPH01297292A (en) * 1988-05-26 1989-11-30 Agency Of Ind Science & Technol Porphin-series optical recording material
JPH0545933B2 (en) * 1988-05-26 1993-07-12 Kogyo Gijutsuin
JPH0259738A (en) * 1988-08-26 1990-02-28 Agency Of Ind Science & Technol Optical recording medium

Similar Documents

Publication Publication Date Title
Lees et al. Reaction kinetics of the intermediate produced in the laser pulse photolysis of tungsten hexacarbonyl in fluid solution
DE3927872A1 (en) DITHIOLATE-METAL COMPLEX COMPOUNDS, METHOD FOR THEIR PRODUCTION AND OPTICAL INFORMATION RECORDING MATERIAL CONTAINING THE SAME
JPS6132051A (en) Wavelength selecting optical storage material
JPS63209994A (en) Optical data recording medium
Shiraishi et al. Spontaneous Isomerization of a Hydroxynaphthalene-Containing Spiropyran in Polar Solvents Enhanced by Hydrogen Bonding Interactions
Shiraishi et al. Polarity-Driven Isomerization of a Hydroxynaphthalimide-Containing Spiropyran at Room Temperature
JP3200649B2 (en) Transition metal spirobenzopyran complex, method for producing the same, and photochromic material comprising the complex
Gromov et al. Photochromic Ionophores: Synthesis, Photoinduced Isomerization and Cycloaddition of Crown Ether Styryl Dyes
Coe et al. A spectroscopic, electrochemical and structural study of polarizable, dipolar ruthenium (II) arsine complexes as models for chromophores with large quadratic non-linear optical responses
JP2590343B2 (en) Photochromic thin film and method for producing the same
Coe et al. Molecular linear and quadratic non-linear optical properties of pentaammineruthenium complexes of coumarin dyes
EP0606710A2 (en) Photochemical generation of dyes
EP0325742A2 (en) Phthalocyanine compound and optical recording material using it
Sakai et al. Reversible control of emission from ion-pair charge-transfer complex of 4, 4′-bipyridinium with tetrakis [3, 5-bis (trifluoromethyl) phenyl] borate anion by electron transfer reaction
JPH04145191A (en) Photochromic material and optically recording medium therefrom
JPH0134464B2 (en)
Cerda et al. Selectivity through an asymmetric pathway in the degradation of non-steroidal anti-inflammatory drugs (NSAIDs) using mixed-ligand cobalt (II) complexes: experimental and theoretical insights
Mukherjee et al. Mononuclear Zn (II) Complex Based on N2O Ligand Compartment: First Case to Detect Nitro Explosives
Yamazaki et al. Synthesis of Novel Multinuclear Complexes for Light-Harvesting Systems Using the Coupling Reactions with Ring-Shaped Multinuclear Re (I) Complexes as Building Blocks
Tysoe Developing High Throughput Screening Methods for Co-crystal Photoactivity
Yokoyama Creation of Molecularly Integrated Multi-responsive Photochromic Systems
JPH0682856A (en) Nonlinear optical material
JPS60152566A (en) Naphthoquinone dye material
JP2607574B2 (en) Optical functional element
JPH0482895A (en) Dithiolene type organic metal complex, preparation thereof, benzoin compound and benzyl compound