JPH0529898B2 - - Google Patents

Info

Publication number
JPH0529898B2
JPH0529898B2 JP63119278A JP11927888A JPH0529898B2 JP H0529898 B2 JPH0529898 B2 JP H0529898B2 JP 63119278 A JP63119278 A JP 63119278A JP 11927888 A JP11927888 A JP 11927888A JP H0529898 B2 JPH0529898 B2 JP H0529898B2
Authority
JP
Japan
Prior art keywords
phthalocyanine
guest
phb
component
host
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63119278A
Other languages
Japanese (ja)
Other versions
JPH01291246A (en
Inventor
Kazuhiko Kominami
Kazuaki Sakota
Masao Iwamoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP63119278A priority Critical patent/JPH01291246A/en
Publication of JPH01291246A publication Critical patent/JPH01291246A/en
Publication of JPH0529898B2 publication Critical patent/JPH0529898B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/06Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being organic
    • G03G5/07Polymeric photoconductive materials
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/06Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being organic
    • G03G5/0664Dyes
    • G03G5/0696Phthalocyanines

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Non-Silver Salt Photosensitive Materials And Non-Silver Salt Photography (AREA)
  • Optical Record Carriers And Manufacture Thereof (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、光化学ホールバーニング現象を利用
して、同一材料の同一場所に異なる波長の光で多
重に記録可能な光記録材料に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to an optical recording material that is capable of multiplex recording with light of different wavelengths at the same location on the same material by utilizing the photochemical hole burning phenomenon. .

[従来の技術] 光化学ホールバーニング(PHB)現象は、液
体ヘリウム温度程度の極低温において光化学反応
を起こす材料に単色性の良い光を照射することに
より、この光を吸収するゲスト成分のみを選択的
に励起し、光化学変化を生じさせるものである。
この光化学変化により材料の吸収スペクトルに鋭
いホールが形成できることから、ホールの有無に
よりフオトンモードでの光記録が可能である。し
かも、照射する光の波長を変えて順次記録するこ
とにより、同一材料の同一場所に波長多重記録を
行うことができる。このPHB現象を利用すると、
従来用いられてきた光学式デジタル記録媒体であ
るコンパクトデイスクやレーザーデイスクなどに
比べて約1000倍の記録密度向上の可能性がある。
[Conventional technology] The photochemical hole burning (PHB) phenomenon is a method in which monochromatic light is irradiated onto a material that undergoes a photochemical reaction at an extremely low temperature similar to the temperature of liquid helium, and only guest components that absorb this light are selectively absorbed. It excites and causes photochemical changes.
This photochemical change can form sharp holes in the material's absorption spectrum, so optical recording in photon mode is possible depending on the presence or absence of holes. Furthermore, by sequentially recording while changing the wavelength of the irradiated light, wavelength multiplexing recording can be performed at the same location on the same material. Using this PHB phenomenon,
It has the potential to improve recording density by approximately 1000 times compared to conventional optical digital recording media such as compact discs and laser discs.

このようなPHB現象を用いる光記録材料は、
光反応性化合物であるゲスト分子と、それを分散
するためのホストとから構成される。光記録に際
して波長多重度を大きくするためには、ゲストの
分散状態に多様性を持たせる意味からの、ホスト
として非晶質を用いるのがよい。この目的から、
従来ホストにはポリマやケイ酸ガラス等が用いら
れてきた。例えば、ゲストをテトラフエニルポル
フイン、ホストをポリメチルメタクリレートとす
る材料(光学、14(4)263−269)や、ゲストをキニ
ザリン、ホストをケイ酸ガラスとする材料
(Journal of Applied physics,58(9)3559−3565)
などが知られている。
Optical recording materials that use this PHB phenomenon are
It consists of a guest molecule, which is a photoreactive compound, and a host for dispersing it. In order to increase the wavelength multiplicity during optical recording, it is preferable to use an amorphous material as the host in order to provide diversity in the dispersion state of the guest. From this purpose,
Conventionally, polymers, silicate glass, etc. have been used as hosts. For example, there are materials in which the guest is tetraphenylporphine and the host is polymethyl methacrylate (Optics, 14 (4) 263-269), and the material in which the guest is quinizarin and the host is silicate glass (Journal of Applied Physics, 58) . (9)3559−3565)
etc. are known.

[本発明が解決しようとする課題] しかしながら、PHB現象は液体ヘリウム温度
よりも高温になると不安定になり、記録の保存・
読出しが不確実となるという欠点を有していた。
これは、PHB材料中において不可逆的な構造変
化が熱的に誘起され、各々のゲスト分子周辺のミ
クロ構造が異なつてしまうことに一因がある。
[Problems to be solved by the present invention] However, the PHB phenomenon becomes unstable at temperatures higher than the liquid helium temperature, making it difficult to preserve records and
This has the disadvantage that reading becomes uncertain.
One reason for this is that irreversible structural changes are thermally induced in the PHB material, resulting in different microstructures around each guest molecule.

本発明は、かかる従来技術の欠点を解消しよう
とするものであり、光反応性ゲスト化合物として
アニオン性フタロシアニンを、ホスト成分として
ゲスト成分と相溶するポリマを用いることによつ
て熱的な不可逆変化を抑え、熱的に安定な記録材
料を提供することを目的とする。
The present invention aims to solve the drawbacks of the prior art, and uses an anionic phthalocyanine as a photoreactive guest compound and a polymer that is compatible with the guest component as a host component, thereby causing an irreversible thermal change. The purpose is to provide a thermally stable recording material that suppresses

[課題を解決するための手段] 上記目的を達成するために本発明は、下記の構
成を有する。
[Means for Solving the Problems] In order to achieve the above object, the present invention has the following configuration.

「ゲスト成分とホスト成分を主成分としてなる組
成物であつて、 (イ) ゲスト成分がアニオン性基を有するフタロシ
アニン誘導体であり、 (ロ) ホスト成分が、上記のゲスト成分と相溶する
ポリマである ことを特徴とするフタロシアニン系PHB記録材
料。」 すなわち、従来のポルフイン系ゲストを用いた
記録材料と比べ、アニオン性基を有するフタロシ
アニン誘導体とゲスト成分と相溶するポリマとか
らなる材料の場合のには、アニオン性フタロシア
ニンとポリマとの静電相互作用のためにゲスト・
ホスト間の親和性がよく、したがつて、昇温時の
不可逆的な構造変化が少なくなると推定される。
この結果、材料の吸収スペクトルに形成されたホ
ールの半値幅の増大が抑制され、記録の熱安定性
が向上する。
``A composition consisting mainly of a guest component and a host component, wherein (a) the guest component is a phthalocyanine derivative having an anionic group, and (b) the host component is a polymer that is compatible with the above guest component. Phthalocyanine-based PHB recording material characterized by Due to the electrostatic interaction between the anionic phthalocyanine and the polymer, the guest
It is presumed that the affinity between the hosts is good, and therefore irreversible structural changes upon temperature rise are reduced.
As a result, an increase in the half width of a hole formed in the absorption spectrum of the material is suppressed, and the thermal stability of recording is improved.

本発明におけるアニオン性基を有するフタロシ
アニン誘導体としては、アニオン性基を有してい
ればよいが、下記一般式[A] (ただし、式中R1〜R16のうち少なくとも一つは
アニオン性基であり、残りは水素である。)で表
されるフタロシアニン誘導体が好ましく用いられ
る。また、アニオン性基としては、メチレン鎖や
芳香環にSO3 -基、CO2 -基、O-基などが結合した
ものでよいもが、とくにSO3 -基、CO2 -基、O-
などがフタロシアニン環に直接結合したものが好
ましく用いられる。これは、回転しやすいメチレ
ン鎖などがないため、ホストに分散したときの運
動の自由度が小さく、低温での不可逆的構造変化
が小さいからと考えられる。特に、SO3 -基は、
極性が大きく、ホストの静電相互作用が大きいた
め、アニオン性基としては好ましい。
The phthalocyanine derivative having an anionic group in the present invention may have an anionic group, but the following general formula [A] (However, in the formula, at least one of R 1 to R 16 is an anionic group, and the rest are hydrogen.) A phthalocyanine derivative represented by the following is preferably used. In addition, the anionic group may be one in which an SO 3 - group, a CO 2 - group, an O - group, etc. are bonded to a methylene chain or an aromatic ring, especially an SO 3 - group, a CO 2 - group, an O - group, etc. Those in which a group or the like is directly bonded to the phthalocyanine ring are preferably used. This is thought to be because there is no methylene chain that easily rotates, so the degree of freedom of movement when dispersed in the host is small, and irreversible structural changes at low temperatures are small. In particular, the SO 3 -group is
It is preferred as an anionic group because it has high polarity and strong electrostatic interaction with the host.

このアニオン性フタロシアニン誘導体は材料中
では適当なカチオンとともに存在する。カチオン
の選択はホスト成分であるポリマとの相溶性の観
点からなされるべきものであるが、アルカリ金属
イオン、アルカリ土類金属イオン、アンモニウム
イオン、水素イオンなどが好ましく用いられる。
カチオンの数は、アニオン性フタロシアニン誘導
体の負電荷を中和するのに必要な数だけであれば
よく、カチオンは上記の混合物であつてもよい。
This anionic phthalocyanine derivative is present in the material together with a suitable cation. The cation should be selected from the viewpoint of compatibility with the host component polymer, and alkali metal ions, alkaline earth metal ions, ammonium ions, hydrogen ions, etc. are preferably used.
The number of cations may be as long as is necessary to neutralize the negative charge of the anionic phthalocyanine derivative, and the cations may be a mixture of the above.

一般式[A]で表されるアニオン性フタロシア
ニン誘導体は次に示す二つの方法で得られる。ま
ず、フタロシアニンを多塩基酸と反応させ、アニ
オン性基を直接導入する方法がある。たとえば、
フタロシアニンを発煙硫酸でスルホン化する。対
カチオンが水素イオンの場合にはそのまま用い、
他の対カチオンの場合には、水酸化ナトリウム水
溶液のように適当なカチオンを含むアルカリ水溶
液で中和して得られる。また、アニオン性基とな
り得る官能基を有するフタロニトリルを環化反応
させたのち、適当なカチオンを含むアルカリ性水
溶液で中和し得る方法もある。
The anionic phthalocyanine derivative represented by the general formula [A] can be obtained by the following two methods. First, there is a method of directly introducing an anionic group by reacting phthalocyanine with a polybasic acid. for example,
Sulfonate the phthalocyanine with fuming sulfuric acid. If the counter cation is a hydrogen ion, use it as is,
In the case of other countercations, they can be obtained by neutralization with an alkaline aqueous solution containing an appropriate cation, such as an aqueous sodium hydroxide solution. There is also a method in which phthalonitrile having a functional group that can become an anionic group is subjected to a cyclization reaction and then neutralized with an alkaline aqueous solution containing an appropriate cation.

本発明におけるポリマは、ゲスト成分であるア
ニオン性フタロシアニン誘導体と相溶するもので
あればどのようなものでもよく、有機ポリマであ
つても、無機ポリマであつてもよいが、有機ポリ
マとしては、ポリエチレンオキサイド、ポリビニ
ルピリジン、ポリビニルピロリドン、ポリヒドロ
キシエチルメタクリレート、ポリメタクリル酸、
ポリアクリル酸、ポリメタクリルアミド、ポリア
クリルアミド、セルロースアセテート、ポリビニ
ルスルホン酸ナトリウムなどの水溶性ポリマが好
ましく用いられ、特に好ましくは、ポリビニルア
ルコール、または、ポリスチレンスルホン酸ナト
リウムが用いられる。ゲスト成分であるアニオン
性フタロシアニン誘導体は極性溶媒に可溶である
ので、これらの水溶性ポリマとも相溶し、分散が
容易だからである。特に、ポリビニルアルコール
は強い水素結合性を有するので低温において熱的
な構造変化を起こしにくいと推定されること、ま
た、ポリスチレンスルホン酸ナトリウムは側鎖に
ベンゼン環を有するのでゲストであるアニオン性
フタロシアニン誘導体との親和性が高いことか
ら、ホスト成分としては最も好ましい。
The polymer in the present invention may be any polymer as long as it is compatible with the anionic phthalocyanine derivative that is the guest component, and may be an organic polymer or an inorganic polymer. Polyethylene oxide, polyvinylpyridine, polyvinylpyrrolidone, polyhydroxyethyl methacrylate, polymethacrylic acid,
Water-soluble polymers such as polyacrylic acid, polymethacrylamide, polyacrylamide, cellulose acetate, and sodium polyvinyl sulfonate are preferably used, and particularly preferably, polyvinyl alcohol or sodium polystyrene sulfonate is used. This is because the anionic phthalocyanine derivative that is the guest component is soluble in polar solvents, so it is compatible with these water-soluble polymers and can be easily dispersed. In particular, polyvinyl alcohol has strong hydrogen bonding properties, so it is presumed that it is unlikely to undergo thermal structural changes at low temperatures, and sodium polystyrene sulfonate has a benzene ring in its side chain, making it a guest anionic phthalocyanine derivative. It is most preferable as a host component because of its high affinity with.

また無機ポリマとしては、好ましい例としてケ
イ酸ガラスが挙げられる。ケイ酸ガラスとして
は、ゲスト成分であるアニオン性フタロシアニン
誘導体と相溶するものであればよいが、ケイ酸ガ
ラスのモノマ溶液にゲスト化合物が分散でき、し
かも、その分散状態が弱酸あるいは弱塩基による
重合反応においても損なわれないことから、テト
ラメトキシシランあるいはテトラエトキシシラン
から合成したケイ酸ガラスが好ましく用いられ
る。
A preferred example of the inorganic polymer is silicate glass. The silicate glass may be one that is compatible with the anionic phthalocyanine derivative that is the guest component, but the guest compound can be dispersed in the silicate glass monomer solution, and the dispersion state is polymerized by a weak acid or weak base. Tetramethoxysilane or silicate glass synthesized from tetraethoxysilane is preferably used because it is not damaged during the reaction.

本発明の光記録材料中におけるゲスト成分の濃
度としては、高すぎるとゲスト成分間でのエネル
ギ移動によりホール生成特性が劣化し、また、低
すぎると記録読取時のS/N比が小さくなること
から、制限を受ける。したがつて、好ましいゲス
ト濃度はホストであるポリマの体積を基準として
10-1〜10-6Mであり、特に、10-2〜10-5Mである
ことが好ましい。
Regarding the concentration of guest components in the optical recording material of the present invention, if the concentration is too high, hole generation characteristics will deteriorate due to energy transfer between guest components, and if it is too low, the S/N ratio during recording and reading will decrease. are subject to restrictions. Therefore, the preferred guest concentration is based on the volume of the host polymer.
10 -1 to 10 -6 M, particularly preferably 10 -2 to 10 -5 M.

また、本発明の記録材料には、アニオン性フタ
ロシアニンの吸収帯に重なる吸収帯をもたない安
定剤などの添加物を加えてもよいが、ゲスト成分
とホスト成分が主成分として、全体の95%以上含
まれていることが好ましい。これは、添加物によ
つて、ホスト・ゲスト間の相互作用が損なわれな
いようにするためである。
Furthermore, the recording material of the present invention may contain additives such as stabilizers that do not have an absorption band that overlaps with the absorption band of anionic phthalocyanine. % or more is preferable. This is to prevent the interaction between host and guest from being impaired by the additive.

[実施例] 以下に、実施例に基づいてさらに詳細に説明す
るが、本発明はこれに限定されるものではない。
[Example] The present invention will be described in more detail based on Examples below, but the present invention is not limited thereto.

実施例 1 フタロシアニン4.2gに60%発煙硫酸100mlを滴
下して24時間反応させたのち、氷中に反応混合物
を注ぎ、結晶を析出させた。この結晶を分離して
水酸化ナトリウム水溶液で中和し、スルホン化フ
タロシアニンのナトリウム塩を得た。元素分析に
よれば、スルホン基の導入率はフタロシアニン環
1個に対して平均3個であつた。
Example 1 100 ml of 60% oleum was added dropwise to 4.2 g of phthalocyanine and reacted for 24 hours, and then the reaction mixture was poured into ice to precipitate crystals. The crystals were separated and neutralized with an aqueous sodium hydroxide solution to obtain the sodium salt of sulfonated phthalocyanine. According to elemental analysis, the average rate of introduction of sulfone groups was 3 per 1 phthalocyanine ring.

ポリビニルアルコール(重合度=2000、鹸化度
=100%)10gを蒸溜水100mlに溶解させた後、上
で得たスルホン化フタロシアニンのナトリウム塩
8.2mgを加えた。この溶液をシヤーレ中で乾燥し
て、ゲスト濃度10-3M、厚さ0.5mmのフイルムを
得た。
After dissolving 10 g of polyvinyl alcohol (degree of polymerization = 2000, degree of saponification = 100%) in 100 ml of distilled water, the sodium salt of the sulfonated phthalocyanine obtained above was obtained.
8.2mg was added. This solution was dried in a shear dish to obtain a film with a guest concentration of 10 -3 M and a thickness of 0.5 mm.

このフイルムを液体ヘリウム温度まで冷却後、
波長670nm、強度1mW/cm2のレーザー光を1
分間照射してPHBホールを形成した。この後、
フイルムを所定の温度まで昇温し、再び液体ヘリ
ウム温度まで冷却してPHBホールの半値幅を測
定した。
After cooling this film to liquid helium temperature,
1 laser beam with a wavelength of 670 nm and an intensity of 1 mW/cm 2
PHB holes were formed by irradiation for a minute. After this,
The film was heated to a predetermined temperature, cooled again to liquid helium temperature, and the half-width of the PHB hole was measured.

その結果を図面に示す。図面は、横軸に示され
た温度まで昇温し、再冷却後のホールの半値幅か
ら、レーザー光を照射した直後のホールの半値幅
を引去つた値を図示したものである。実施例1の
試料を用いた場合を、○でつないだ曲線で示し
た。
The results are shown in the drawing. The figure shows the value obtained by subtracting the half-width of the hole immediately after laser beam irradiation from the half-width of the hole after the temperature is raised to the temperature shown on the horizontal axis and recooled. The case where the sample of Example 1 was used is shown by a curve connected with circles.

実施例 2 実施例1と同じスルホン化フタロシアニンのナ
トリウム塩4mgを、テトラメトキシシラン(信越
化学工業製)10ml、メタノール20mlおよび水20ml
の混合溶液に溶解したのち、0.1Nアンモニア水
0.5mlを触媒としてゲル化させた。これをシヤー
レ中で乾燥させて厚さ0.5mmのフイルムにした。
Example 2 4 mg of the same sodium salt of sulfonated phthalocyanine as in Example 1 was added to 10 ml of tetramethoxysilane (manufactured by Shin-Etsu Chemical), 20 ml of methanol, and 20 ml of water.
After dissolving in a mixed solution of
Gelation was carried out using 0.5 ml as a catalyst. This was dried in a shear dish to form a film with a thickness of 0.5 mm.

この試料を液体ヘリウム温度まで冷却後、波長
670nm、強度1mW/cm2のレーザー光を1分間
照射してPHBホールを形成した。この後、フイ
ルムを所定の温度まで昇温し、再び液体ヘリウム
温度まで冷却してPHBホールの半値幅を判定し
た。
After cooling this sample to liquid helium temperature, the wavelength
PHB holes were formed by irradiation with laser light of 670 nm and intensity of 1 mW/cm 2 for 1 minute. After that, the film was heated to a predetermined temperature and cooled again to the liquid helium temperature to determine the half-width of the PHB hole.

その結果を図面中、△でつないだ曲線で示し
た。
The results are shown in the drawing by curves connected by △.

比較例 1 アイソタクテイツクポリメチルメタクリレート
(分子量=400000)10gをトルエン120mlに溶解さ
せた後、5,10,15,20−テトラフエニルポルフ
イン61mgを加えた。この溶液をシヤーレ中で乾燥
させることにより、ゲスト濃度10-2M、厚さ0.5
mmのフイルムを作り、これを対照試料とした。波
長645nmのレーザー光を用いて、上と同様にし
て液体ヘリウム温度でPHBホールを形成した後、
フイルムを所定の温度まで昇温し、再び液体ヘリ
ウム温度まで冷却してPHBホールの半値幅を測
定した。
Comparative Example 1 After dissolving 10 g of isotactic polymethyl methacrylate (molecular weight = 400,000) in 120 ml of toluene, 61 mg of 5,10,15,20-tetraphenylporphine was added. By drying this solution in a shear dish, a guest concentration of 10 -2 M and a thickness of 0.5
A film of mm was prepared and used as a control sample. After forming a PHB hole at liquid helium temperature in the same manner as above using a laser beam with a wavelength of 645 nm,
The film was heated to a predetermined temperature, cooled again to liquid helium temperature, and the half-width of the PHB hole was measured.

その結果を図面中、●でつないだ曲線で示し
た。実施例1および実施例2の試料の方が昇温、
再冷却後のPHBホールの半値幅の増大が少なく、
熱安定性に優れていることがわかる。
The results are shown in the drawing by curves connected by ●. The temperature of the samples of Example 1 and Example 2 was higher,
After re-cooling, the half-width of PHB holes increases less,
It can be seen that it has excellent thermal stability.

実施例 3 実施例1と同じ方法で、反応時間を1時間とす
ることにより、スルホン基の導入率がフタロシア
ニン環1個に対して平均1.5個であるスルホン化
フタロシアニンのナトリウム塩を得た。
Example 3 A sodium salt of sulfonated phthalocyanine having an average introduction rate of 1.5 sulfone groups per 1 phthalocyanine ring was obtained by the same method as in Example 1 but with a reaction time of 1 hour.

ポリビニルアルコール(重合度=2000、鹸化度
=100%)10gを蒸溜水100mlに溶解させたのち、
上で得たスルホン化フタロシアニンのナトリウム
塩6.7mgを加えた。これをシヤーレ中で乾燥させ
て、ゲスト濃度10-3M、厚さ0.5mmのフイルムを
得た。
After dissolving 10g of polyvinyl alcohol (degree of polymerization = 2000, degree of saponification = 100%) in 100ml of distilled water,
6.7 mg of the sodium salt of sulfonated phthalocyanine obtained above was added. This was dried in a shear dish to obtain a film with a guest concentration of 10 -3 M and a thickness of 0.5 mm.

このフイルムを液体ヘリウム温度まで冷却後、
波長670nm、強度1mW/cm2のレーザー光を1
分間照射することによりPHBホールを形成する
ことができた。
After cooling this film to liquid helium temperature,
1 laser beam with a wavelength of 670 nm and an intensity of 1 mW/cm 2
PHB holes could be formed by irradiation for minutes.

実施例 4 実施例1と同じスルホン化フタロシアニンのナ
トリウム塩8.2mgを蒸溜水100mlに溶解させた後、
ポリスチレンスルホン酸ナトリウム10gを加え
た。これをシヤーレ中で乾燥させて、ゲスト濃度
10-3M、厚さ0.5mmのフイルムを得た。
Example 4 After dissolving 8.2 mg of the same sodium salt of sulfonated phthalocyanine as in Example 1 in 100 ml of distilled water,
10 g of sodium polystyrene sulfonate was added. This is dried in a shear dish and the guest concentration is
A film of 10 -3 M and a thickness of 0.5 mm was obtained.

このフイルムを液体ヘリウム温度まで冷却後、
波長670nm、強度1mW/cm2のレーザー光を1
分間照射することによりPHBホールを形成する
ことができた。
After cooling this film to liquid helium temperature,
1 laser beam with a wavelength of 670 nm and an intensity of 1 mW/cm 2
PHB holes could be formed by irradiation for minutes.

実施例 5 実施例3と同じスルホン化フタロシアニンのナ
トリウム塩4mgを、テトラメトキシシラン(信越
化学工業製)10ml、メタノール20mlおよび水20ml
の混合溶液に溶解したのち、0.1Nアンモニア水
0.5mlを触媒としてゲル化させた。これをシヤー
レ中で乾燥させて厚さ0.5mmのフイルムにした。
Example 5 4 mg of the same sodium salt of sulfonated phthalocyanine as in Example 3 was added to 10 ml of tetramethoxysilane (manufactured by Shin-Etsu Chemical), 20 ml of methanol, and 20 ml of water.
After dissolving in a mixed solution of
Gelation was carried out using 0.5 ml as a catalyst. This was dried in a shear dish to form a film with a thickness of 0.5 mm.

この試料を液体ヘリウム温度まで冷却後、波長
670nm、強度1m/cm2のレーザー光を30秒間照
射することによりホールを形成することができ
た。
After cooling this sample to liquid helium temperature, the wavelength
Holes could be formed by irradiating a laser beam of 670 nm and intensity of 1 m/cm 2 for 30 seconds.

実施例 6 実施例1と同じスルホン化フタロシアニン4mg
をテトラエトキシシラン(信越化学工業製)10
ml、メタノール20mlおよび水20mlの混合溶液に溶
解したのち、0.1Nアンモニア水0.5mlを触媒とし
てゲル化させた。これをシヤーレ中で乾燥させて
厚さ0.5mmのフイルムにした。
Example 6 4 mg of the same sulfonated phthalocyanine as in Example 1
Tetraethoxysilane (manufactured by Shin-Etsu Chemical) 10
After dissolving in a mixed solution of 20 ml of methanol and 20 ml of water, gelation was performed using 0.5 ml of 0.1N ammonia water as a catalyst. This was dried in a shear dish to form a film with a thickness of 0.5 mm.

この試料を液体ヘリウム温度まで冷却後、波長
670nm、強度1mW/cm2のレーザー光を30秒間
照射することによりホールを形成することができ
た。
After cooling this sample to liquid helium temperature, the wavelength
Holes could be formed by irradiating a laser beam of 670 nm and intensity of 1 mW/cm 2 for 30 seconds.

[本発明の効果] 本発明のフタロシアニン系PHB記録材料は、
従来の光記録媒体に比べて、熱安定性が増大し、
昇温後のホール回復率が高い。
[Effects of the present invention] The phthalocyanine-based PHB recording material of the present invention has the following effects:
Increased thermal stability compared to conventional optical recording media
High hole recovery rate after temperature rise.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は、本発明実施例および比較例の昇温、再
冷却後のPHBホールの半値幅の増加量を図示し
たものである。 実施例1の結果を○、実施例2を△、比較例1
を●で示した。
The drawings illustrate the amount of increase in the half-width of PHB holes after heating and recooling in Examples and Comparative Examples of the present invention. The result of Example 1 is ○, Example 2 is △, Comparative Example 1
is indicated by ●.

Claims (1)

【特許請求の範囲】 1 ゲスト成分とホスト成分を主成分としてなる
組成物であつて、 (イ) ゲスト成分がアニオン性基を有するフタロシ
アニン誘導体であり、 (ロ) ホスト成分が、上記のゲスト成分と相溶する
ポリマである ことを特徴とするフタロシアニン系PHB記録材
料。 2 ゲスト成分が、一般式[A] (ただし、式中R1〜R16のうち少なくとも一つ
が、アニオン性基であり、残りは水素である。)
で表されるフタロシアニン誘導体であることを特
徴とする請求項1記載のフタロシアニン系PHB
記録材料。
[Scope of Claims] 1. A composition comprising a guest component and a host component as main components, wherein (a) the guest component is a phthalocyanine derivative having an anionic group, and (b) the host component is the above-mentioned guest component. A phthalocyanine-based PHB recording material characterized by being a polymer that is compatible with. 2 The guest component has the general formula [A] (However, in the formula, at least one of R 1 to R 16 is an anionic group, and the rest are hydrogen.)
The phthalocyanine-based PHB according to claim 1, which is a phthalocyanine derivative represented by
Recording materials.
JP63119278A 1988-05-18 1988-05-18 Phthalocyanine type recording material Granted JPH01291246A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63119278A JPH01291246A (en) 1988-05-18 1988-05-18 Phthalocyanine type recording material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63119278A JPH01291246A (en) 1988-05-18 1988-05-18 Phthalocyanine type recording material

Publications (2)

Publication Number Publication Date
JPH01291246A JPH01291246A (en) 1989-11-22
JPH0529898B2 true JPH0529898B2 (en) 1993-05-06

Family

ID=14757424

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63119278A Granted JPH01291246A (en) 1988-05-18 1988-05-18 Phthalocyanine type recording material

Country Status (1)

Country Link
JP (1) JPH01291246A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69212861T2 (en) * 1991-03-01 1997-01-23 Toray Industries Optical recording material

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6132051A (en) * 1984-07-23 1986-02-14 Nippon Telegr & Teleph Corp <Ntt> Wavelength selecting optical storage material
JPS61146595A (en) * 1984-12-20 1986-07-04 バスフ アクチェン ゲゼルシャフト Medium for optical recording
JPS61154888A (en) * 1984-12-18 1986-07-14 インペリアル・ケミカル・インダストリーズ・ピー・エル・シー Optical record medium

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6132051A (en) * 1984-07-23 1986-02-14 Nippon Telegr & Teleph Corp <Ntt> Wavelength selecting optical storage material
JPS61154888A (en) * 1984-12-18 1986-07-14 インペリアル・ケミカル・インダストリーズ・ピー・エル・シー Optical record medium
JPS61146595A (en) * 1984-12-20 1986-07-04 バスフ アクチェン ゲゼルシャフト Medium for optical recording

Also Published As

Publication number Publication date
JPH01291246A (en) 1989-11-22

Similar Documents

Publication Publication Date Title
US20100055448A1 (en) Multiphoton absorption functional material, composite layer having multiphoton absorption function and mixture, and optical recording medium, photoelectric conversion element, optical control element, and optical modeling system using the same
US5051337A (en) Optical recording material
JPH0730262B2 (en) Face fee
JPS59169896A (en) Binder
JPH0529898B2 (en)
JP2689582B2 (en) Porphyrin-based recording material
JP3720277B2 (en) Polymer photoresponsive material and photoresponsive device using photoinduced electron transfer reaction
EP0051283B1 (en) Optical recording medium and method for its formation
JP3223456B2 (en) Optical recording material
JPH0132794B2 (en)
KR920006313B1 (en) Optical information recording media and optical recording method
JP5343479B2 (en) Two-photon absorbing organic materials and their applications
JPH0545933B2 (en)
JPH01152452A (en) Fluoresceine recording material
JPH0529899B2 (en)
EP0501515B1 (en) Optical recording material
JPS63296986A (en) Optical recording medium and recording method
JPH0545934B2 (en)
JPH0511403A (en) Porphine type recording material
Ushamani et al. Optimization of pH and direct imaging conditions of complexed methylene blue sensitized poly (vinyl chloride) films
JP2701230B2 (en) WDM recording material
JPS63135937A (en) Optical recording medium and optical recording and reproducing method
Friend et al. Multifunctional organic-inorganic nanocomposites for photonics
JPS6241083A (en) Optical memory material
JPS639578A (en) Optical recording medium

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term