JPH01291246A - Phthalocyanine type recording material - Google Patents

Phthalocyanine type recording material

Info

Publication number
JPH01291246A
JPH01291246A JP63119278A JP11927888A JPH01291246A JP H01291246 A JPH01291246 A JP H01291246A JP 63119278 A JP63119278 A JP 63119278A JP 11927888 A JP11927888 A JP 11927888A JP H01291246 A JPH01291246 A JP H01291246A
Authority
JP
Japan
Prior art keywords
guest
phthalocyanine
component
recording material
anionic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63119278A
Other languages
Japanese (ja)
Other versions
JPH0529898B2 (en
Inventor
Kazuhiko Kominami
一彦 小南
Kazuaki Sakota
和彰 迫田
Masao Iwamoto
昌夫 岩本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP63119278A priority Critical patent/JPH01291246A/en
Publication of JPH01291246A publication Critical patent/JPH01291246A/en
Publication of JPH0529898B2 publication Critical patent/JPH0529898B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/06Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being organic
    • G03G5/07Polymeric photoconductive materials
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/06Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being organic
    • G03G5/0664Dyes
    • G03G5/0696Phthalocyanines

Abstract

PURPOSE:To obtain the title material having thermal stability by using an anionic phthalocyanine for a photoreactive guest compd. and a polymer which is compatible with a guest compd. for a host component, respectively. CONSTITUTION:The guest component is mainly composed of phthalocyanine derivatives having an anionic group, and the host component is mainly composed of the polymer which is compatible with the guest component. Accordingly, as an anionic porphin and the polymer having strong polarity have an electrostatic correlation, the affinity between the guest and the host components is improved, and the irreversible structure change of the recording material is reduced at the time of rising a temp. Thus, the increase of half-width of a hole formed in the absorption spectrum of the recording material is controlled, and the thermal stability of the recording material is improved.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、光化学ホールバーニング現象を利用して、同
一材料の同一場所に異なる波長の光で多重に記録可能な
光記録材料に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to an optical recording material that is capable of multiplex recording with light of different wavelengths at the same location on the same material by utilizing the photochemical hole burning phenomenon. .

[従来の技術] 光、化学ホールバーニング(PH8>現象は、液体ヘリ
ウム温度程度の極低温において光化学反応を起こす材料
に単色性の良い光を照射することにより、その光を吸収
するゲスト分子のみを選択的に励起し、光化学変化を生
じさせるものである。
[Conventional technology] Photochemical hole burning (PH8> phenomenon) is a method of irradiating monochromatic light onto a material that undergoes a photochemical reaction at an extremely low temperature, about the temperature of liquid helium. It selectively excites and causes photochemical changes.

この光化学変化により材料の吸収スペクトルに鋭いホー
ルが形成できることから、ホールの有無によりフォトン
モードでの光記録か可能である。しかも、照射する光の
波長を変えて順次記録することにより、同一材料の同一
場所に波長多重記録を行うことができる。このPHB現
象を利用すると、従来用いられてきた光学式デジタル記
録媒体であるコンパクトディスクやレーザーディスクな
どに比べて約1060倍の記録密度向上の可能性がある
Because this photochemical change can form sharp holes in the material's absorption spectrum, optical recording in photon mode is possible depending on the presence or absence of holes. Furthermore, by sequentially recording while changing the wavelength of the irradiated light, wavelength multiplexing recording can be performed at the same location on the same material. By utilizing this PHB phenomenon, there is a possibility of improving the recording density by about 1060 times compared to conventionally used optical digital recording media such as compact discs and laser discs.

このようなF)HB現象を用いる光記録材料は、光反応
性化合物であるゲスト分子と、それを分散するためのホ
ストとから構成される。光記録に際して波長多重度を大
きくするためには、ゲストの分散状態に多様性を持たせ
る意味から、ホストとして非晶質を用いるのがよい。こ
の目的から、従来ホストにはポリマやケイ酸ガラス等が
用いられてきた。例えば、ゲストをテトラフェニルポル
フィン、ホストをポリメチルメタクリレートとする材料
(光学、14 (4)263−269>や、ゲストをキ
ニザリン、ホストをケイ酸ガラスとする材料(Jour
nal of Applied Physics、 5
8(9)3559−3565 )などが知られている。
An optical recording material using such F)HB phenomenon is composed of guest molecules, which are photoreactive compounds, and a host for dispersing the guest molecules. In order to increase the wavelength multiplicity during optical recording, it is preferable to use an amorphous host as a host in order to provide diversity in the dispersion state of the guest. For this purpose, polymers, silicate glass, and the like have conventionally been used as hosts. For example, there is a material in which the guest is tetraphenylporphine and the host is polymethyl methacrylate (Optics, 14 (4) 263-269), and a material in which the guest is quinizarin and the host is silicate glass (Jour
nal of Applied Physics, 5
8 (9) 3559-3565), etc. are known.

E本発明が解決しようとする課題] しかしながら、PH8現象は液体ヘリウム温度よりも高
温になると不安定になり、記録の保存・読出しが不確実
となるという欠点を有していた。
E. Problems to be Solved by the Present Invention] However, the PH8 phenomenon becomes unstable when the temperature is higher than the liquid helium temperature, and has the disadvantage that storage and reading of records becomes uncertain.

これは、PHB材料中において不可逆的な構造変化が熱
的に誘起され、各々のゲスト分子周辺のミクロ構造が異
なってしまうことに一因がある。
One reason for this is that irreversible structural changes are thermally induced in the PHB material, resulting in different microstructures around each guest molecule.

本発明は、かかる従来技術の欠点を解やしようとするも
のであり、光反応性ゲスト化合物としてアニオン性フタ
ロシアニンを、ホスト成分としてゲスト成分と相溶する
ポリマを用いることによって熱的な不可逆変化を抑え、
熱的に安定な記録材料を提供することを目的とする。
The present invention aims to solve the drawbacks of the prior art, and uses an anionic phthalocyanine as a photoreactive guest compound and a polymer that is compatible with the guest component as a host component to prevent irreversible thermal changes. suppress,
The purpose is to provide a thermally stable recording material.

[課題を解決するための手段] 上記目的を達成するために本発明は、下記の゛構成を有
する。
[Means for Solving the Problems] In order to achieve the above object, the present invention has the following configuration.

[ゲスト成分とホスト成分を主成分としてなる組成物で
あって、 (イ)ゲスト成分がアニオン性基を有するフタロシアニ
ン誘導体であり、 (ロ)ホスl−成分が、上記のゲスト成分と相溶するポ
リマである ことを特徴とするフタロシアニン系記録材料。」すなわ
ち、従来のポルフィン系ゲストを用いた記録材料と比べ
、アニオン性基を有するフタロシアニン誘導体とゲスト
成分と相溶するポリマとからなる材料の場合には、アニ
オン性ポルフィンと極性の強いポリマとの静電相互作用
のためにゲスト・ホスト間の親和性がよく、したがって
、昇温時の不可逆的な構造変化が少なくなると推定され
る。この結果、材料の吸収スペクトルに形成されたホー
ルの半値幅の増大が抑制され、記録の熱安定性が向上す
る。
[A composition comprising a guest component and a host component as main components, wherein (a) the guest component is a phthalocyanine derivative having an anionic group, and (b) the phos l-component is compatible with the above guest component. A phthalocyanine recording material characterized by being a polymer. In other words, compared to recording materials using conventional porphine-based guests, in the case of materials made of phthalocyanine derivatives having anionic groups and polymers that are compatible with the guest components, the combination of anionic porphins and highly polar polymers It is presumed that there is good affinity between the guest and host due to electrostatic interactions, and therefore, irreversible structural changes upon heating are reduced. As a result, an increase in the half width of a hole formed in the absorption spectrum of the material is suppressed, and the thermal stability of recording is improved.

本発明におけるアニオン性基を有するフタロシアニン誘
導体としては、アニオン性基を有していればよいが、下
記一般式[Aコ (ただし、式中R1〜R16のうち少なくとも一〇はア
ニオン性基であり、残りは水素である。)で表されるフ
タロシアニン誘導体が好ましく用いられる。また、アニ
オン性基としては、メチレン鎖や芳香環に803−基、
CO2−基、〇−基などが結合したのでもよいが、とく
に503−1c、o2−基、〇−基などがフタロシアニ
ン環に直接結合したものが好ましく用いられる。これは
、回転しやすいメチレン鎖なとがないため、ホストに分
散したときの運動の自由度が小さく、低温での不可逆的
構造変化が小さいからと考えられる。特に、503−基
は、極性が大きり1.ホストとの静電相互作用が大きい
ため、アニオン性基として好ましい。
The phthalocyanine derivative having an anionic group in the present invention may have an anionic group, but the following general formula [A] (wherein at least 10 of R1 to R16 are anionic groups , the remainder is hydrogen) is preferably used. In addition, as anionic groups, 803-groups on methylene chains and aromatic rings,
Although CO2- group, 0- group, etc. may be bonded, those in which 503-1c, o2- group, 0- group, etc. are bonded directly to the phthalocyanine ring are particularly preferably used. This is thought to be because there is no methylene chain that is easy to rotate, so the degree of freedom of movement when dispersed in the host is small, and irreversible structural changes at low temperatures are small. In particular, the 503- group has a large polarity and 1. It is preferred as an anionic group because it has a large electrostatic interaction with the host.

このアニオン性フタロシアニン誘導体は材料中では適当
なカチオンとともに存在する。カチオンの選択はホスト
成分、であるポリマとの相溶性の観点からなされるべき
ものであるが、アルカリ金属イオン、アルカリ土類金属
イオン、アンモニウムイオン、水素イオンなどが好まし
く用いられる。
This anionic phthalocyanine derivative is present in the material together with a suitable cation. The selection of cations should be made from the viewpoint of compatibility with the polymer, which is the host component, and alkali metal ions, alkaline earth metal ions, ammonium ions, hydrogen ions, etc. are preferably used.

カチオンの数は、アニオン性フタロシアニン誘導体の負
電荷を中和するのに必要な数だけあればよく、カチオン
は上記の混合物であってもよい。
The number of cations may be as many as necessary to neutralize the negative charge of the anionic phthalocyanine derivative, and the cations may be a mixture of the above.

一般式[A]で表されるアニオン性フタロシアニン誘導
体は次に示す二つの方法で得られる。まず、フタロシア
ニンを多塩基酸と反応させ、アニオン性基を直接導入す
る方法がある。たとえば、フタロシアニンを発煙硫酸で
スルホン化する。対カチオンが水素イオンの場合にはそ
のまま用い、他の対カチオンの場合には、水酸化ナトリ
ウム水溶液のように適当なカチオンを含むアルカリ水溶
液で中和して得られる。また、アニオン性基となり得る
官能基を有するフタロニトリルを環化反応させたのち、
適当なカチオンを含むアルカリ水溶液で中和して得る方
法もある。
The anionic phthalocyanine derivative represented by the general formula [A] can be obtained by the following two methods. First, there is a method of directly introducing an anionic group by reacting phthalocyanine with a polybasic acid. For example, phthalocyanine is sulfonated with fuming sulfuric acid. When the counter cation is a hydrogen ion, it is used as it is, and when it is another counter cation, it can be obtained by neutralizing it with an aqueous alkaline solution containing an appropriate cation, such as an aqueous sodium hydroxide solution. In addition, after cyclizing phthalonitrile that has a functional group that can become an anionic group,
There is also a method of neutralizing with an alkaline aqueous solution containing an appropriate cation.

本発明におけるポリマは、ゲスト成分であるアニオン性
フタロシアニン誘導体と相溶するものでればどのような
ものでもよく、有機ポリマであっても、無機ポリマであ
ってもよいが、有機ポリマとしては、ポリエチレンオキ
サイド、ポリビニルピリジン、ポリビニルピロリドン、
ポリヒドロキシエチルメタクリレート、ポリメタクリル
酸、ポリアクリル酸、ポリメタクリルアミド、ポリアク
リルアミド、セルロースアセテート、ポリビニルスルホ
ン酸ナトリウムなどの水溶性ポリマが好ましく用いられ
、特に好ましくは、ポリビニルアルコール、または、ポ
リスチレンスルホン酸ナトリウムが用いられる。ゲスト
成分であるアニオン性フタロシアニン誘導体は極性溶媒
に可溶であるので、これらの水溶性ポリマとも相溶し、
分散が容易だからである。特に、ポリビニルアルコール
は強い水素結合性を有するので低温において熱的な構造
変化を起こしにくいと推定されること、また、ポリスチ
レンスルホン酸ナトリウムは側鎖にベンゼン環を有する
のでゲストであるアニオン性フタロシアニン誘導体との
親和性が高いことから、ホスト成分としては最も好まし
い。
The polymer in the present invention may be any polymer as long as it is compatible with the anionic phthalocyanine derivative that is the guest component, and may be an organic polymer or an inorganic polymer. polyethylene oxide, polyvinylpyridine, polyvinylpyrrolidone,
Water-soluble polymers such as polyhydroxyethyl methacrylate, polymethacrylic acid, polyacrylic acid, polymethacrylamide, polyacrylamide, cellulose acetate, and sodium polyvinylsulfonate are preferably used, particularly preferably polyvinyl alcohol or sodium polystyrenesulfonate. is used. Since the anionic phthalocyanine derivative that is the guest component is soluble in polar solvents, it is also compatible with these water-soluble polymers.
This is because it is easy to disperse. In particular, since polyvinyl alcohol has strong hydrogen bonding properties, it is presumed that it is unlikely to undergo thermal structural changes at low temperatures.Also, sodium polystyrene sulfonate has a benzene ring in its side chain, so it can be used as a guest anionic phthalocyanine derivative. It is most preferable as a host component because of its high affinity with.

また無機ポリマとしては、好ましい例としてケイ酸カラ
スが挙げられる。ケイ酸ガラスとしては、ゲスト成分で
あるアニオン性フタロシアニン誘導体と相溶するもので
あればよいが、ケイ酸ガラスのモノマ溶液にゲスト化合
物が分散でき、しかも、その分散状態が弱酸あるいは弱
塩基による重合反応においても損なわれないことから、
テトラメI〜キシシランあるいはテ1〜ラエトキシシラ
ンから合成したケイ酸カラスか好ましく用いられる。
A preferred example of the inorganic polymer is silicate glass. The silicate glass may be one that is compatible with the anionic phthalocyanine derivative that is the guest component, but the guest compound can be dispersed in the silicate glass monomer solution, and the dispersion state is polymerized by a weak acid or weak base. Because it is not damaged in the reaction,
Silicate glass synthesized from tetramethoxysilane or tetramethoxysilane is preferably used.

本発明の光記録材料中におけるゲスト成分の濃度として
は、高すぎるとゲスト分子間でのエネルギ移動によりホ
ール生成特性が劣化し、また、低すぎると記録読取時の
S/N比が小さくなることから、制限を受(プる。した
がって、好ましいゲスト濃度はホストであるケイ酸ガラ
スの体積を基準として10−1〜10−6Mであり、特
に、]O−2〜10−”Mであることが好ましい。
Regarding the concentration of the guest component in the optical recording material of the present invention, if it is too high, hole generation characteristics will deteriorate due to energy transfer between guest molecules, and if it is too low, the S/N ratio during recording and reading will decrease. Therefore, the preferred guest concentration is from 10-1 to 10-6M, in particular from ]0-2 to 10-''M, based on the volume of the host silicate glass. is preferred.

また、本発明の記録祠料には、アニオン性フタロシアニ
ンの吸収帯に重なる吸収帯をもたない安定剤などの添加
物を加えてもよいか、ゲス!〜成分とホスト成分が主成
分として、全体の95%以上含まれていることが好まし
い。これは、添加物によって、ホスト・ゲスト間の相互
作用が損なわれないようにするためである。
In addition, it is possible to add additives such as stabilizers that do not have an absorption band that overlaps with the absorption band of anionic phthalocyanine to the recording material of the present invention. It is preferable that 95% or more of the total component is comprised of the component ~ and the host component as main components. This is to prevent the interaction between host and guest from being impaired by the additive.

[実施例] 以下に、実施例に基づいてさらに詳細に説明するが、本
発明はこれに限定されるものではない。
[Example] The present invention will be described in more detail based on Examples below, but the present invention is not limited thereto.

(実施例1) フタロシアニン4.2gに60%発煙硫酸100…1を
滴下して24時間反応させたのち、水中に反応混合物を
注ぎ、結晶を析出させた。この結晶を分離して水酸化ナ
トリウム水溶液で中和し、スルホン化フタロシアニンの
ナトリウム塩を得た。
(Example 1) After dropping 100...1 of 60% oleum into 4.2 g of phthalocyanine and reacting for 24 hours, the reaction mixture was poured into water to precipitate crystals. The crystals were separated and neutralized with an aqueous sodium hydroxide solution to obtain the sodium salt of sulfonated phthalocyanine.

元素分析によれば、スルホン基の導入率はフタロシアニ
ン環1個に対して平均3個であった。
According to elemental analysis, the average rate of introduction of sulfone groups was 3 per 1 phthalocyanine ring.

ポリビニルアルコール(重合度−2000,鹸化度−1
00%>IOgを蒸溜水100m1に溶解させた後、上
で得たスルホン化フタロシアニンのす1〜リウム塩8.
2mgを加えた。この溶液をシャーレ中で乾燥して、ゲ
スト濃度10−3M、厚さ0゜5mmのフィルムを得た
Polyvinyl alcohol (degree of polymerization -2000, degree of saponification -1
00%> After dissolving IOg in 100 ml of distilled water, the sulfonated phthalocyanine salt obtained above8.
2 mg was added. This solution was dried in a petri dish to obtain a film with a guest concentration of 10-3M and a thickness of 0.5 mm.

このフィルムを液体ヘリウム温度まで冷却後、波長67
0 nm、強度1 mW/−のレーザー光を1分間照射
してP l−I Bホールを形成した。この後、フィル
ムを所定の温度まで昇温し、再び液体ヘリウム温度まで
冷却してPH8ホールの半値幅を測定した。
After cooling this film to liquid helium temperature, the wavelength of 67
A laser beam of 0 nm and an intensity of 1 mW/- was irradiated for 1 minute to form a Pl-IB hole. Thereafter, the film was heated to a predetermined temperature, cooled again to liquid helium temperature, and the half width of the PH8 hole was measured.

その結果を図面に示す。図面は、横軸に示された温度ま
で昇温し、再冷却下後のホールの半値幅から、レーザー
光を照射した直後のホールの半値幅を引去った値を図示
したものである。実施例1の試料を用いた場合を、○で
つないだ曲線で示した。
The results are shown in the drawing. The figure shows the value obtained by subtracting the half-width of the hole immediately after laser beam irradiation from the half-width of the hole after the temperature is raised to the temperature shown on the horizontal axis and recooled. The case where the sample of Example 1 was used is shown by a curve connected with circles.

(実施例2) 実施例1と同じスルホン化フタロシアニンのナトリウム
塩4moを、テトラメトキシシラン(信越化学工業製)
 10ml、メタノール20m1および水20m1の混
合溶液に溶解したのち、0.1Nアンモニア水0.5m
lを触媒としてゲル化させた。これをシャーレ中で乾燥
させて厚さQ、5mmのフィルムにした。
(Example 2) 4 mo of the same sodium salt of sulfonated phthalocyanine as in Example 1 was added to tetramethoxysilane (manufactured by Shin-Etsu Chemical).
10 ml, dissolved in a mixed solution of 20 ml of methanol and 20 ml of water, and then 0.5 ml of 0.1N ammonia water.
1 was used as a catalyst for gelation. This was dried in a petri dish to form a film having a thickness of Q and 5 mm.

この試料を液体ヘリウム温度まで冷却後、波長670 
nm、強度1mW/cnfのレーザー光を1分間照射し
てPHBホールを形成した。この後、フィルムを所定の
温度まで昇温し、再び液体ヘリウム温度まで冷却してP
HBホールの半値幅を測定した。
After cooling this sample to liquid helium temperature,
A PHB hole was formed by irradiation with a laser beam of 1 mW/cnf and an intensity of 1 mW/cnf for 1 minute. After this, the film is heated to a predetermined temperature, cooled again to liquid helium temperature, and P
The half width of the HB hole was measured.

その結果を図面中、Δでつないだ曲線で示した。The results are shown in the drawing by curves connected by Δ.

(比較例1) アイツタクチイックポリメチルメタクリレート(重合度
=400000>10CIをトルエン120m1に溶解
させた後、5.10.15.20−テトラフェニルポル
フィン61 m(Jを加えた。この溶液をシャーレ中で
乾燥させることにより、ゲスト濃度10−2M1厚さ0
.5…mのフィルムを作り、これを対照試料とした。波
長645nmのレーザー光を用いて、上と同様にして液
体ヘリウム温度でPH8ホールを形成した後、フィルム
を所定の温度まで昇温し、再び液体ヘリウム温度まで冷
却してPH8ホールの半値幅を測定した。
(Comparative Example 1) After dissolving autactic polymethyl methacrylate (degree of polymerization = 400000>10CI) in 120 ml of toluene, 61 ml of 5.10.15.20-tetraphenylporphine (J) was added. Guest concentration 10-2M1 thickness 0
.. A 5 m film was made and used as a control sample. After forming a PH8 hole at liquid helium temperature using a laser beam with a wavelength of 645 nm in the same manner as above, the film was heated to a predetermined temperature, cooled to liquid helium temperature again, and the half-width of the PH8 hole was measured. did.

その結果を図面中、・でつないだ曲線で示した。The results are shown in the drawing by curves connected by .

実施例1および実施例2の試料の方が昇温、再冷却後の
P HBホールの半値幅の増大が少なく、熱安定性に優
れていることがわかる。
It can be seen that the samples of Examples 1 and 2 show less increase in the half-width of PHB holes after heating and recooling, and are superior in thermal stability.

(実施例3)  12 一 実施例1と同じ方法で、反応時間を1時間とすることに
より、スルホン基の導入率がフタロシアニン環1個に対
して平均1.5個であるスルホン化フタロシアニンのナ
トリウム塩を得た。
(Example 3) 12 A sodium sulfonated phthalocyanine having an average introduction rate of 1.5 sulfonic groups per 1 phthalocyanine ring was obtained by using the same method as in Example 1 and setting the reaction time to 1 hour. Got salt.

ポリビニルアルコール(重合度=2000、鹸化度=1
00%)10CIを蒸溜水100m1に溶解させたのち
、上で得たスルボン化フタロシアニンのナトリウム塩6
.7mClを加えた。これをシャーレ中で乾燥させて、
ゲスト濃度10−3M、厚さ0゜5mmのフィルムを得
た。
Polyvinyl alcohol (degree of polymerization = 2000, degree of saponification = 1
00%) 10CI in 100 ml of distilled water, the sodium salt of sulfonated phthalocyanine obtained above 6
.. 7mCl was added. Dry this in a petri dish,
A film with a guest concentration of 10-3M and a thickness of 0.5 mm was obtained.

このフィルムを液体ヘリウム温度まで冷却後、波長67
0nm、強度1 mW/−のレーザー光を1分間照射す
ることによりPHE3ホールを形成することができた。
After cooling this film to liquid helium temperature, the wavelength of 67
PHE3 holes were able to be formed by irradiation with a laser beam of 0 nm and intensity of 1 mW/- for 1 minute.

(実施例4) 実施例1と同じスルホン化フタロシアニンのナトリウム
塩8.2mgを蒸溜水’100m+に溶解させた後、ポ
リスチレンスルホン酸ナトリウム10Qを加えた。これ
をシャーレ中で乾燥させて、ゲスト濃度10’M、厚ざ
O,’5mのフィルムを得た。
(Example 4) After dissolving 8.2 mg of the same sodium salt of sulfonated phthalocyanine as in Example 1 in distilled water '100m+, sodium polystyrene sulfonate 10Q was added. This was dried in a petri dish to obtain a film with a guest concentration of 10'M and a thickness of 0'5 m.

このフィルムを液体ヘリウム温度まで冷却後、波長67
0nm、強度1 mW/−のレーザー光を1分間照射す
ることによりPHBホールを形成することができた。
After cooling this film to liquid helium temperature, the wavelength of 67
PHB holes were able to be formed by irradiation with laser light of 0 nm and intensity of 1 mW/- for 1 minute.

(実施例5) 実施例3と同じスルホン化フタロシアニンのナトリウム
塩4m(lを、テトラメトキシシラン(信越化学工業製
> 101111、メタノール20m1および水20m
1の混合溶液に溶解したのち、0.INアンモニア水0
.5mlを触媒としてゲル化させた。これをシャーレ中
で乾燥させて厚さQ、5mmのフィルムにした。
(Example 5) 4 ml (l) of the same sodium salt of sulfonated phthalocyanine as in Example 3, tetramethoxysilane (manufactured by Shin-Etsu Chemical > 101111, 20 ml of methanol, and 20 ml of water)
After dissolving in a mixed solution of 0. IN ammonia water 0
.. 5 ml was used as a catalyst to cause gelation. This was dried in a petri dish to form a film having a thickness of Q and 5 mm.

この試料を液体ヘリウム温度まで冷却後、波長670n
m、強度1 mW/−のレーザー光を30秒間照射する
ことによりホールを形成することができた。
After cooling this sample to liquid helium temperature, the wavelength was 670n.
A hole could be formed by irradiating a laser beam with an intensity of 1 mW/- for 30 seconds.

(実施例6) 実施例1と同じスルホン化フタロシアニン4maをテト
ラエトキシシラン(信越化学工業製)10m1、メタノ
ール20m1および水20m1の混合溶液に溶解したの
ち、0.1Nアンモニア水0.5mlを触媒としてゲル
化させJJoこれをシレーレ中で乾燥させて厚さQ、5
mmのフィルムにした。
(Example 6) After dissolving 4 ma of the same sulfonated phthalocyanine as in Example 1 in a mixed solution of 10 ml of tetraethoxysilane (manufactured by Shin-Etsu Chemical), 20 ml of methanol and 20 ml of water, 0.5 ml of 0.1N ammonia water was used as a catalyst. Gel it and dry it in a shillel to a thickness of Q, 5.
It was made into a film of mm.

この試料を液体ヘリウム温度まで冷却後、波長67Qn
m、強度1mW/−のレーザー光を30秒間照躬するこ
とによりホールを形成することができた。
After cooling this sample to liquid helium temperature, the wavelength was 67Qn.
A hole could be formed by irradiating the sample with a laser beam having an intensity of 1 mW/- for 30 seconds.

L本発明の効果] 本発明のフタロシアニン系記録材料は、従来の光記録媒
体に比べて、熱安定性が増大し、昇温後のホール回復率
が高い。
L Effects of the Present Invention] The phthalocyanine recording material of the present invention has increased thermal stability and high hole recovery rate after temperature rise, compared to conventional optical recording media.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は、本発明実施例および比較例の昇温、再冷却後の
P l−I Bホールの半値幅の増加量を図示したもの
である。 実施例1の結果を○、実施例2を△、比較例1を・で示
した。
The drawings illustrate the amount of increase in the half-width of P l-I B holes after heating and recooling in the examples of the present invention and the comparative examples. The results of Example 1 are shown as ◯, Example 2 as △, and Comparative Example 1 as .

Claims (2)

【特許請求の範囲】[Claims] (1)ゲスト成分とホスト成分を主成分としてなる組成
物であって、 (イ)ゲスト成分がアニオン性基を有するフタロシアニ
ン誘導体であり、 (ロ)ホスト成分が、上記のゲスト成分と相溶するポリ
マである ことを特徴とするフタロシアニン系記録材料。
(1) A composition comprising a guest component and a host component as main components, (a) the guest component is a phthalocyanine derivative having an anionic group, and (b) the host component is compatible with the above guest component. A phthalocyanine recording material characterized by being a polymer.
(2)ゲスト成分が、一般式[A] ▲数式、化学式、表等があります▼[A] (ただし、式中R_1〜R_1_6のうち少なくとも一
つがアニオン性基であり、残りは水素である。)で表さ
れるフタロシアニン誘導体であることを特徴とする請求
項(1)記載のフタロシアニン系記録材料。
(2) The guest component has the general formula [A] ▲ There are mathematical formulas, chemical formulas, tables, etc. ▼ [A] (However, in the formula, at least one of R_1 to R_1_6 is an anionic group, and the rest are hydrogen. 2. The phthalocyanine-based recording material according to claim 1, which is a phthalocyanine derivative represented by:
JP63119278A 1988-05-18 1988-05-18 Phthalocyanine type recording material Granted JPH01291246A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63119278A JPH01291246A (en) 1988-05-18 1988-05-18 Phthalocyanine type recording material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63119278A JPH01291246A (en) 1988-05-18 1988-05-18 Phthalocyanine type recording material

Publications (2)

Publication Number Publication Date
JPH01291246A true JPH01291246A (en) 1989-11-22
JPH0529898B2 JPH0529898B2 (en) 1993-05-06

Family

ID=14757424

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63119278A Granted JPH01291246A (en) 1988-05-18 1988-05-18 Phthalocyanine type recording material

Country Status (1)

Country Link
JP (1) JPH01291246A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5306599A (en) * 1991-03-01 1994-04-26 Toray Industries, Inc. Optical recording material

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6132051A (en) * 1984-07-23 1986-02-14 Nippon Telegr & Teleph Corp <Ntt> Wavelength selecting optical storage material
JPS61146595A (en) * 1984-12-20 1986-07-04 バスフ アクチェン ゲゼルシャフト Medium for optical recording
JPS61154888A (en) * 1984-12-18 1986-07-14 インペリアル・ケミカル・インダストリーズ・ピー・エル・シー Optical record medium

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6132051A (en) * 1984-07-23 1986-02-14 Nippon Telegr & Teleph Corp <Ntt> Wavelength selecting optical storage material
JPS61154888A (en) * 1984-12-18 1986-07-14 インペリアル・ケミカル・インダストリーズ・ピー・エル・シー Optical record medium
JPS61146595A (en) * 1984-12-20 1986-07-04 バスフ アクチェン ゲゼルシャフト Medium for optical recording

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5306599A (en) * 1991-03-01 1994-04-26 Toray Industries, Inc. Optical recording material

Also Published As

Publication number Publication date
JPH0529898B2 (en) 1993-05-06

Similar Documents

Publication Publication Date Title
US5051337A (en) Optical recording material
JPH01291246A (en) Phthalocyanine type recording material
JP2689582B2 (en) Porphyrin-based recording material
JP3720277B2 (en) Polymer photoresponsive material and photoresponsive device using photoinduced electron transfer reaction
JP5343479B2 (en) Two-photon absorbing organic materials and their applications
KR920006313B1 (en) Optical information recording media and optical recording method
JPH01152452A (en) Fluoresceine recording material
JPH0245A (en) Porphin type recording material
JP2701230B2 (en) WDM recording material
JPH0323595A (en) Phthalocyanine recording material
JP3504422B2 (en) Light control method using an optical element comprising a photoresponsive composition containing a triarylmethane dye
JPH0545934B2 (en)
US5306599A (en) Optical recording material
JPH01297292A (en) Porphin-series optical recording material
JPH0451144A (en) Indomethylene dye recording material
JP2006171320A (en) Organic photorefractive material
JPH0511402A (en) Thiazine type recording material
JPH03266830A (en) Optical recording material with multiple wavelength
JPH06175270A (en) Metal porphine type phb recording material
JPS6129838A (en) Optical storage material
JPH0511404A (en) Porphine type optical recording material
JPS63158540A (en) Optical recording material
JPH06258764A (en) Porphinic phb recording material
JP2638762B2 (en) WDM recording material
JP2565242B2 (en) WDM recording material

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term