JPS6131949B2 - - Google Patents

Info

Publication number
JPS6131949B2
JPS6131949B2 JP2422079A JP2422079A JPS6131949B2 JP S6131949 B2 JPS6131949 B2 JP S6131949B2 JP 2422079 A JP2422079 A JP 2422079A JP 2422079 A JP2422079 A JP 2422079A JP S6131949 B2 JPS6131949 B2 JP S6131949B2
Authority
JP
Japan
Prior art keywords
amount
wall thickness
operation amount
heated
correction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP2422079A
Other languages
Japanese (ja)
Other versions
JPS55117891A (en
Inventor
Hideo Takahashi
Shuichi Sato
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2422079A priority Critical patent/JPS55117891A/en
Publication of JPS55117891A publication Critical patent/JPS55117891A/en
Publication of JPS6131949B2 publication Critical patent/JPS6131949B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • General Induction Heating (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

この発明は移動中のパイプを一定温度に加熱す
るための誘導加熱制御方法に関する。 パイプ等の長尺金属材を、その長手方向に移動
させながら均一に加熱する誘導加熱制御方法およ
び装置は多く発表されている。たとえば特公昭42
−13674号には、加熱電源の改良型二位置制御に
よる均一加熱法が開示されている。又特開昭52−
122941号、特開昭52−122942号および特開昭52−
122943号公報には加熱誘導コイルへの供給電力量
の制御装置が開示されている。 しかして、これら公知の電気誘導加熱制御にお
いて、被加熱材の温度を検出し、所定温度になる
まで加熱誘導コイルへの供給電力量を制御するも
ので同一の被加熱材内での制御がなされる。 これら公知の誘導加熱制御においては、与えら
れる制御量が不確実であり、制御過程にある加熱
誘導コイルを出た被加熱材の測定温度によつて制
御の継続がなされる。又これらの誘導加熱にあつ
ては同一被加熱材内での温度制御であるため単純
制御となり、制御精度に未だしの感があつた。 本発明は順次に加熱誘導子コイルに送られる多
くの被加熱材にそれぞれ一定の昇温量を与えるに
おいて、各被加熱材相互間の加熱昇温量のバラツ
キを低減し、被加熱材毎の昇温量を一定値にする
ことを目的とする。 上記目的を達するために本発明においては、ロ
ツト区分毎など1つのグループに属する多数の被
加熱材の誘導子コイルによる誘導加熱において、
該誘導子コイルで既に加熱した前記1グループ内
の被加熱材の、加熱前温度と加熱後温度の差すな
わち実昇温量と目標昇温量の偏差を求めて、この
昇温量偏差に対応する操作量増分に所定の調整ゲ
インを乗じたものを第1の補正量とし、該誘導子
コイルで前回の被加熱材を加熱するために出力さ
れた全操作量を被加熱材の先端から尾端までの任
意に区間において把握してこれらの平均値を求
め、この平均値と前回の初期設定操作量との差に
所定の補正ゲインを乗じたものを第2の補正量と
し、該誘導子コイルで前回加熱した被加熱材に対
する初期設定操作量に第2の補正量あるいは第1
の補正量と第2の補正量の和を加えて加熱制御操
作量を定めるか、あるいは前記1グループ内の全
被加熱材のそれぞれに対して一律に加熱制御操作
量を定めるなどにより、各被加熱材に対して初期
設定操作量を定めた場合に、加熱される鋼管の肉
厚の1本内の平均値を求め、その肉厚平均値と別
に定めた肉厚基準値との差すなわち肉厚偏差に所
定の肉厚補正ゲインを乗じて肉厚による補正量を
求め、今回の被加熱材に予め割り当てられた初期
設定操作量にこの肉厚による補正量を加えて、今
回の被加熱材の設定補正量とする。 被加熱材1本毎の昇温量の変動を発生させる外
乱は連続する被加熱材1本1本で関連をもつてゆ
つくり変化する成分(以後これを周期性成分と呼
ぶ)と、被加熱材1本1本で相互に関連なく変動
する成分(以後これを非周期性成分と呼ぶ)とに
分けられる。外乱の周期性成分によつて起こされ
る昇温量の変動を防止するにおいて、前記初期設
定操作量は該誘導子コイルで前回加熱した被加熱
材に対する初期設定操作量に前記第1の補正量お
よび第2の補正量を加えて定めるのが好ましく、
この場合、第1の補正量を求めるにあたり、前記
昇温量偏差としては既に加熱した複数個の被加熱
材の昇温量偏差を平滑したものが周期性成分に円
滑に対応する上で望ましく、この平滑手法として
は単純平均法、重み付平均法、指数平滑法あるい
はその他の平滑手法を用いるが、多数の被加熱材
の昇温加熱実績を十分反映するにおいて、そして
演算が簡易であるにおいて指数平滑法を用いるの
が好ましい。また前記第1の補正量を求めるにあ
たつての前記調整ゲインは、既に加熱した被加熱
材で生じた昇温量偏差を次に加熱する2本以上の
被加熱材に分散して除去し、これにより1本毎に
急激に操作量が変化し制御が不安定になることを
防止するためのもので、0から1の間の値を与え
るのが望ましい。 前記第2の補正量は前回の被加熱材を加熱する
ために出力された全操作量と補正の基準となる前
回の初期設定操作量との差を今回の操作量設定に
取り入れることによつて外乱の周期性成分に円滑
に対応して、1本毎の昇温量の高低を低減するの
に有効である。ここで全操作量は、本発明による
設定操作量に等しいかあるいは被加熱材1本内に
おいて各部の温度が一定になるように出力される
加熱制御を本発明による制御に併設している場合
には、この加熱制御による操作量修正量を設定操
作量を加えたものである。後者の場合には1本内
で全操作量は変化するので1本内の平均をとる必
要があるが、そのとき平均値は、被加熱材の非定
常部特に先端と尾端の200mm〜1000mmを除いた区
間において求めるのが望ましく、前記第1の補正
量を求める場合の加熱前温度と加熱後温度を求め
るときの温度の平均区間と同じにするのが良い。
また前記第2の補正量を求めるにあたつての補正
ゲインは、前回加熱した被加熱材の各部の加熱制
御による操作量修正量の平均値を次に加熱する2
本以上の被加熱材に分散して、これにより1本毎
に急激に操作量が変化し制御が不安定になること
を防止するためのもので0から1の間の値を与え
るのが望ましい。 次に、外乱の周期性成分のうち比較的速く変化
する分と、外乱の非周期性成分によつて起こされ
る昇温量の変動を防止するにおいて、本発明では
前記設定操作量は、次回加熱される被加熱材の1
本内の肉厚平均値と肉厚基準値との差すなわち肉
厚偏差によつて初期設定操作量を補正して求める
ようにしている。これは昇温量を変動させる外乱
の主たる要因として肉厚平均値の1本毎の変動が
あり、これを取り除くことによつて昇温量変動を
大きく減らすことができるという知見に基づくも
のである。当然外乱の周期性成分の中にも肉厚平
均値の変動によるものが大きく含まれており、初
期設定操作量を前記加熱の1グループ内で一律に
定めた場合でも、本発明による方法は制御効果を
持つている。この肉厚による補正量を求めるにあ
たつての肉厚平均値の求め方は、パイプの全面の
代表点の肉厚を計測してその平均値を算出して求
める方法、パイプの重量(あるいは体績),長さ
および外径を測定して、それらより計算して求め
る方法などがあるが、いずれの方法を用いても良
い。また前記肉厚基準値は初期設定操作量に対応
する肉厚値であり、初期設定操作量を一律に決め
る場合には、それを求めたときに基準とした肉厚
値とし、初期設定操作量を第1の補正量および/
または第2の補正量を逐次加算して決める場合に
はそれに合わせて変化させるものである。たとえ
ば第1の補正量を使う場合で昇温量偏差を平滑し
て求めるときには、同じ平滑の方法を各被加熱材
の肉厚平均値に適用して求めた平滑値を肉厚基準
値とすればよい。また前記肉厚補正ゲインは肉厚
偏差を操作量変化分に換算するもので、主として
外径に依存し、予め外径毎に定めておけばよい。 このような本発明の加熱制御手法は、ロツト毎
に被加熱材のサイズおよび規格に基づいて第1の
加熱供給電力の操作量の設定を行ない、そのロツ
ト内の各被加熱材については、既に加熱した被加
熱材の昇温量実績に基づいて各個の被加熱材につ
いて第2の加熱供給電力の操作量の設定を行な
い、更に各個の被加熱材の各部の加熱制御におい
ては、各部の加熱前の温度と昇温目標値との対応
関係から各部の加熱をしたり、および/または1
個の既に加熱した部分の偏差をもとに残余の部分
の加熱制御をするという、3段階の加熱設定ある
いは加熱制御によりロツト全体、各被加熱材およ
び各被加熱材各部を一定の昇温量に加熱する制御
において、その一部(第2の加熱供給電力の操作
量の設定)として用いるに、特に好適である。 第1図に本発明を実施する装置の一例構成を示
す。第1図において、1,1および1は加
熱誘導子コイルであり、被加熱材であるパイプ3
の移送経路2に沿つて配列されている。4〜4
は温度検出器であり、検出器4,4および
はそれぞれ誘導子コイル1,1および1
の入側において、到来する被加熱材3の温度T
i1,Ti2およびTi3を検出するものであり、検出器
,4および4はそれぞれ誘導子コイル1
,1および1の出側において被加熱材3の
温度Tp1,Tp2およびTp3を検出するものであ
る。これらの温度検出器4〜4の種類は大略
何でもよいが、通常放射温度計を用いる。パイプ
の円周方向に複数個設置する場合にはそれらの検
出温度の平均値を用いる。この実施例において
は、第1の誘導子コイル1は、バラエテイがあ
る入側温度Ti1にもかかわらず出側温度Tp1を常
に一定の目標温度T1に加熱昇温するための、定
温度加熱用として配置されており、第2の誘導子
コイル1は、入側温度Ti2に所定の温度上昇
(T2−T1)を与える定昇温加熱用として用いられ
ており、第3の誘導子コイル1も、入側温度T
i3に所定の温度上昇(T3−T2)を与える定昇温加
熱用として用いられている。これに対応して、各
誘導子コイル1〜1の加熱電力制御をおこな
う加熱制御回路,およびは、ほとんど同じ
構成であるが、定温度加熱用の第1の誘導子コイ
ル1の加熱制御回路は、入側温度Tin1と目
標温度T1との差(T1−Tin1)を1つの入力量と
しているのに対して、定昇温加熱用の第2および
第3の誘導子コイル1および1の加熱制御回
路およびは、それぞれ設定された昇温量
(T2−T1)および(T3−T2)を1つの入力量とし
ている。 加熱制御回路は、入側温度Ti1を表わす電気
信号を連続的あるいは隔時点に取り込んでTi1
時系列の平均値Tin1を表わす信号を出力する、
所定時定数の積分回路などで構成される平均値演
算回路5;同様な構成であつて出側温度Tp1
平均値pn1を表わす信号を出力する平均値演算回
路5;目標温度設定器6(たとえばポテンシ
ヨメータ)よりの、目標温度T1を表わす信号
と、平均値演算回路5よりの入側温度平均値T
in1を表わす信号とを入力とし、(T1−Tin1)なる
温度差を表わす信号を出力する、演算増幅器、差
動増幅器等で構成される昇温量目標値設定回路7
;平均値演算回路5および5のTin1を表
わす信号およびTpn1を表わす信号、ならびに設
定回路7よりの(T1−Tin1)を表わす信号を
入力として、(Tpn1−Tin1)−(T1−Tin1)を表
わす信号、つまり、実平均昇温量(Tpn1−Tin
)の目標昇温量(T1−Tin1)に対する偏差を
表わす信号を出力する、演算増幅器などで構成さ
れる昇温量偏差演算回路8;該演算回路8
出力偏差信号を、被加熱材2本以上たとえば数本
分にわたつて平滑化する平滑回路12;この平
滑値に単位操作量(昇温量を1℃変化させるに必
要な操作量)および調整ゲインを乗じて電力制御
用の操作量変化分(第1の補正量)を表わす信号
に変換する、演算増幅器、函数発生器などで構成
される第1の補正量演算回路9;前回の初期設
定操作量に前記第1の補正量と第2の補正量を加
えて今回の初期設定操作量を出力する、演算増幅
器などで構成される操作量演算回路10;刻々
に変わるパイプの入側温度とその目標温度の差な
どに対応して操作量修正量を出力する1本内制御
回路13;被加熱物の先端および尾端の位置を
把握して、所要の平均区間、演算時点を指示する
パイプ追跡回路14;刻々変化する全操作量を
入力して、全操作量平均値を出力する、5,5
と同じ構成を持つ平均値演算回路15;全操
作量平均値と初期設定操作量の差を求め、これに
所定の補正ゲインを乗じて第2の補正量を出力す
る第2の補正量演算回路16;被加熱物1本毎
の肉厚平均値を測定演算して出力する肉厚平均値
測定回路17;および肉厚平均値を逐次入力して
肉厚基準値を求め、肉厚平均値と肉厚基準値との
差を求め、それに所定の肉厚補正ゲインを乗じて
肉厚による補正量を求め、それに初期設定操作量
を加えて今回の設定操作量(これが供給電力制御
装置11の入力となる)を出力する肉厚補正演
算回路18で構成される。 この加熱制御回路においては、昇温量目標値
設定回路7には、第1の誘導子コイル1の入
側の温度Tin1と目標温度T1が入力され、これに
より(T1−Tin1)が目標昇温量となり、したが
つて、被加熱材3の入側の温度Ti1が様々であつ
ても、出側の温度を目標値T1とする加熱制御が
おこなわれる。 加熱制御回路においては、その昇温量目標値
設定回路7に、ポテンシヨメータなどの目標温
度設定器6および6よりそれぞれ第1および
第2の目標温度T1およびT2を表わす信号が印加
される。したがつて加熱制御回路は、目標昇温
量を(T2−T1)なる固定量とする。したがつて、
加熱制御回路は、入側の温度Ti2が仮に変動し
ても出側の温度が常にTi2+(T2−T1)となるよう
に定昇温量制御をおこなう。加熱制御回路も
と同様に定昇温制御をおこなう。なお、第1図に
おいて、目標温度設定器6,6,6および
がそれぞれ目標温度T1,T2,T2およびT3
表わす信号を出力するように示しているが、これ
は、Tp1=Ti2=T1,Tp2=Ti3=T2と見なし得
ると仮定して一応表示したものであり、これらの
目標温度設定器6〜6はそれぞれ、他の所定
の目標温度を表示する信号を出力するように設定
してもよい。なぜならば、第2の誘導子コイル1
においては、第1の誘導子コイル1の加熱温
度(T1)に対して所定の昇温量Tp1(図示上では
p1=T2−T1)を上乗せ加熱すればよく、また第
3の誘導子コイル1においては、第2の誘導子
コイルの出側の温度(T1+Tp1)に対して所定
の昇温量Tp2(図示上ではTp2=T3−T2)を上乗
せ加熱すればよいからである。この第1図に示す
実施例では最終目標温度はT1+Tp1+Tp2であ
る。なお図示上ではT3であり、T3=T1+Tp1
p2なる関係となる。但し、以上は第1誘導子コ
イル1と第2誘導子コイルの間、および第2誘導
子コイルと第3誘導子コイルの間を被加熱材3が
走行中にその冷却は無いものと仮定した場合であ
る。冷却の影響は目標温度設定器6〜6の設
定値の調整で補償しうる。 次に前述した各構成要素の機能を更に詳細に説
明すると、パイプ追跡回路14は、パイプの先
端の尾端の到来を検出し、それらの間においてパ
イプの移動に対応して定まつたタイミングで信号
を発つし平均区間(サンプリング区間)で平均値
演算回路5,5および15に指示し、ま
た、1本内制御回路13に管端部制御タイミン
グおよび管中央各部の昇温量偏差に基づいた操作
量修正の演算タイミングを指示する。1本内制御
回路13は、パイプ1本内の長さ方向の温度変
動を消去するための制御回路であつて、たとえば
入側温度を入力してその目標値との偏差をとり、
その偏差に一定の係数をかけて操作量修正量を求
めるようなフイードフオワード制御回路、あるい
は、パイプ両端である一定のパターンで操作量修
正量を出力するパターン制御回路などである。こ
れらは1本内で出力の値が変化する。 平均値演算回路5,5および15は、そ
れぞれ温度検出値および各コイルの操作量修正量
をパイプ追跡回路14により指示された区間で
信号入力しその平均値を求める。平均の方法とし
ては区間の信号の積算(あるいは積分)をとりそ
れを積算個数(あるいは積分時間)で割つて求め
る単純平均が良い。平均の区間としては最大はパ
イプの先端から尾端までであるが、両端の非定常
部(200〜1000mm)を除いた部分が望ましい。 昇温量目標値設定回路7は、入側温度平均値
in1(前回の被加熱材のもの)を用い、目標温
度T1との差 θ※=T1−Tin1 =目標昇温量 を表わす信号を出力する。これに対し回路,
,…の昇温量目標値設定回路7,…は、 θ※=T2−T1 =目標昇温量 を表わす信号を出力する。 昇温量偏差演算回路8は、昇温量平均値 θn=Tpn1−Tin1 を求め、更に目標昇温量θ※と昇温量平均値θn
より、昇温量偏差Δθ=θn−θ※を求め、これ
を表わす信号を出力する。 第1の補正量演算回路9と平滑回路12
は、過去2本以上の昇温量偏差を第1の補正量に
反映する方法として、実施例では指数平滑法によ
つて昇温量偏差を求め、これに下記に示すように
所定の係数を剰じて第2の補正量を求めた。この
方法を演算式で示すと次のようになる。 =αΔθ(1−α)′ ;昇温量偏差平滑値 ′=前回の昇温量偏差平滑値 Δθ;前記昇温量偏差 α;指数平滑係数 0<α<1 ΔV1=−a1a2 ΔV1;第1の補正量 a1=前記単位操作量 a2=前記調整ゲイン これらの式の中で、a1は昇温量を1℃増減する
に必要な操作量の増減分であり、パイプサイズそ
の他操業条件によつて変化するもので、予め設定
しておけばよい。従つてa1は昇温量を上
げるために必要な操作量の増分となる。次にa2
偏差分の全部を今回の被加熱材のみで取り除いて
しまおうとすることによつて操作量の変化が激し
くなり制御が不安定になることを避けるためのも
ので、その意味から0と1の間の値を与える。こ
こでα,a2共に実施する対象のプロセスで外乱の
性質により適宜調整するものである。 第1の補正量の求め方としてはこの実施例の他
に次の式で示すような方法もある。これは通常比
例積分制御と呼ぶ方法に相当する。 ΔV1=c1(Δθ−Δθ′)+c2Δθ c1,c2;適当に設定される定数 これらのいずれの方法も同じグループ内の1本
目から前回までの既に加熱した昇温量偏差の全て
が初期設定操作量に反映される方法となつてお
り、外乱のゆるやかな変化に対応して安定的かつ
効果的に昇温量変動を低減する。 第2の補正量演算回路16は、全操作量平均
値VTと前回の初期設定操作量Vp′から次の式に
よつて第2の補正量ΔV2を求める。 ΔV2=b(VT−Vp′) b:補正ゲイン,0<b≦1 被加熱材に加えられる発熱量を決めるものは設
定操作量VSであるか、各部の加熱制御がある場
合にはVSにその出力である操作量修正量VDを加
えた全操作量VTである。前記昇温量偏差Δθが
生じたのはこのVTと、真に必要な操作量との間
にずれがあつたからである。ところがΔθより求
めた第1の補正量ΔV1には前回の初期設定操作
量Vp′を加えているので、VT−Vp′なる分につ
いて別途考慮する必要がある。ただしVT−Vp
は前回の被加熱材に対する値であるので、第1の
補正量算出のときに昇温量偏差に相当する操作量
分の1部のみを使つたように、VT−Vp′に1よ
り小さい補正ゲインbを乗じて、1部を補正に使
うようにしている。こうすることによつて外乱の
ゆるやかな変化に対応して安定的かつ効果的に昇
温量変動を低減する。ここでbの値は、第1の補
正量の算出のときにまず前回の昇温量偏差Δθを
平滑係数αで指数平滑し、さらに調整ゲインa2
乗じたのに対応させて、 b=α・a2 とするのが適当である。 操作量演算回路10は第1の補正量(Δ
V1)と第2の補正量(ΔV2)を入力して、次の演
算式によつて初期設定操作量(Vp)を演算し出
力する。 Vp=Vp′+ΔV1+ΔV2p′:前回の初期設定操作量 肉厚平均値測定装置17は、秤量機、長さ計、
外径計および演算回路より成り、肉厚平均値を出
力する。秤量機、長さ計および外径計は公知の計
測機器で、それぞれ1本毎のパイプの重量
(W),長さ(L)および外径(D)を計測する。
演算回路は次の式 W=π×γ・L・(D−t)・t γ:パイプの材質の密度 に基づいて、肉厚平均値tを算出する。 肉厚平均値tを求める方法としては上記の方法
以外によつても良い。たとえば超音波厚み計を鋼
管外面上をらせん状に走らせて一定間隔で肉厚を
求め、それらを平均して肉厚平均値を求める方法
がある。 肉厚補正演算回路18は初期設定操作量Vp
と肉厚平均値tを入力として、設定操作量VS
出力する。まず肉厚平均値tより肉厚平滑値を
次式により求める。 =βt+(1−β)′ :前回の肉厚平滑値 β:平滑係数 ここで平滑定数βは、第1の補正量を求めたと
きに使つた指数平滑の平滑定数αと同じ値にして
いる。これはこうして求めた肉厚平滑値を初期設
定操作量に対応するものとするためである。従つ
て次に今回の肉厚値tが前回までの肉厚平滑値
′と異なるとき、初期設定操作量Vpを修正計算
し、設定操作量VSを求める。 VS=Vp(1+K−t−t′/t′θ K:肉厚補正ゲイン 次に実施例を説明する。内径370mm、定格電圧
1000V、コイル容量1200KW、コイル長700mm、発
振周波数330Hzの第2段コイル1において、被
加熱材を外径244.5mm、肉厚11.3mmのパイプと
し、昇温量目標値T2−T1を、120℃(T2=280
℃,T1=160℃)とした。また、 昇温量偏差の平滑係数(α) 0.6 単位操作量(a1) 1.2 調整ゲイン(a2) 0.7 補正ゲイン(b) 0.42 肉厚の平滑係数(β) 0.6 肉厚補正ゲイン(K) 0.7 と各係数を定めていた。このとき4本目のパイプ
に対する設定操作量VSを求める計算を示す。な
お3本目のパイプの加熱において、 初期設定操作量(Vp′) 512V 全操作量平均値(VT) 511V 入側温度平均値 161℃ 出側温度平均値 279℃ であり、また
The present invention relates to an induction heating control method for heating a moving pipe to a constant temperature. Many induction heating control methods and devices have been published for uniformly heating a long metal material such as a pipe while moving it in its longitudinal direction. For example,
No. 13674 discloses a uniform heating method with improved two-position control of the heating power source. Also, JP-A-52-
No. 122941, JP-A-52-122942 and JP-A-52-
Japanese Patent No. 122943 discloses a control device for controlling the amount of power supplied to a heating induction coil. However, in these known electric induction heating controls, the temperature of the heated material is detected and the amount of power supplied to the heating induction coil is controlled until the temperature reaches a predetermined temperature, and control is not performed within the same heated material. Ru. In these known induction heating controls, the amount of control given is uncertain, and control is continued based on the measured temperature of the heated material exiting the heating induction coil during the control process. Furthermore, in the case of induction heating, since the temperature was controlled within the same heated material, the control was simple, and the control accuracy seemed to be lacking. The present invention reduces the dispersion in the heating temperature increase between each heated material when giving a fixed temperature increase to each of the many heated materials that are sequentially sent to the heating inductor coil. The purpose is to keep the amount of temperature rise to a constant value. In order to achieve the above object, in the present invention, in induction heating using an inductor coil of a large number of materials to be heated belonging to one group such as for each lot division,
Find the difference between the pre-heating temperature and the post-heating temperature of the heated materials in the one group that have already been heated by the inductor coil, that is, the deviation between the actual temperature increase amount and the target temperature increase amount, and respond to this temperature increase amount deviation. The first correction amount is the increment of the operation amount multiplied by a predetermined adjustment gain, and the total operation amount that was output to heat the previous material to be heated with the inductor coil is calculated from the tip to the tail of the material to be heated. The average value of these values is obtained by grasping in an arbitrary section up to the end, and the second correction amount is obtained by multiplying the difference between this average value and the previous initial setting operation amount by a predetermined correction gain. The second correction amount or the first
The heating control operation amount is determined by adding the sum of the correction amount and the second correction amount, or the heating control operation amount is uniformly determined for each of all the heated materials in the above-mentioned one group. When the initial setting operation amount is determined for the heating material, the average value of the wall thickness of the steel pipe to be heated within one pipe is calculated, and the difference between the average wall thickness value and the separately determined wall thickness reference value, that is, the wall thickness Multiply the thickness deviation by a predetermined wall thickness correction gain to obtain the correction amount due to wall thickness, and add this correction amount due to wall thickness to the initial setting operation amount assigned in advance to the current material to be heated. The setting correction amount is The disturbance that causes fluctuations in the amount of temperature increase for each heated material consists of two components: a component that slowly changes in relation to each successive heated material (hereinafter referred to as a periodic component), and a component that slowly changes in relation to each successive heated material. It can be divided into a component (hereinafter referred to as an aperiodic component) that fluctuates independently of each other in each material. In order to prevent fluctuations in the amount of temperature increase caused by periodic components of disturbance, the initial setting operation amount is the first correction amount and the initial setting operation amount for the material to be heated that was previously heated by the inductor coil. It is preferable to determine it by adding a second correction amount,
In this case, when determining the first correction amount, it is preferable that the temperature increase amount deviation is a smoothed value of the temperature increase amount deviation of the plurality of heated materials that have already been heated, in order to smoothly correspond to the periodic component. This smoothing method uses the simple average method, weighted average method, exponential smoothing method, or other smoothing methods. Preferably, a smoothing method is used. In addition, the adjustment gain used in determining the first correction amount is such that the deviation in the amount of temperature increase that has occurred in the already heated material to be heated is dispersed and removed among two or more materials to be heated next. This is to prevent the control from becoming unstable due to sudden changes in the manipulated variable for each line, and it is desirable to give a value between 0 and 1. The second correction amount is determined by incorporating into the current operation amount setting the difference between the total operation amount that was output for heating the heated material last time and the previous initial setting operation amount that is the standard for correction. This is effective in smoothly responding to the periodic component of disturbance and reducing the variation in the amount of temperature increase for each wire. Here, the total manipulated variable is equal to the set manipulated variable according to the present invention, or when the control according to the present invention is combined with heating control that outputs so that the temperature of each part within one heated material is constant. is the operation amount correction amount by this heating control plus the setting operation amount. In the latter case, the total amount of operation changes within one tube, so it is necessary to take the average within one tube, but in this case, the average value should be calculated in the unsteady area of the heated material, especially between 200 mm and 1000 mm at the tip and tail end. It is desirable to obtain the temperature in an interval other than , and it is preferable to use the same temperature average interval when determining the temperature before heating and the temperature after heating when determining the first correction amount.
In addition, the correction gain used in determining the second correction amount is the average value of the operation amount correction amount by heating control of each part of the heated material heated last time.
This is to prevent the control from becoming unstable due to sudden changes in the amount of operation for each heated material due to dispersion over more than one heated material, and it is desirable to give a value between 0 and 1. . Next, in order to prevent fluctuations in the amount of temperature increase caused by a periodic component of the disturbance that changes relatively quickly and a non-periodic component of the disturbance, in the present invention, the set operation amount is 1 of the material to be heated
The initial setting operation amount is corrected and determined based on the difference between the wall thickness average value and the wall thickness reference value in the book, that is, the wall thickness deviation. This is based on the knowledge that the main cause of disturbance that changes the amount of temperature rise is the variation in the average wall thickness from one piece to another, and that by removing this, the variation in the amount of temperature rise can be greatly reduced. . Naturally, the periodic component of the disturbance includes a large amount due to fluctuations in the wall thickness average value, and even if the initial setting operation amount is uniformly determined within one heating group, the method according to the present invention can control the It has an effect. When determining the amount of correction based on wall thickness, the average wall thickness value can be determined by measuring the wall thickness at a representative point on the entire surface of the pipe and calculating the average value. There are methods such as measuring the length and outer diameter and calculating from them, but any method may be used. In addition, the wall thickness reference value is a wall thickness value corresponding to the initial setting operation amount, and when determining the initial setting operation amount uniformly, the wall thickness value that was used as the reference when it was obtained is used as the wall thickness value, and the initial setting operation amount is is the first correction amount and/
Alternatively, if the second correction amount is determined by successive additions, it is changed accordingly. For example, when using the first correction amount and calculating the temperature increase deviation by smoothing, the same smoothing method is applied to the average wall thickness of each material to be heated, and the smoothed value is used as the wall thickness reference value. Bye. Further, the wall thickness correction gain converts the wall thickness deviation into a change in the manipulated variable, and depends mainly on the outer diameter, and may be determined in advance for each outer diameter. In the heating control method of the present invention, the operating amount of the first heating supply power is set for each lot based on the size and specification of the material to be heated. The operation amount of the second heating supply power is set for each heated material based on the actual temperature increase of the heated material, and furthermore, in the heating control of each part of each heated material, the heating of each part is Heating each part based on the correspondence between the previous temperature and the temperature increase target value, and/or
Three-stage heating setting or heating control that controls the heating of the remaining parts based on the deviation of the already heated parts increases the temperature of the entire lot, each material to be heated, and each part of each material to be heated by a constant amount. It is particularly suitable for use as a part of heating control (setting of the manipulated variable of the second heating supply power). FIG. 1 shows an exemplary configuration of an apparatus for implementing the present invention. In FIG. 1, 1 1 , 1 2 and 1 3 are heating inductor coils, and the pipe 3 which is the material to be heated
are arranged along the transfer route 2. 4 1 ~ 4
6 is a temperature detector, and detectors 4 1 , 4 3 and 4 5 are inductor coils 1 1 , 1 2 and 1 respectively.
3 , the temperature T of the arriving heated material 3
i1 , T i2 and T i3 , and the detectors 4 2 , 4 4 and 4 6 are respectively inductor coils 1
The temperatures T p1 , T p2 , and T p3 of the heated material 3 are detected on the outlet sides of the heated materials 1 , 1 2 , and 1 3 . These temperature detectors 4 1 to 4 6 may be of almost any type, but radiation thermometers are usually used. When multiple sensors are installed in the circumferential direction of the pipe, the average value of their detected temperatures is used. In this embodiment, the first inductor coil 11 has a constant temperature in order to always heat the outlet temperature T p1 to a constant target temperature T 1 despite the variation of the inlet temperature T i1 . The second inductor coil 12 is arranged for temperature heating, and the second inductor coil 12 is used for constant temperature rise heating to give a predetermined temperature rise (T 2 −T 1 ) to the inlet temperature T i2 . The inductor coils 1 to 3 also have an inlet temperature T
It is used for constant temperature rise heating that gives a predetermined temperature rise (T 3 - T 2 ) to i3 . Correspondingly, a heating control circuit that controls the heating power of each of the inductor coils 1 1 to 1 3 has almost the same configuration, but a heating control circuit that controls the heating power of the first inductor coil 1 1 for constant temperature heating. The control circuit uses the difference between the inlet temperature T in1 and the target temperature T 1 (T 1 - T in1 ) as one input quantity, while the second and third inductor coils for constant temperature rise heating Heating control circuits 12 and 13 each use the set temperature increase amounts ( T2 - T1 ) and ( T3 - T2 ) as one input amount. The heating control circuit receives an electrical signal representing the inlet temperature T i1 continuously or at intervals, and outputs a signal representing a time series average value T in1 of T i1 .
Average value calculation circuit 5 1 consisting of an integrating circuit with a predetermined time constant, etc. Average value calculation circuit 5 2 having a similar configuration and outputting a signal representing the average value pn1 of the outlet temperature T p1 ; Target temperature setting device A signal representing the target temperature T 1 from 6 1 (for example, a potentiometer) and an average value T of the inlet temperature from the average value calculation circuit 5 1
Temperature increase target value setting circuit 7, which is composed of an operational amplifier, a differential amplifier, etc., receives a signal representing T in1 as an input, and outputs a signal representing a temperature difference of (T 1 - T in1 ).
1 ; With the signals representing T in1 and T pn1 from the average value calculation circuits 51 and 52 as inputs, and the signal representing (T 1 −T in1 ) from the setting circuit 71 , (T pn1 −T in1 ) − (T 1 − T in1 ), that is, the actual average temperature increase amount (T pn1 − T in
1 ) A temperature rise amount deviation calculation circuit 8 1 composed of an operational amplifier etc. outputs a signal representing the deviation from the target temperature rise amount (T 1 −T in1 ); the output deviation signal of the calculation circuit 8 1 is Smoothing circuit 12 1 that smooths over two or more heated materials, for example, several pieces; This smoothing value is multiplied by the unit operation amount (operation amount required to change the amount of temperature increase by 1°C) and the adjustment gain to calculate the electric power. A first correction amount calculation circuit 9 1 consisting of an operational amplifier, a function generator, etc., which converts the control operation amount change (first correction amount) into a signal representing the control operation amount change (first correction amount); A manipulated variable calculation circuit 10 1 consisting of an operational amplifier, etc., which outputs the current initial setting manipulated variable by adding the first correction amount and the second correction amount; the pipe inlet temperature and its target temperature that change every moment In-line control circuit 13 1 that outputs the manipulated variable correction amount in response to the difference between 14 1 ; Inputs the total manipulated variables that change moment by moment, and outputs the average value of all manipulated variables, 5 1 , 5
Average value calculation circuit 15 1 having the same configuration as 2 ; a second correction amount that calculates the difference between the total operation amount average value and the initial setting operation amount, multiplies this by a predetermined correction gain, and outputs a second correction amount. Arithmetic circuit 16 1 ; Wall thickness average value measurement circuit 17 that measures, calculates and outputs the wall thickness average value for each object to be heated; and sequentially inputs the wall thickness average value to obtain a wall thickness standard value, Find the difference between the average value and the wall thickness reference value, multiply it by a predetermined wall thickness correction gain to find the correction amount due to wall thickness, add the initial setting operation amount to it, and calculate the current setting operation amount (this is the power supply control device It is composed of a wall thickness correction calculation circuit 181 which outputs a signal (input to 111 ). In this heating control circuit, the temperature T in1 on the inlet side of the first inductor coil 1 1 and the target temperature T 1 are input to the temperature increase target value setting circuit 7 1 , so that (T 1 −T in1 ) becomes the target temperature increase amount, and therefore, even if the temperature T i1 on the input side of the heated material 3 varies, heating control is performed to set the temperature on the output side as the target value T 1 . In the heating control circuit, signals representing the first and second target temperatures T1 and T2 are sent from target temperature setting devices 62 and 63 such as potentiometers to the temperature increase target value setting circuit 72 . is applied. Therefore, the heating control circuit sets the target temperature increase amount to a fixed amount (T 2 −T 1 ). Therefore,
The heating control circuit performs constant temperature increase control so that even if the temperature T i2 on the inlet side fluctuates, the temperature on the outlet side is always T i2 +(T 2 −T 1 ). The heating control circuit also performs constant temperature rise control in the same way. In addition, in FIG. 1, the target temperature setters 6 2 , 6 3 , 6 4 and 6 5 are shown to output signals representing the target temperatures T 1 , T 2 , T 2 and T 3 respectively, but This is tentatively displayed on the assumption that T p1 = T i2 = T 1 and T p2 = T i3 = T 2 , and each of these target temperature setters 6 2 to 6 5 is It may be set to output a signal indicating a predetermined target temperature. Because the second inductor coil 1
2 , it is sufficient to heat the first inductor coil 11 by adding a predetermined temperature increase amount T p1 (T p1 = T 2 - T 1 in the figure) to the heating temperature (T 1 ) of the first inductor coil 11, and In the third inductor coil 13 , a predetermined temperature increase amount T p2 ( T p2 = T 3T 2 ) can be added and heated. In the embodiment shown in FIG. 1, the final target temperature is T 1 +T p1 +T p2 . In addition, it is T 3 in the illustration, and T 3 = T 1 + T p1 +
The relationship becomes T p2 . However, the above assumes that the heated material 3 is not cooled while running between the first inductor coil 1 and the second inductor coil, and between the second inductor coil and the third inductor coil. This is the case. The influence of cooling can be compensated for by adjusting the set values of the target temperature setters 6 1 - 6 5 . Next, to explain in more detail the functions of each of the above-mentioned components, the pipe tracking circuit 141 detects the arrival of the tip and tail ends of the pipe, and detects the arrival of the tail end of the pipe, and detects the arrival of the tail end of the pipe, and detects the arrival of the tail end of the pipe. It issues a signal and instructs the average value calculation circuits 5 1 , 5 2 and 15 1 in the averaging period (sampling period), and also instructs the internal control circuit 13 1 to control the tube end control timing and the temperature rise of each part in the center of the tube. Instructs the calculation timing for correcting the manipulated variable based on the amount deviation. The internal control circuit 13 1 is a control circuit for eliminating temperature fluctuations in the length direction within one pipe, and for example, inputs the inlet temperature and calculates the deviation from the target value.
These include a feed-forward control circuit that calculates the manipulated variable correction amount by multiplying the deviation by a certain coefficient, or a pattern control circuit that outputs the manipulated variable correction amount in a fixed pattern at both ends of a pipe. The output value of these changes within one line. The average value calculation circuits 5 1 , 5 2 and 15 1 respectively receive the temperature detection value and the operation amount correction amount of each coil as signals in the interval designated by the pipe tracking circuit 14 1 and calculate the average value thereof. A good method for averaging is simple averaging, which is obtained by taking the integration (or integration) of the signals in the section and dividing it by the number of integrations (or integration time). The maximum average section is from the tip to the tail end of the pipe, but it is desirable to exclude unsteady parts (200 to 1000 mm) at both ends. Temperature increase target value setting circuit 7 1 uses the average inlet temperature value T in1 (of the previous heated material) and calculates the difference from the target temperature T 1 θ*=T 1 −T in1 = target temperature increase amount Outputs a signal representing . On the other hand, the circuit
, ... output a signal representing θ*=T 2 −T 1 =target temperature increase amount. The temperature increase amount deviation calculation circuit 81 calculates the average temperature increase value θ n =T pn1 −T in1 , and further calculates the target temperature increase amount θ* and the average temperature increase value θ n
From this, the temperature increase deviation Δθ=θ n −θ* is determined, and a signal representing this is output. First correction amount calculation circuit 9 1 and smoothing circuit 12 1
In this example, as a method of reflecting the temperature increase deviation of the past two or more times in the first correction amount, the temperature increase deviation is obtained by exponential smoothing method, and a predetermined coefficient is applied to this as shown below. The second correction amount was determined by the remainder. This method can be expressed as an arithmetic expression as follows. =αΔθ(1-α)′ ; Smoothed value of temperature increase deviation ′ = Smoothed value of previous temperature increase deviation Δθ; Said temperature increase deviation α; Exponential smoothing coefficient 0<α<1 ΔV 1 = −a 1 a 2 ΔV 1 ; first correction amount a 1 = unit operation amount a 2 = adjustment gain In these equations, a 1 is the increase/decrease in the operation amount required to increase or decrease the temperature increase amount by 1°C; It changes depending on the pipe size and other operating conditions, and can be set in advance. Therefore, a 1 is the increment in the amount of operation necessary to increase the amount of temperature rise. Next, a 2 is intended to prevent the control from becoming unstable due to drastic changes in the manipulated variable due to trying to remove the entire deviation with only the material to be heated this time. Gives a value between 0 and 1. Here, both α and a2 are adjusted as appropriate depending on the nature of the disturbance in the target process. As a method of determining the first correction amount, in addition to this embodiment, there is also a method as shown in the following equation. This corresponds to a method usually called proportional-integral control. ΔV 1 = c 1 (Δθ − Δθ′) + c 2 Δθ c 1 , c 2 ; Constants set appropriately In either of these methods, the deviation of the amount of heating that has already been heated from the first to the previous time in the same group is Everything is reflected in the initial setting operation amount, and fluctuations in the amount of temperature rise are stably and effectively reduced in response to gradual changes in disturbance. The second correction amount calculation circuit 161 calculates the second correction amount ΔV 2 from the total operation amount average value V T and the previous initial setting operation amount V p ' using the following equation. ΔV 2 = b (V T −V p ′) b: Correction gain, 0<b≦1 The amount of heat added to the material to be heated is determined by the set operation amount V S , or if there is heating control for each part. is the total manipulated variable V T which is the sum of V S and the manipulated variable correction amount V D which is its output. The temperature increase amount deviation Δθ occurs because there is a discrepancy between this V T and the truly necessary operation amount. However, since the previous initial setting operation amount V p ' is added to the first correction amount ΔV 1 obtained from Δθ, it is necessary to separately consider the amount V T -V p '. However, V T −V p
is the value for the previous heated material, so in the same way as when calculating the first correction amount, only a part of the operation amount corresponding to the temperature increase amount deviation was used, V T −V p ' is changed by 1. It is multiplied by a small correction gain b, and one part is used for correction. By doing so, fluctuations in the amount of temperature increase can be stably and effectively reduced in response to gradual changes in disturbance. Here, the value of b corresponds to the fact that when calculating the first correction amount, the previous temperature increase deviation Δθ was first exponentially smoothed by the smoothing coefficient α, and then further multiplied by the adjustment gain a2 , and b= It is appropriate to set α・a 2 . The operation amount calculation circuit 10 1 is a first correction amount (Δ
V 1 ) and the second correction amount (ΔV 2 ) are input, and the initial setting manipulated variable (V p ) is calculated and output using the following arithmetic expression. V p =V p ′+ΔV 1 +ΔV 2 V p ′: Previous initial setting operation amount The wall thickness average value measuring device 17 includes a weighing machine, a length meter,
Consists of an outer diameter meter and a calculation circuit, and outputs the average wall thickness value. A weighing machine, a length meter, and an outer diameter meter are known measuring instruments, and each measures the weight (W), length (L), and outer diameter (D) of each pipe.
The arithmetic circuit calculates the average wall thickness t based on the following formula: W=π×γ・L・(D−t)・t γ: Based on the density of the material of the pipe. A method other than the above-mentioned method may be used to obtain the average wall thickness value t. For example, there is a method of running an ultrasonic thickness gauge spirally over the outer surface of a steel pipe to measure the wall thickness at regular intervals, and then averaging the measured values to obtain the average wall thickness. Thickness correction calculation circuit 18 1 is the initial setting operation amount V p
and wall thickness average value t as input, and outputs the set operation amount V S . First, a wall thickness smooth value is determined from the wall thickness average value t using the following equation. =βt+(1-β)': Previous thickness smoothed value β: Smoothing coefficient Here, the smoothing constant β is the same value as the smoothing constant α of exponential smoothing used when calculating the first correction amount. . This is to ensure that the wall thickness smoothing value obtained in this manner corresponds to the initial setting operation amount. Therefore, next time the current wall thickness value t differs from the previous wall thickness smoothed value ', the initial setting operation amount V p is corrected and the setting operation amount V S is determined. V S =V p (1+K-t-t'/t'θ K: Thickness correction gain Next, an example will be explained. Inner diameter 370 mm, rated voltage
In the second stage coil 12 of 1000V, coil capacity 1200KW, coil length 700mm, and oscillation frequency 330Hz, the material to be heated is a pipe with an outer diameter of 244.5mm and a wall thickness of 11.3mm, and the temperature increase target value T 2 - T 1 is , 120℃ (T 2 = 280
℃, T 1 = 160℃). Also, smoothing coefficient of temperature rise amount deviation (α) 0.6 Unit operation amount (a 1 ) 1.2 Adjustment gain (a 2 ) 0.7 Correction gain (b) 0.42 Smoothing coefficient of wall thickness (β) 0.6 Wall thickness correction gain (K) Each coefficient was set at 0.7. The calculation for determining the set operation amount V S for the fourth pipe at this time is shown below. In addition, when heating the third pipe, the initial setting operation amount (V p ') is 512V, the average value of the total operation amount (V T ) is 511V, the average value of the inlet temperature is 161℃, the average value of the outlet temperature is 279℃, and

【表】 以上より【table】 From the above

【表】 なる演算で4本目のパイプに対する設定操作量
508Vが得られた。 第2図に数値計算例と、同じロツトの1本目か
ら20本目までの、第2段コイル1の初期設定操
作量、設定操作量、全操作量平均値および昇温量
平均値の実績値を示す。また肉厚平均値を併記す
る。 これより、当初の初期設定操作量(ロツト毎に
値を予め定めている)500Vは約20V適正値より小
さ過ぎたが急速に回復していること、肉厚値に変
動があるがこれに設定操作量は追従していること
によつて、昇温量偏差が最初の1本目を除いて小
さく制御されていることがわかる。もし制御して
いなかつたならば昇温量偏差バラツキが±10℃程
度になると推定できるが、制御の効果大なること
がわかる。 なお第1図においては、入側温度Ti1の平均お
よび出側温度Tp1の平均をまず求めて、それらの
値から昇温量を求める構成を示したが、検出器4
,4の信号の差をまず求めてから、次にその
平均値をとるようにしてもよい。 また第1図においては、No.1コイルを定温度加
熱用としNo.2以降のコイルを定昇温加熱用とした
が、任意のコイルを、複数個にわたつて定温度加
熱用としてもよい。 また第1図において、温度検出器4と4
1つのもので共用してもよく、同様に4と4
も1つのもので共用してもよい。このとき平均値
演算回路5と5は共用の1つのものとなる。
[Table] Setting operation amount for the 4th pipe using the calculation
508V was obtained. Figure 2 shows an example of numerical calculation and the actual values of the initial setting operation amount, set operation amount, average value of all operation amounts, and average value of temperature increase for the 2nd stage coil 12 from the 1st to the 20th coil in the same lot. shows. The average wall thickness value is also listed. From this, we can see that the initial initial setting operation amount (the value is predetermined for each lot) of 500V was about 20V smaller than the appropriate value, but it quickly recovered, and that although there were fluctuations in the wall thickness value, it was set to this value. It can be seen that by following the manipulated variables, the temperature increase amount deviations are controlled to be small except for the first one. If it were not controlled, it can be estimated that the variation in temperature increase deviation would be about ±10°C, but it can be seen that the effect of control is significant. In addition, in FIG. 1, a configuration is shown in which the average of the inlet temperature T i1 and the average of the outlet temperature T p1 are first determined and the amount of temperature increase is determined from these values.
The difference between the 1 and 4 2 signals may be first determined, and then the average value may be taken. Further, in FIG. 1, the No. 1 coil is used for constant temperature heating and the coils after No. 2 are used for constant temperature heating, but a plurality of arbitrary coils may be used for constant temperature heating. In addition, in FIG. 1, the temperature detectors 4 2 and 4 3 may be used in common ;
may also be shared as one item. At this time, the average value calculation circuits 52 and 53 become one common circuit.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明を実施する電気誘導加熱装置の
1例構成を示すブロツク図、第2図は本発明を実
施したときの誘導子コイルに印加された電圧と昇
温量の関係を示すグラフである。 1〜1:誘導子コイル、2:移送経路、
3:被加熱材、4〜4:温度検出器、6
:目標温度設定器、7,7:昇温量目標
値設定回路。
Fig. 1 is a block diagram showing the configuration of an example of an electric induction heating device that embodies the present invention, and Fig. 2 is a graph showing the relationship between the voltage applied to the inductor coil and the amount of temperature rise when the present invention is implemented. It is. 1 1 to 1 3 : inductor coil, 2: transfer path,
3: Heated material, 4 1 - 4 6 : Temperature detector, 6 1 -
6 5 : Target temperature setting device, 7 1 , 7 2 : Temperature increase amount target value setting circuit.

Claims (1)

【特許請求の範囲】 1 多くの被加熱材を順次誘導子コイルに通じて
各被加熱材を一定昇温量に加熱するにおいて、 加熱される鋼管の肉厚の1本内の平均値を求
め、その肉厚平均値と別に定めた肉厚基準値との
差すなわち肉厚偏差に所定の肉厚補正ゲインを乗
じて、肉厚による補正量を求め、今回の被加熱材
に予め割り当てられた初期設定操作量にこの肉厚
による補正量を加えて今回の被加熱材に対する設
定操作量とすることを特徴とするパイプの誘導加
熱制御方法。 2 各被加熱材の初期設定操作量を、前回の被加
熱材を加熱するために出力された全操作量の被加
熱材の先端から尾端までの任意の区間における平
均値を求め、この平均値と前回の初期設定操作量
との差に所定の補正ゲインを乗じたものに、今回
の被加熱材に予め割り当てられた補正前設定操作
量を加えたものとする、前記特許請求の範囲第1
項記載のパイプの誘導加熱制御方法。 3 各被加熱材の補正前設定操作量を、誘導子コ
イルで既に加熱した被加熱材の加熱前温度と加熱
後温度の差すなわち実昇温量と目標昇温量の偏差
を求めて既に加熱した被加熱材に対する初期設定
操作量に前記昇温量偏差に対応する操作量変更分
に所定の調整ゲインを乗じた補正操作量を加えた
ものとする、前記特許請求の範囲第2項記載のパ
イプの誘導加熱制御方法。
[Claims] 1. In heating each heated material to a constant temperature increase by passing many heated materials through an inductor coil in sequence, the average value of the wall thickness of the steel pipes to be heated is determined within one pipe. , the difference between the wall thickness average value and a separately determined wall thickness standard value, that is, the wall thickness deviation, is multiplied by a predetermined wall thickness correction gain to obtain the correction amount due to wall thickness, and the amount of correction due to wall thickness is determined, and the amount of correction due to wall thickness is determined. A pipe induction heating control method characterized by adding a correction amount based on the wall thickness to an initial setting operation amount to obtain a set operation amount for the current material to be heated. 2. Find the average value of the initial setting operation amount for each heated material in any section from the tip to the tail end of the heated material of all the manipulated variables that were output to heat the heated material last time, and calculate this average value. The difference between the value and the previous initial setting operation amount is multiplied by a predetermined correction gain, and the pre-correction setting operation amount assigned in advance to the current heated material is added. 1
A method for controlling induction heating of a pipe as described in . 3 Calculate the pre-correction setting operation amount for each heated material by calculating the difference between the pre-heating temperature and post-heating temperature of the heated material that has already been heated by the inductor coil, that is, the deviation between the actual temperature increase amount and the target temperature increase amount. Claim 2, wherein the initial setting operation amount for the heated material is added with a correction operation amount obtained by multiplying the operation amount change corresponding to the temperature increase amount deviation by a predetermined adjustment gain. Induction heating control method for pipes.
JP2422079A 1979-03-01 1979-03-01 Method of controlling induction heating of pipe Granted JPS55117891A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2422079A JPS55117891A (en) 1979-03-01 1979-03-01 Method of controlling induction heating of pipe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2422079A JPS55117891A (en) 1979-03-01 1979-03-01 Method of controlling induction heating of pipe

Publications (2)

Publication Number Publication Date
JPS55117891A JPS55117891A (en) 1980-09-10
JPS6131949B2 true JPS6131949B2 (en) 1986-07-23

Family

ID=12132196

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2422079A Granted JPS55117891A (en) 1979-03-01 1979-03-01 Method of controlling induction heating of pipe

Country Status (1)

Country Link
JP (1) JPS55117891A (en)

Also Published As

Publication number Publication date
JPS55117891A (en) 1980-09-10

Similar Documents

Publication Publication Date Title
JP2004086858A (en) Controller, thermoregulator and thermal treatment equipment
JPS6131949B2 (en)
JPH02166235A (en) Method for controlling sheet temperature in metallic sheet heating furnace
JPS6131947B2 (en)
JPH038843B2 (en)
KR102264946B1 (en) Calculation apparatus and control apparatus for mathematical model of rolling line
WO2017085781A1 (en) Temperature control device and temperature control method
JPS6026272B2 (en) Heating power control device for continuous heating equipment
JPH0613126B2 (en) Advanced rate control method in strip rolling
JP5610734B2 (en) Thickness control method for taper steel plate whose thickness changes in the rolling direction in a tapered shape
JP6784182B2 (en) Steel plate temperature control method and steel sheet temperature control device
JP4869127B2 (en) Thickness control method for taper steel plate whose thickness changes in the rolling direction in a taper shape
JP2523991B2 (en) Control method for induction heating device
JPH04168232A (en) Method for controlling temperature of steel strip
JPS62238328A (en) Equipment for controlling heating
JPH07109790B2 (en) Induction heating device
JP2871727B2 (en) Air flow control device
JP2833461B2 (en) Metal strip temperature control method
JPH0622949Y2 (en) Induction heating device
JPS6131946B2 (en)
SU541155A1 (en) Device for regulating induction heating
JP2000336433A (en) Device for controlling helper roll in continuous annealing furnace
JPS5831373B2 (en) Temperature control method and device for continuous strip heat treatment furnace
JPS6368282A (en) Induction heating equipment
JPH062047A (en) Device for controlling combustion of continuous furnace