JPS6131947B2 - - Google Patents

Info

Publication number
JPS6131947B2
JPS6131947B2 JP15250778A JP15250778A JPS6131947B2 JP S6131947 B2 JPS6131947 B2 JP S6131947B2 JP 15250778 A JP15250778 A JP 15250778A JP 15250778 A JP15250778 A JP 15250778A JP S6131947 B2 JPS6131947 B2 JP S6131947B2
Authority
JP
Japan
Prior art keywords
temperature
heated
amount
heating
temperature increase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP15250778A
Other languages
Japanese (ja)
Other versions
JPS5578491A (en
Inventor
Hideo Takahashi
Shuichi Sato
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP15250778A priority Critical patent/JPS5578491A/en
Publication of JPS5578491A publication Critical patent/JPS5578491A/en
Publication of JPS6131947B2 publication Critical patent/JPS6131947B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 この発明は移動中の長尺金属材、例えば鋼管等
の被加熱材を一定温度に加熱するための電気誘導
加熱方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an electric induction heating method for heating a moving long metal material, such as a steel pipe, to a constant temperature.

鋼管等の長尺金属材を、その長手方向に移動さ
せながら均一に加熱する電気誘導加熱装置は多く
発表されている。例えば特公昭42−13674号に
は、加熱電源の改良型二位置制御による均一加熱
法が開示されている。又特開昭52−122941号、特
開昭52−122942号、特開昭52−122943号公報には
加熱誘導コイルへの供給電力量の制御装置が開示
されている。
Many electric induction heating devices have been published that uniformly heat a long metal material such as a steel pipe while moving it in its longitudinal direction. For example, Japanese Patent Publication No. 42-13674 discloses a uniform heating method using improved two-position control of the heating power source. Further, Japanese Patent Application Laid-Open Nos. 52-122941, 1982-122942, and 1977-122943 disclose devices for controlling the amount of power supplied to a heating induction coil.

而して、これら公知の電気誘導加熱制御におい
て被加熱材の温度を検出し、所定温度になるまで
加熱誘導コイルへの供給電力量を制御するもので
同一の被加熱材内での制御がなされる。これら公
知の電気誘導加熱制御においては、与えられる制
御量が未確実であり、制御過程にある加熱誘導コ
イルを出た被加熱材の測定温度によつて制御の継
続がなされる。又これらの電気誘導加熱にあつて
は同一被加熱材内での温度制御であるため単純制
御となり、制御精度に未だしの感があつた。
In these known electric induction heating controls, the temperature of the material to be heated is detected and the amount of power supplied to the heating induction coil is controlled until a predetermined temperature is reached, and control is not performed within the same material to be heated. Ru. In these known electric induction heating controls, the control amount given is uncertain, and control is continued based on the measured temperature of the heated material exiting the heating induction coil in the control process. In addition, in these electric induction heating methods, since the temperature is controlled within the same heated material, the control is simple, and the control accuracy seems to be lacking.

本発明は順次に加熱誘導子コイルに送られる多
くの被加熱材にそれぞれ一定の昇温量を与えるに
おいて、各被加熱材相互間の加熱昇温量の高低を
低減し、被加熱材毎の昇温量を一定値にすること
を目的とする。
The present invention reduces the height of the heating temperature increase between each heated material when giving a fixed temperature increase to each of the many heated materials that are sequentially sent to the heating inductor coil. The purpose is to keep the amount of temperature rise to a constant value.

上記目的を達成するために本発明においては、
ロツト区分毎など、1つのグループに属する多数
の被加熱材の誘導子コイルによる誘導加熱におい
て、該誘導子コイルによりすでに加熱した前記1
グループ内の被加熱材の、加熱前温度と加熱後温
度の差、すなわち実昇温量と、目標昇温量の偏差
を求めて、前記すでに加熱した被加熱材に対する
誘導子コイル供給電力設定値に対して、前記偏差
に対応する供給電力値に所定のゲインを乗じた供
給電力補正値を調整値として加えて、該誘導子コ
イルに到来する被加熱材に対する加熱制御操作量
を定めるか、あるいは、ロツト内の全被加熱材の
それぞれに対して一律に加熱制御操作量を定める
などにより、各被加熱材に対して設定操作量を定
めた場合に、該誘導子コイルですでに加熱した被
加熱材の、初期設定操作量に対する各部の加熱制
御における操作量修正量を被加熱材の先端から尾
端までの任意の区間において把握してこれらの平
均値を求め、今回の被加熱材に予め割り当てられ
た設定操作量にこの平均値の一部または全部を加
えて今回の被加熱材の初期設定操作量とする。
In order to achieve the above object, in the present invention,
In induction heating using an inductor coil for a large number of materials to be heated belonging to one group, such as for each lot division, the
The difference between the pre-heating temperature and the post-heating temperature of the heated material in the group, that is, the deviation between the actual temperature increase amount and the target temperature increase amount, is determined, and the inductor coil supply power setting value for the already heated material is determined. , a supply power correction value obtained by multiplying the supply power value corresponding to the deviation by a predetermined gain is added as an adjustment value to determine the heating control operation amount for the heated material arriving at the inductor coil, or , when the set operation amount is determined for each heated material by uniformly determining the heating control operation amount for each of all the heated materials in the lot, the Ascertain the operation amount correction amount in the heating control of each part with respect to the initial setting operation amount of the heating material in any section from the tip to the tail end of the heated material, calculate the average value of these, and apply it to the current heated material in advance. A part or all of this average value is added to the assigned setting operation amount to determine the current initial setting operation amount for the material to be heated.

1本毎の急激な昇温量の変動を防止するにおい
て、前記設定操作量は、前述の如き誘導子コイル
ですでに加熱した被加熱材の、目標昇温量に対す
る実昇温量の偏差に基づいてその後の被加熱材各
1本毎に加熱制御操作量を定めるのが好ましく、
その場合の前記ゲインは、被加熱材の1つ毎に対
する段階的な操作量の高低を、数本以上にわたつ
てなめらかに平滑化し、多くの被加熱材にわたつ
てゆるやかに操作量の変動を分散させ、これによ
り1本毎の急激な昇温量変動を防止するものであ
る。
In order to prevent sudden fluctuations in the amount of temperature increase for each wire, the set operation amount is determined based on the deviation of the actual temperature increase from the target temperature increase of the material to be heated that has already been heated by the inductor coil as described above. It is preferable to determine the heating control operation amount for each subsequent heated material based on
In this case, the gain is used to smoothly smooth out the stepwise increase and decrease of the manipulated variable for each heated material over several or more materials, and to gently control fluctuations in the manipulated variable over many heated materials. This is to prevent rapid fluctuations in the amount of temperature increase from one tube to another.

多くの被加熱材について加熱昇温量が目標値に
収束するように、前記偏差としてはすでに加熱し
た複数個の被加熱材の偏差を平滑したものとする
のが好ましい。この平滑手法には単純平均法、過
去のもの程比重を低くし、現在に近いもの比重を
高くして偏差の重み平均をとる方法、指数平滑法
あるいはその他の平滑手法を用いうるが、多数の
被加熱材の昇温加熱実績を十分に反映し、各被加
熱材の加熱昇温量の目標値への収束をなめらかに
するにおいて、そして演算が簡易であるにおいて
指数平滑法を用いるのが好ましい。また、各個の
変動を小さくし、ロツト全体について安定して目
標昇温量に収束させるにおいて、平滑偏差に更
に、多くの被加熱材の全体についての昇温量のゆ
るやかな変動に合致するように、適当なゲインを
乗じて操作量変化分を定めるのが好ましい。
It is preferable that the deviation is a smoothed deviation of a plurality of already heated materials so that the heating temperature increase amount of many materials to be heated converges to the target value. This smoothing method can be a simple averaging method, a weighted average of the deviations by giving lower weight to the past and higher weight to the closer to the present, an exponential smoothing method, or other smoothing methods. It is preferable to use the exponential smoothing method in order to sufficiently reflect the heating performance of the heated materials, to smoothly converge the heating temperature increase amount of each heated material to the target value, and because the calculation is simple. . In addition, in order to reduce individual fluctuations and stably converge to the target temperature increase for the entire lot, in addition to smoothing deviation, it is necessary to match gradual fluctuations in the temperature increase for many heated materials as a whole. , it is preferable to determine the amount of change in the manipulated variable by multiplying by an appropriate gain.

このような本発明の加熱制御手法は、ロツト毎
に被加熱材のサイズおよび規格に基づいて第1の
加熱供給電力設定をおこない、そのロツト内の各
被加熱材については、すでに加熱した被加熱材に
ついての実昇温量偏差にもとづいて各個の被加熱
材について第2の加熱供給電力設定をおこない、
更に各個の被加熱材の各部の加熱制御において
は、各部の加熱前の温度と昇温目標値との対応関
係から各部の加熱をしたり、および/又は1個の
すでに加熱した部分の偏差をもとに残余の部分の
加熱制御をするという、3段階の加熱設定あるい
は加熱制御によりロツト全体、各被加熱材および
各被加熱材各部を一定の昇温量に加熱する制御に
おいて、その一部(第2の加熱供給電力設定)と
して用いるのに、特に好適である。
Such a heating control method of the present invention sets the first heating supply power for each lot based on the size and specification of the material to be heated, and for each material to be heated in that lot, A second heating supply power setting is performed for each heated material based on the actual temperature increase amount deviation for the material,
Furthermore, in heating control of each part of each heated material, each part is heated based on the correspondence between the temperature before heating of each part and the temperature increase target value, and/or the deviation of one already heated part is calculated. In the control of heating the whole lot, each material to be heated, and each part of each material to be heated to a constant temperature increase amount by three-stage heating setting or heating control, which controls the heating of the remaining part, (second heating supply power setting).

第1図に本発明を実施する装置の一例構成を示
す。第1図において、1,1および1は加
熱誘導子コイルであり、鋼管等の被加熱材3の移
送経路2に沿つて配列されている。4〜4
温度検出器であり、検出器4,3および4
はそれぞれ誘導子コイル1,1および1
入側において、到来する被加熱材3の温度Ti1
i2およびTi3を検出するものであり、検出器4
,4および4はそれぞれ誘導子コイル1
,1および1の出側において被加熱材3の
温度Tp1,Tp2およびTp3を検出するものであ
る。これらの温度検出器4〜4の種類は大略
何でもよいが、通常放射温度計を用いる。パイプ
の円周方向に複数個設置する場合にはそれらの検
出温度の平均値を用いる。
FIG. 1 shows an exemplary configuration of an apparatus for implementing the present invention. In FIG. 1, reference numerals 1 1 , 1 2 and 1 3 are heating inductor coils, which are arranged along a transfer path 2 for a material to be heated 3 such as a steel pipe. 4 1 to 4 6 are temperature detectors, and detectors 4 1 , 3 3 and 4 5
are the incoming temperatures T i1 ,
It detects T i2 and T i3 , and the detector 4
2 , 4 4 and 4 6 are inductor coil 1, respectively.
The temperatures T p1 , T p2 , and T p3 of the heated material 3 are detected on the outlet sides of the heated materials 1 , 1 2 , and 1 3 . These temperature detectors 4 1 to 4 6 may be of almost any type, but radiation thermometers are usually used. When multiple sensors are installed in the circumferential direction of the pipe, the average value of their detected temperatures is used.

この実施例においては、第1の誘導子コイル1
は、バラエテイがある入側温度Ti1にもかかわ
らず出側温度Tp1を常に一定の目標温度T1に加熱
昇温するための、定温度加熱用として配置されて
おり、第2の誘導子コイル1は、入側温度Ti2
に所定の温度上昇(T2−T1)を与える定昇温加熱
用として用いられており、第3の誘導子コイル1
も、入側温度Ti3に所定の温度上昇(T3−T2
を与える定昇温加熱用として用いられている。こ
れに対応して、各誘導子コイル1〜1の加熱
電力制御をおこなう加熱制御回路,および
は、ほとんど同じ構成であるが、定温度加熱用の
第1の誘導子コイル1の加熱制御回路は、入
側温度Tin1と目標温度T1との差(T1−Tin1)を
1つの入力量としているのに対して、定昇温加熱
用の第2および第3の誘導子コイル1および1
の加熱制御回路およびは、それぞれ設定さ
れた昇温量(T2−T1)および(T3−T2)を1つの
入力量としている。
In this embodiment, the first inductor coil 1
1 is arranged for constant temperature heating in order to always raise the outlet temperature T p1 to a constant target temperature T 1 despite the variety of inlet temperatures T i1 , and the second induction Child coils 1 and 2 have inlet side temperatures T i2
It is used for constant temperature rise heating to give a predetermined temperature rise (T 2 - T 1 ) to
3 , a predetermined temperature rise (T 3T 2 ) to the inlet temperature T i3
It is used for constant temperature rise heating to give . Correspondingly, a heating control circuit that controls the heating power of each of the inductor coils 1 1 to 1 3 has almost the same configuration, but a heating control circuit that controls the heating power of the first inductor coil 1 1 for constant temperature heating. The control circuit uses the difference between the inlet temperature T in1 and the target temperature T 1 (T 1 - T in1 ) as one input quantity, while the second and third inductor coils for constant temperature rise heating 1 2 and 1
The heating control circuit No. 3 and No. 3 each use the set temperature increase amount (T 2 −T 1 ) and (T 3 −T 2 ) as one input amount.

加熱制御回路は、入側温度Ti1を表わす電気
信号を連続的あるいは隔時点に取り込んでTi1
時系列の平均値Tin1を表わす信号を出力する、
所定時定数の積分回路などで構成される平均値演
算回路5;同様な構成であつて出側温度Tp1
平均値Tpn1を表わす信号を出力する平均値演算
回路5;目標温度設定器6(たとえばポテン
シヨメータ)よりの、目標温度T1を表わす信号
と、平均値演算回路5よりの入側温度平均値T
in1を表わす信号とを入力とし、(T1−Tin1)なる
温度差を表わす信号を出力する、演算増幅器、差
動増幅器等で構成される昇温量目標値設定回路7
;平均値演算回路5および5のTin1を表
わす信号およびTpn1を表わす信号、ならびに設
定回路7よりの(T1−Tin1)を表わす信号を
入力として、(Tpn1−Tin1)−(T1−Tin1)を表
わす信号、つまり、実平均昇温量(Tpn1−Tin
)の目標昇温量(T1−Tin1)に対する偏差を
表わす信号を出力する、演算増幅器などで構成さ
れる昇温量偏差演算回路8;該演算回路8
出力偏差信号を被加熱材2本以上たとえば数本分
にわたつて平滑化する平滑回路12;この平滑
値に単位操作量(昇温量を1℃変化させるに必要
な操作量)およびゲインを乗じて電力制御用の操
作量変化分を表わす信号に変換する、演算増幅
器、函数発生器などで構成される第1の補正量演
算回路9;前記操作量変化分(これは今回の被
加熱材の設定操作量を定めるもの)に、後述する
前回の被加熱材の加熱制御における、初期設定操
作量に対する各部昇温制御修正量の平均値の全部
又は一部を加える、演算増幅器などで構成される
操作量演算回路10;刻々にかわるパイプの入
側温度とその目標温度の差に対応して操作量修正
量を出力する1本内制御回路13;パイプ追跡
回路14;平均値演算回路15;および第2
の補正量演算回路16で構成される。この加熱
制御回路においては、昇温量目標値設定回路7
には、第1の誘導子コイル1の入側の温度T
in1と目標温度T1が入力され、これにより(T1
in1)が目標昇温量となり、したがつて、被加
熱材3の入側の温度Ti1が様々であつても、出側
の温度を目標値T1とする加熱制御がおこなわれ
る。
The heating control circuit receives an electrical signal representing the inlet temperature T i1 continuously or at intervals, and outputs a signal representing a time series average value T in1 of T i1 .
Average value calculation circuit 5 1 consisting of an integrating circuit with a predetermined time constant, etc. Average value calculation circuit 5 2 having a similar configuration and outputting a signal representing the average value T pn1 of the outlet temperature T p1 ; Target temperature setting A signal representing the target temperature T 1 from the device 6 1 (for example, a potentiometer) and an average value T of the inlet temperature from the average value calculation circuit 5 1
Temperature increase target value setting circuit 7, which is composed of an operational amplifier, a differential amplifier, etc., receives a signal representing T in1 as an input, and outputs a signal representing a temperature difference of (T 1 - T in1 ).
1 ; With the signals representing T in1 and T pn1 from the average value calculation circuits 51 and 52 as inputs, and the signal representing (T 1 −T in1 ) from the setting circuit 71 , (T pn1 −T in1 ) − (T 1 − T in1 ), that is, the actual average temperature increase amount (T pn1 − T in
1 ) A temperature rise amount deviation calculation circuit 8 1 consisting of an operational amplifier etc. outputs a signal representing the deviation from the target temperature rise amount (T 1 −T in1 ); Smoothing circuit 12 1 that smooths over two or more heating materials, for example, several heating materials; This smoothed value is multiplied by the unit operation amount (operation amount required to change the temperature increase by 1 degree Celsius) and the gain for power control. A first correction amount calculation circuit 9 1 consisting of an operational amplifier, a function generator, etc., converts into a signal representing the change in the manipulated variable (this is the set manipulated variable of the material to be heated this time); A manipulated variable calculation consisting of an operational amplifier, etc., which adds all or part of the average value of the temperature increase control correction amount of each part to the initial setting manipulated variable in the previous heating control of the heated material, which will be described later. Circuit 10 1 ; Internal control circuit 13 1 that outputs a manipulated variable correction amount in response to the ever-changing difference between the pipe inlet temperature and its target temperature; Pipe tracking circuit 14 1 ; Average value calculation circuit 15 1 ; and the second
It is composed of a correction amount calculation circuit 161 . In this heating control circuit, the temperature increase target value setting circuit 7
1 , the temperature T on the inlet side of the first inductor coil 1 1
in1 and target temperature T 1 are input, which results in (T 1
T in1 ) becomes the target temperature increase amount, and therefore, even if the temperature T i1 on the input side of the heated material 3 varies, heating control is performed to set the temperature on the output side as the target value T 1 .

加熱制御回路においては、その昇温量目標値
設定回路7に、ポテンシヨメータなどの目標温
度設定器6および6よりそれぞれ第1および
第2の目標温度T1およびT2を表わす信号が印加
される。したがつて加熱制御回路は、目標昇温
量を(T2−T1)なる固定量とする。したがつて、
加熱制御回路は、入側の温度Ti2が仮に変動し
ても出側の温度が常にTi2+(T2−T1)となるよう
に定昇温量制御をおこなう。加熱制御回路も
と同様に定昇温制御をおこなう。なお、第1図に
おいて、目標温度設定器6,6,6および
がそれぞれ目標温度T1,T2,T2およびT3
表わす信号を出力するように示しているが、これ
は、Tp1=Ti2=T1,Tp2=Ti3=T2と見なし得
ると仮定して一応表示したものであり、これらの
目標温度設定器6〜6はそれぞれ、他の所定
の温度を表示する信号を出力するように設定して
もよい。なぜならば、第2の誘導子コイル1
おいては、第1の誘導子コイル1の加熱温度
(T1)に対して所定の昇温量Tp1(図示上ではTp1
=T2−T1)を上乗せ加熱すればよく、また第3の
誘導子コイル1においては、第2の誘導子コイ
ルの出側の温度(T1+Tp1)に対して所定の昇
温量Tp2(図示上ではTp2=T3−T2)を上乗せ加
熱すればよいからである。この第1図に示す実施
例では最終目標温度はT1+Tp1+Tp2である。な
お図示上ではT3であり、T3=T1+Tp1+Tp2
る関係となる。但し、以上は第1誘導子コイル1
と第2誘導子コイルの間、および第2誘導子コイ
ルと第3誘導子コイルの間を被加熱材3が走行中
にその冷却は無いものと仮定した場合である。冷
却の影響は目標温度設定器6〜6の設定値の
調整で補償しうる。
In the heating control circuit, signals representing the first and second target temperatures T1 and T2 are sent from target temperature setting devices 62 and 63 such as potentiometers to the temperature increase target value setting circuit 72 . is applied. Therefore, the heating control circuit sets the target temperature increase amount to a fixed amount (T 2 −T 1 ). Therefore,
The heating control circuit performs constant temperature increase control so that even if the temperature T i2 on the inlet side fluctuates, the temperature on the outlet side is always T i2 +(T 2 −T 1 ). The heating control circuit also performs constant temperature rise control in the same way. In addition, in FIG. 1, the target temperature setters 6 2 , 6 3 , 6 4 and 6 5 are shown to output signals representing the target temperatures T 1 , T 2 , T 2 and T 3 respectively, but This is tentatively displayed on the assumption that T p1 = T i2 = T 1 and T p2 = T i3 = T 2 , and each of these target temperature setters 6 2 to 6 5 is It may be set to output a signal indicating a predetermined temperature. This is because, in the second inductor coil 12 , a predetermined temperature increase amount T p1 (in the diagram, T p1
= T 2 - T 1 ), and in the third inductor coil 13 , a predetermined temperature increase is applied to the temperature (T 1 +T p1 ) on the exit side of the second inductor coil. This is because it is sufficient to additionally heat the amount T p2 (T p2 = T 3 - T 2 in the figure). In the embodiment shown in FIG. 1, the final target temperature is T 1 +T p1 +T p2 . In addition, in the illustration, it is T3 , and the relationship becomes T3 = T1 + Tp1 + Tp2 . However, the above is the first inductor coil 1
This is a case where it is assumed that the material to be heated 3 is not cooled while it is running between the second inductor coil and the second inductor coil, and between the second inductor coil and the third inductor coil. The influence of cooling can be compensated for by adjusting the set values of the target temperature setters 6 1 - 6 5 .

次に前述した各構成要素の機能を更に詳細に説
明すると、パイプ追跡回路14は、パイプの先
端と尾端の到来を検出し、それらの間においてパ
イプの移動に対応して定まつたタイミングで信号
を発つし平均区間(サンプリング区間)を平均値
演算回路5および15に指示し、また、1本
内制御回路13に管端部制御タイミングおよび
管中央各部の昇温量偏差に基づいた操作量修正の
演算タイミングを指示する。
Next, to explain in more detail the functions of each of the above-mentioned components, the pipe tracking circuit 141 detects the arrival of the tip and tail ends of the pipe, and detects the arrival of the tip and tail ends of the pipe, and determines the timing between them corresponding to the movement of the pipe. It issues a signal and instructs the average interval (sampling interval) to the average value calculation circuits 51 and 151 , and also instructs the internal control circuit 131 to determine the tube end control timing and the temperature rise amount deviation of each part in the center of the tube. Instructs the calculation timing for modifying the manipulated variable based on the operation amount.

1本内制御回路13は、パイプ1本内の長さ
方向の温度変動を消去するための制御回路であつ
て、たとえば入側温度を入力してその目標値との
偏差をとり、その偏差に一定の係数をかけて操作
量修正量を求めるようなフイードフオワード制御
回路、あるいは、パイプ両端である一定のパター
ンで操作量修正量を出力するパターン制御回路な
どである。これらは1本内で出力の値が変化す
る。
Internal control circuit 13 1 is a control circuit for eliminating temperature fluctuations in the length direction within one pipe. These include a feedforward control circuit that calculates a manipulated variable correction amount by multiplying by a constant coefficient, or a pattern control circuit that outputs a manipulated variable correction amount in a fixed pattern at both ends of a pipe. The output value of these changes within one line.

平均値演算回路5,5および15は、そ
れぞれ温度計による温度計測値(連続的あるいは
一定間隔で断続的に信号入力)、および、各コイ
ルの操作量修正量をパイプ追跡回路14により
指示された区間で信号入力し、その平均値を求め
る。平均の方法としては区間の信号の積算(ある
いは積分)をとりそれを積算個数(あるいは積分
時間)で割つて求める単純平均が良い。平均の区
間としては最大はパイプの先端から後端までであ
るが、両端の非定常部(200〜1000mm)を除いた
部分が望ましい。
The average value calculation circuits 5 1 , 5 2 and 15 1 respectively receive the temperature measurement value by the thermometer (signal input continuously or intermittently at regular intervals) and the pipe tracking circuit 14 1 to calculate the operation amount correction amount of each coil. Input the signal in the interval specified by and calculate the average value. A good method for averaging is simple averaging, which is obtained by taking the integration (or integration) of the signals in the section and dividing it by the number of integrations (or integration time). The maximum average length is from the tip to the rear end of the pipe, but it is desirable to exclude unsteady parts (200 to 1000 mm) at both ends.

第2の補正量演算回路16は、操作量修正量
平均値VDから第2の補正量ΔV2を次の式によつ
て求める。
The second correction amount calculation circuit 161 calculates the second correction amount ΔV 2 from the operation amount correction amount average value V D using the following equation.

ΔV2=bVD,bは定数:0<b<1 昇温量目標値設定回路7は、入側温度平均値
in1(前回の被加熱材のもの)を用い、目標温
度T1との差 θ※=T1−Tin1 =目標昇温量 を表わす信号を出力する。これに対し回路,
,…の昇温量目標値設定回路7,…は、 θ※=T2−T1 =目標昇温量 を表わす信号を出力する。
ΔV 2 = bV D , b is a constant: 0<b<1 Temperature increase target value setting circuit 71 uses the average inlet temperature T in1 (of the previous heated material) to set the target temperature T 1 and A signal representing the difference θ*=T 1 −T in1 = target temperature increase amount is output. On the other hand, the circuit
, ... output a signal representing θ*=T 2 −T 1 =target temperature increase amount.

昇温量偏差演算回路8は、昇温量平均値 θn=Tpn1−Tin1 を求め、更に目標昇温量θ※と昇温量平均値θn
より、昇温量偏差Δθ=θn−θ※を求め、これ
を表わす信号を出力する。
The temperature increase amount deviation calculation circuit 81 calculates the average temperature increase value θ n =T pn1 −T in1 , and further calculates the target temperature increase amount θ* and the average temperature increase value θ n
From this, the temperature increase deviation Δθ=θ n −θ* is determined, and a signal representing this is output.

第1の補正量演算回路9と平滑回路12
は、過去2本以上の昇温量偏差を第1の補正量に
反映する方法として、たとえば、(1)毎回の昇温量
偏差Δθを平滑して、平滑値を求めこれに係
数を乗じて、補正量ΔV1を求めるか、あるい
は、(2)前回昇温量偏差Δθo-1、前々回昇温量偏
差Δθo-2から ΔV1=C1(Δθo-1−Δθo-2) +C2・Δθo-2 C1,C2:適当に設定された定数 なる式により補正量ΔV1を求める。いずれも同
じロツトの1本目から前回までのすべてが操作量
Sに反映される。
First correction amount calculation circuit 9 1 and smoothing circuit 12 1
Here, as a method to reflect the temperature increase deviation of two or more past times in the first correction amount, for example, (1) smooth the temperature increase deviation Δθ for each time, obtain a smoothed value, and multiply this by a coefficient. , find the correction amount ΔV 1 , or (2) ΔV 1 = C 1 (Δθ o -1 − Δθ o-2 ) from the previous temperature increase amount deviation Δθ o-1 and the temperature increase amount deviation Δθ o-2 from the previous time. +C 2 · Δθ o-2 C 1 , C 2 : Calculate the correction amount ΔV 1 using a formula consisting of appropriately set constants. In both cases, everything from the first to the previous run of the same lot is reflected in the manipulated variable V S.

実施例で採用した(1)の方法についてやや詳しく
説明すると、平滑の方法としては、次の式で表わ
される指数平滑が簡便で良い k-1 =α・Δθk-1+(1−α)k-2 k-1;前回までの偏差による平滑値 k-2;前々回までの 〃 〃 Δθk-1;前回の昇温量偏差 α;指数平滑係数 0<α<1 からΔV1を求めるときに使う係数は次のよ
うに定める。この係数は2種の係数の積となつて
いる。1つは昇温量を単位温度増減させるために
必要な昇温量の増減分a1で、パイプサイズその他
操業条件によつて変化するが、予め設定しておけ
ばよい。あと1つは調整ゲインa2で通常0から1
までの値をとり、偏差分の全部を次回のみで取り
去つてしまうことを避けて、制御の安定性を計つ
たものである。結局、次式 ΔV1=−a1×a2× でΔV1を求めることになる。
To explain the method (1) adopted in the example in a little more detail, as a smoothing method, exponential smoothing expressed by the following formula is simple and suitable k-1 = α・Δθ k-1 + (1-α) k-2 k-1 ; Smoothed value k-2 due to previous deviation; 〃 〃 Δθ k-1 ; Previous temperature increase deviation α; Exponential smoothing coefficient When calculating ΔV 1 from 0<α<1 The coefficients used for are determined as follows. This coefficient is a product of two types of coefficients. One is the increase/decrease a 1 in the temperature increase required to increase/decrease the temperature increase by unit temperature, which changes depending on the pipe size and other operating conditions, but may be set in advance. The other one is the adjustment gain a 2 , which is usually 0 to 1.
This is to measure the stability of control by taking the values up to and avoiding removing all of the deviation only in the next time. In the end, ΔV 1 is found using the following formula: ΔV 1 =−a 1 ×a 2 ×.

一般に、1本毎の初期設定操作量VSに対して
1本内制御回路により修正量を加える制御手法で
は初期設定操作量VSに加えて1本内制御回路が
出力するVD(この出力は1本内で変化するが、
Dはその平均値)とがあり、これらの和VT(=
S+VD)が実際に被加熱材に加えられる発熱量
を決めるものであり、昇温量偏差Δθが生じたの
はVTにずれがあつたからである。
In general, in a control method in which the initial setting manipulated variable V S for each line is modified by the internal control circuit, in addition to the initial setting manipulated variable V S , the internal control circuit outputs V D (this output changes within one line,
V D is the average value), and their sum V T (=
V S +V D ) determines the amount of heat actually added to the material to be heated, and the temperature increase deviation Δθ occurs because there is a deviation in V T .

ところがVSを計算するとき、第1の補正量Δ
V1には前回の設定操作量VSを加えるようになつ
ているので、VDの分は何ら考慮されていない。
従つてVDに対する何らかの補正が必要となつて
くる。簡単には全操作量VTに第1の補正量ΔV1
を加えて新しい初期設定操作量VSを計算する方
法もあるが、これは必ずしも適切ではない。とい
うのはVSが過去何本かの傾向をとらえているの
に対し、VDはその1本だけの外乱に対する操作
量であるので、この2つをいつしよにしてしまう
ことはできない。
However, when calculating V S , the first correction amount Δ
Since the previous setting operation amount V S is added to V 1 , V D is not taken into consideration at all.
Therefore, some kind of correction to V D becomes necessary. Simply put, the first correction amount ΔV 1 is added to the total operation amount V T
There is also a method of calculating a new initial setting manipulated variable V S by adding , but this is not necessarily appropriate. This is because while V S captures the trends of several past lines, V D is the amount of operation for the disturbance of only that one line, so these two cannot be made to be the same at any time.

そこで本発明においては、VDによる昇温量変
化分Δθ′を考えて、VDが0だつた場合、Δθで
あつた昇温量はΔθ−Δθ′になるとし、これに
対して第1の補正量を求める計算を適用し、Δθ
−Δθ′のうちΔθは本来の第1の補正量の元に
なり、−Δθ′は第2の補正量の元になるとした。
いま単位操作量(昇温量の単位温度増減するに必
要な操作量の増減量)がa1であつたとすると Δθ′=V/a となる。従つて Δθ−Δθ′=Δθ−V/a である。このΔθ−Δθ′を昇温量偏差として係
数αの指数平滑を行なうと、 k=αΔθk+(1−α)Δk-1 ′k=α(Δθk−Δθ′) +(1−α)Δk-1 であるから′=−αΔθ′ である。第1の補正量ΔV1′は ΔV′1 =a1a2{−(−αΔθ′)} =a1a2(−)+a1a2αΔθ′ =ΔV1+a1a2α・(V/a) =ΔV1+αa2VD 従つて第2の補正量ΔV2は、 ΔV2=bVD で計算し、bはαa2が望ましい値となる。VD
1本内制御回路の出力(1本内で変化する)を1
本内で平均して得られる。
Therefore, in the present invention, considering the temperature increase amount change Δθ' due to V D , it is assumed that when V D is 0, the temperature increase amount that was Δθ becomes Δθ − Δθ', and in contrast to this, the first Apply the calculation to find the correction amount of Δθ
Of -Δθ', Δθ is the source of the original first correction amount, and -Δθ' is the source of the second correction amount.
Now, if the unit operation amount (the increase or decrease in the operation amount necessary to increase or decrease the unit temperature of the temperature increase) is a 1 , then Δθ'=V D /a 1 . Therefore, Δθ−Δθ′=Δθ−V D /a 1 . If we perform exponential smoothing with the coefficient α using this Δθ−Δθ′ as the temperature increase deviation, k=αΔθk+(1−α)Δk −1′k =α(Δθk−Δθ′)+(1−α) Δk -1 , so ′=−αΔθ′. The first correction amount ΔV 1 ′ is ΔV′ 1 =a 1 a 2 {−(−αΔθ′)} =a 1 a 2 (−)+a 1 a 2 αΔθ′ = ΔV 1 +a 1 a 2 α・(V D /a 1 ) = ΔV 1 +αa 2 V D Therefore, the second correction amount ΔV 2 is calculated as ΔV 2 =bV D , and the desirable value of b is αa 2 . V D is the output of the control circuit within one circuit (changes within one circuit).
Obtained on average within the book.

すべての誘導子コイルを昇温量制御とすると、
第1段(初段)コイルの入側温度とその目標値が
一致しておればよいが、ずれがあつた場合、最終
段加熱温度にその分が持ちこされることになる。
これを防止するため第1図に示す加熱制御装置で
は特に第1段コイルの入側温度目標値として設定
された温度ではなく、前回の被加熱物の入側温度
平均値(加熱前の素材の温度に等しい)を使うこ
とにしている。加熱前素材温度は通常1本1本で
異なるものではないので、次回の温度と前回の温
度は同じと考えてよい。
If all inductor coils are controlled by the amount of temperature rise,
It is sufficient that the inlet temperature of the first stage (initial stage) coil and its target value match, but if there is a discrepancy, the difference will be carried over to the final stage heating temperature.
In order to prevent this, the heating control device shown in Fig. 1 does not use the temperature set as the target value of the inlet temperature of the first stage coil, but rather the average value of the inlet temperature of the previous heated object (the temperature of the material before heating). (equal to temperature). The temperature of the material before heating usually does not differ from one piece to another, so the next temperature and the previous temperature can be considered to be the same.

加熱第1段コイル1について例をとつて説明
する。
The first stage heating coil 11 will be explained by taking an example.

設定された入側、出側温度目標値をT0※,
T1※とし、前回被加熱材での入側、出側温度平
均値をT0,T1とすると、全コイルを定昇温量制
御とすると、昇温量偏差Δθは Δθ=(T1−T0)−(T1※−T0※) となり、Δθを0とするような制御がなされたと
して、 T1=T1※+(T0−T0※) となり、出側温度T1は目標温度T1※より(T0
T0※)なるずれを生ずることになる。このずれは
最終段まで持ちこされる。一方、第1図に示す如
くコイル1を定温度制御にしたときには、
T0※の代わりにT0を使うので昇温量偏差Δθは Δθ=(T1−T0)−(T1※−T0) =T1−T1※ となり、Δθを0とするような制御がなされたと
して T1=T1※ となり、出側温度T1は目標値T1※に等しくな
る。
The set inlet and outlet temperature target values are T 0 *,
T 1 *, and the average values of the entrance and exit temperatures of the previously heated material are T 0 and T 1. If all coils are controlled by a constant temperature increase amount, the temperature increase deviation Δθ is Δθ = (T 1 − T 0 ) - (T 1 * - T 0 *), and if control is performed to make Δθ 0, then T 1 = T 1 * + (T 0 - T 0 *), and the outlet temperature T 1 is the target temperature T 1 * (T 0
This will result in a deviation of T 0 *). This deviation is carried over to the final stage. On the other hand, when the coil 11 is subjected to constant temperature control as shown in Fig. 1,
Since T 0 is used instead of T 0 *, the temperature increase deviation Δθ is Δθ = (T 1 − T 0 ) − (T 1 * − T 0 ) = T 1 − T 1 *, so that Δθ is set to 0. Assuming that such control is performed, T 1 =T 1 *, and the outlet temperature T 1 becomes equal to the target value T 1 *.

次に実施例を説明する。内径370mm、コイル定
格1000V、コイル容量1200KW、コイル長700mm、
付勢周波数330Hzの第2段コイル1において、
被加熱材を外径244.5mm、肉厚12.05mmのパイプと
し、昇温量目標値T2−T1を、140℃(T2=310
℃,T1=170℃)とした。
Next, an example will be described. Inner diameter 370mm, coil rating 1000V, coil capacity 1200KW, coil length 700mm,
In the second stage coil 12 with an energizing frequency of 330Hz,
The material to be heated is a pipe with an outer diameter of 244.5 mm and a wall thickness of 12.05 mm, and the target temperature increase value T 2 - T 1 is 140℃ (T 2 = 310
℃, T 1 = 170℃).

3本目のパイプで、 初期設定操作量 (VS)=510V を計算した。パイプの両端1000mmを除く部分で
500mm毎に全操作量および入側・出側温度をサン
プリング計測し、平均したところ 全操作量(VT) 518V, 入側温度平均値 169℃, 出側温度平均値 311℃ となつた。なお、 2本目までの昇温量平滑値 8℃, 昇温量平滑係数 0.5, 昇温量〜操作量ゲイン 27, 調整ゲイン 0.6 であつた。
For the third pipe, we calculated the initial setting operation amount (V S ) = 510V. In the part excluding 1000mm at both ends of the pipe
The total operation amount and the inlet and outlet temperatures were sampled and measured every 500 mm, and the results were averaged. The total operation amount (V T ) was 518V, the average inlet temperature was 169℃, and the average outlet temperature was 311℃. The smoothed value of the temperature increase up to the second tube was 8°C, the smoothing coefficient of the temperature increase was 0.5, the temperature increase amount to manipulated variable gain was 27, and the adjustment gain was 0.6.

以上より4本目のパイプに対する初期設定操作
量を求める手順を示すと、 昇温量偏差 Δθ=(311−169)−140=2℃, 昇温量偏差平滑値 =0.5×2+0.5×8=5℃, 第1の補正量 ΔV1=−0.6×2.7×5≒−8V, 第2の補正量 ΔV2=0.3×(518−510)≒2V, 4本目操作量 VS=510−8+2=504V である。
From the above, the procedure for calculating the initial setting operation amount for the fourth pipe is as follows: Temperature increase deviation Δθ = (311-169) - 140 = 2℃, Temperature increase deviation smoothed value = 0.5 × 2 + 0.5 × 8 = 5℃, 1st correction amount ΔV 1 = −0.6×2.7×5≒−8V, 2nd correction amount ΔV 2 =0.3×(518−510)≒2V, 4th operation amount V S =510−8+2= It is 504V.

第2図に数値計算例と同じロツトの1本目から
20本目までの、前述したNo.2コイル1の初期設
定操作量、全操作量、昇温量平均値および最終加
熱温度(7コイル出側温度)の実績値を示す。こ
れより、 Γ2コイルの操作量の最適値は約510Vである。
Figure 2 shows the first lot of the same number as the numerical calculation example.
The actual values of the initial setting operation amount, total operation amount, temperature increase average value, and final heating temperature (7 coil outlet temperature) of the No. 2 coil 12 described above up to the 20th coil are shown. From this, the optimum value for the manipulated variable of the Γ2 coil is approximately 510V.

Γ当初の操作値550Vは約40V大きかつたことにな
り、その結果約10℃昇温量偏差が生じた。
ΓThe initial operating value of 550V was about 40V higher, resulting in a temperature increase deviation of about 10°C.

Γしかし3本目には設定操作量、昇温量共に良い
値に落ち着いている。
Γ However, by the third test, both the set operation amount and the temperature increase amount had settled down to good values.

Γ全操作量が1本毎にやや激しく動いているのは
1本毎に変化する温度外乱によるものであろ
う。
The reason why the Γ total manipulated variable changes somewhat violently for each line is probably due to the temperature disturbance that changes for each line.

Γ各コイルで同様の制御を行なつた結果、最終加
熱温度は±4℃内に入つておりこれは充分に満
足できる結果である。
As a result of performing similar control for each Γ coil, the final heating temperature was within ±4° C., which is a fully satisfactory result.

(もし制御していなかつたならば温度バラツキ
は±10℃程度になると推定できる) ということがわかる。
(If it were not controlled, it can be estimated that the temperature variation would be about ±10°C.)

なお、第1図においては、入側温度Ti1の平均
および出側温度Tp1の平均をまず求めて、それら
の値から入側温度Ti1と出側温度Tp1の差の平均
(Tpn1−Tin1)を求める構成を示したが、検出器
,4の検出信号を、たとえば差動増幅回路
などの差演算回路に与えて入側温度Ti1と出側温
度Tp1の差(Tp1−Ti1)を求め、これを表わす
信号を平均値演算回路に与えて平均値(Tpn1
in1)を求めて、これを表わす信号を昇温量偏
差演算回路に入力するようにしてもよい。
In FIG. 1, the average of the inlet temperature T i1 and the average of the outlet temperature T p1 are first obtained, and from these values the average of the difference between the inlet temperature T i1 and the outlet temperature T p1 (T pn1 -T in1 ), the detection signals of the detectors 4 1 and 4 2 are applied to a difference calculation circuit such as a differential amplifier circuit to calculate the difference between the input temperature T i1 and the output temperature T p1 . (T p1 - T i1 ) is obtained, a signal representing this is given to the average value calculation circuit, and the average value (T pn1 - T i1 ) is calculated.
T in1 ) may be obtained and a signal representing this may be input to the temperature increase amount deviation calculation circuit.

また、第1図には、第1の誘導子コイルで目標
温度T1に加熱制御した後第2、第3の誘導子コ
イルで所定昇温量の加熱をする態様を示したが、
加熱制御回路において目標温度設定器6を省
略して検出器4の出力であるTi2を表わす信号
を昇温量目標値設定回路7のマイナス入力とし
てT2を第2の目標温度とすることにより、第2
の誘導子コイル1による加熱は入側温度Ti2
変動にもかかわらずT2を出側温度とする定温度
制御態様となる。同様にして加熱制御回路も定
温度制御態様とすることができる。このように第
2および第3の加熱制御回路およびを定温度
制御態様にした場合には、前段(上流側)に配置
された誘導子コイルによる加熱制御において出側
温度Tp1,Tp2がそれぞれ目標温度T1,T2から
少々ずれていても、そのずれはその後段において
補償されるので、最終の温度(T1+Tp1+Tp2
はT3)にまで波及することがない。
Further, FIG. 1 shows a mode in which the first inductor coil performs heating control to the target temperature T 1 and then the second and third inductor coils perform heating to a predetermined temperature increase amount.
In the heating control circuit, the target temperature setting device 62 is omitted, and the signal representing T i2 , which is the output of the detector 43 , is used as a negative input of the heating amount target value setting circuit 72 , and T2 is set as the second target temperature. By doing so, the second
Heating by the inductor coil 12 is a constant temperature control mode in which T2 is the outlet temperature despite fluctuations in the inlet temperature T i2 . Similarly, the heating control circuit can also have a constant temperature control mode. In this way, when the second and third heating control circuits are set to a constant temperature control mode, the outlet temperatures T p1 and T p2 are respectively controlled in the heating control by the inductor coil arranged in the previous stage (upstream side). Even if there is a slight deviation from the target temperatures T 1 and T 2 , the deviation is compensated for in the subsequent stage, so it does not affect the final temperature (T 1 +T p1 +T p2 or T 3 ).

第1図に示す加熱温度制御回路と、あるい
はととは、被加熱材3の移送方向に関して入
れかえて配置してもよく、また誘導子コイルと加
熱温度制御回路の組合せは、被加熱材の元の温度
と最終目標温度との温度差、および各誘導子コイ
ルの容量等に応じて、2組以上の任意の数にしう
る。検出器4と4を1つのもので共用しても
よく(この場合はTp1=Ti2)、また検出器4
を1つのもので共用してもよい(Tp2=Ti
)。このようにするときには平均値演算回路5
と5および5と5はそれぞれ共用の1つ
のものとなる。
The heating temperature control circuit shown in FIG. The number of inductor coils may be any number greater than or equal to two, depending on the temperature difference between the temperature of the inductor and the final target temperature, the capacity of each inductor coil, and the like. The detectors 4 2 and 4 3 may be used in common (T p1 = T i2 in this case), or the detectors 4 4 and 4 5 may be used in common (T p2 = T i2 ). T i
3 ). When doing this, the average value calculation circuit 5
2 and 5 3 and 5 4 and 5 5 each become one shared item.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明を実施する電気誘導加熱装置の
一例構成を示すブロツク図、第2図は本発明を実
施したときの、誘導子コイルに印加された電圧と
昇温量の関係を示すグラフである。 1〜1:誘導子コイル、2:移送経路、
3:被加熱材、4〜4:温度検出器、6
:目標温度設定器、7,7:昇温量目標
値設定回路。
Fig. 1 is a block diagram showing the configuration of an example of an electric induction heating device implementing the present invention, and Fig. 2 is a graph showing the relationship between the voltage applied to the inductor coil and the amount of temperature rise when the present invention is implemented. It is. 1 1 to 1 3 : inductor coil, 2: transfer path,
3: Heated material, 4 1 - 4 6 : Temperature detector, 6 1 -
6 5 : Target temperature setting device, 7 1 , 7 2 : Temperature increase amount target value setting circuit.

Claims (1)

【特許請求の範囲】 1 多くの被加熱材を順次誘導子コイルに通して
各被加熱材のそれぞれにおいて各部の昇温量ある
いは出側温度が一定昇温量になるように各部の加
熱制御をするにおいて、該誘導子コイルですでに
加熱した被加熱材の、初期設定操作量に対する各
部の加熱制御における操作量修正量を被加熱材の
先端から尾端までの任意の区間において把握して
これらの平均値を求め、今回の被加熱材に予め割
り当てられた設定操作量にこの平均量の全部また
は一部を加えて今回の被加熱材の初期設定操作量
とすることを特徴とする誘導加熱制御方法。 2 各被加熱材の設定操作量を、誘導子コイルで
すでに加熱した被加熱材の加熱前温度と加熱後温
度の差すなわち実昇温量と目標昇温量の偏差を求
めて前記すでに加熱した被加熱材に対する初期設
定操作量に前記偏差に対応する操作量変更分に所
定のゲインを乗じた補正操作量を加えたものとす
る前記特許請求の範囲第1項記載の誘導加熱制御
方法。
[Scope of Claims] 1 A number of materials to be heated are sequentially passed through an inductor coil, and the heating of each portion of each material to be heated is controlled so that the amount of temperature increase in each portion or the temperature on the outlet side becomes a constant temperature increase amount. In order to do this, the amount of adjustment of the operation amount in the heating control of each part with respect to the initial setting operation amount of the material to be heated that has already been heated by the inductor coil is grasped in any section from the tip to the tail end of the material to be heated, and these changes are made. Induction heating is characterized in that the average value of is calculated, and all or part of this average amount is added to the set operation amount previously assigned to the current material to be heated, and the result is set as the initial setting operation amount for the current material to be heated. Control method. 2 The set operation amount of each heated material is determined by calculating the difference between the pre-heating temperature and the post-heating temperature of the heated material that has already been heated by the inductor coil, that is, the deviation between the actual temperature increase amount and the target temperature increase amount. 2. The induction heating control method according to claim 1, wherein a corrected operation amount obtained by multiplying the operation amount change corresponding to the deviation by a predetermined gain is added to the initial setting operation amount for the heated material.
JP15250778A 1978-12-08 1978-12-08 Method of inductively controlling heat Granted JPS5578491A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15250778A JPS5578491A (en) 1978-12-08 1978-12-08 Method of inductively controlling heat

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15250778A JPS5578491A (en) 1978-12-08 1978-12-08 Method of inductively controlling heat

Publications (2)

Publication Number Publication Date
JPS5578491A JPS5578491A (en) 1980-06-13
JPS6131947B2 true JPS6131947B2 (en) 1986-07-23

Family

ID=15541956

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15250778A Granted JPS5578491A (en) 1978-12-08 1978-12-08 Method of inductively controlling heat

Country Status (1)

Country Link
JP (1) JPS5578491A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6025177A (en) * 1983-07-21 1985-02-07 株式会社明電舎 Incoming heat controller of induction heater
JP4965031B2 (en) * 2001-06-15 2012-07-04 大豊工業株式会社 Temperature control method in high frequency heating

Also Published As

Publication number Publication date
JPS5578491A (en) 1980-06-13

Similar Documents

Publication Publication Date Title
JP6642289B2 (en) Rolling line mathematical model calculation device and rolled material temperature control device
FI96454B (en) Apparatus and method for controlling the temperature of nozzle housing for fiberglass forming
JPS6131947B2 (en)
JPH02166235A (en) Method for controlling sheet temperature in metallic sheet heating furnace
JP3757809B2 (en) air conditioner
CN112672664A (en) Method for controlling hair care appliance
JPS6131949B2 (en)
JP3854018B2 (en) Automatic control method
JP6693067B2 (en) Combustion device
JPH0742515B2 (en) Induction heating control method for ERW pipe welds
JPH0525567B2 (en)
JPS5831373B2 (en) Temperature control method and device for continuous strip heat treatment furnace
JPH01184233A (en) Sheet temperature control method for continuously annealing furnace
JP2833461B2 (en) Metal strip temperature control method
JP2523991B2 (en) Control method for induction heating device
JPH08199248A (en) Device for controlling temperature in continuous annealing apparatus
JPS59288B2 (en) Water cooling control method and device in steel rolling
SU863681A1 (en) Method of web annealing control in multizone furnace
JPH04168232A (en) Method for controlling temperature of steel strip
JPH07109790B2 (en) Induction heating device
JPH06303746A (en) Control method of heating temperature of motor core
JPH07326470A (en) Heat input control device of billet heater
KR100250760B1 (en) Controlling method for steel heat treatment in continuous furnace
JPH0622949Y2 (en) Induction heating device
JPS60135531A (en) Temperature control method of continuous annealing furnace