JP2523991B2 - Control method for induction heating device - Google Patents
Control method for induction heating deviceInfo
- Publication number
- JP2523991B2 JP2523991B2 JP2404555A JP40455590A JP2523991B2 JP 2523991 B2 JP2523991 B2 JP 2523991B2 JP 2404555 A JP2404555 A JP 2404555A JP 40455590 A JP40455590 A JP 40455590A JP 2523991 B2 JP2523991 B2 JP 2523991B2
- Authority
- JP
- Japan
- Prior art keywords
- temperature
- induction heating
- strip
- heating device
- heating
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/25—Process efficiency
Landscapes
- General Induction Heating (AREA)
- Control Of Heat Treatment Processes (AREA)
- Heat Treatment Of Strip Materials And Filament Materials (AREA)
Description
【0001】[0001]
【産業上の利用分野】本発明は、被加熱材を搬送しなが
ら加熱する誘導加熱装置の制御方法に関するものであ
る。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of controlling an induction heating device for heating a material to be heated while it is being conveyed.
【0002】[0002]
【従来の技術】一般に、搬送される物体を誘導加熱装置
にて加熱を行う場合の必要電力P(kW)は、数式1にて
求められる。2. Description of the Related Art Generally, the required electric power P (kW) for heating an object to be conveyed by an induction heating device is obtained by the formula (1).
【0003】[0003]
【数1】 [Equation 1]
【0004】一方、誘導加熱装置を被加熱材が通過する
過程では、コイル中で加熱最中での熱放散やコイル間の
空走部通過時に於ける熱放散等の熱損失(温度降下)分
が発生する。特に、薄板(ストリップ)を移送しながら
加熱する場合には、ストリップがばたつきやすいこと、
また加熱効率をあげるためにはストリップとコイルとの
間の距離をできるだけ小さくする方が有利であることか
ら、その間隔は50〜100mm程度しかないことによ
り、ストリップとコイルあるいはコイルを保護する耐火
物とが接触しやすく、これを防ぐためにサポートロール
をコイル間に設置しなければならない。よって、そのた
めのコイル間空走部が2〜3m必要であり、そこでの熱
損失分が無視できず制御誤差の大きな原因となる。又、
既存の設備を改造して誘導加熱装置を設置する場合など
には既設物との干渉によりやむなく空走部が生じて同様
な問題が発生してしまうことがある。ここで、図1にレ
イアウトを示す誘導加熱装置を例にして、その制御誤差
を計算機シュミレーションにより試算してみる。表1が
その誘導加熱装置の諸元である。On the other hand, in the process in which the material to be heated passes through the induction heating device, the amount of heat loss (temperature drop) such as heat dissipation during heating in the coil and heat dissipation during passing through idle parts between the coils. Occurs. In particular, when heating while transferring a thin plate (strip), the strip easily flaps,
Since it is advantageous to make the distance between the strip and the coil as small as possible in order to increase the heating efficiency, the distance between the strip and the coil is only about 50 to 100 mm. It is easy to make contact with and the support roll must be installed between the coils to prevent this. Therefore, the idle running portion between the coils for that purpose is required to be 2 to 3 m, and the heat loss there can not be ignored, which becomes a large cause of the control error. or,
When the existing equipment is modified to install the induction heating device, the same problem may occur due to interference with the existing equipment, resulting in an idle section. Here, taking the induction heating device whose layout is shown in FIG. 1 as an example, a trial calculation of the control error will be made by computer simulation. Table 1 shows the specifications of the induction heating device.
【0005】[0005]
【表1】 [Table 1]
【0006】本例の誘導加熱装置は竪型連続焼鈍炉の1
パスに定格出力1000kWの誘導加熱装置(コイル)を
3基タンデム状に配置しており、ストリップの通板方向
の上流側から順番にNo.1誘導加熱装置33、No.
2誘導加熱装置34、No.3誘導加熱装置35と称し
ている。また、No.1誘導加熱コイル33CとNo.
2誘導加熱コイル34Cとの間に前述したストリップサ
ポートロール36が設置されており、その区間が空走部
となっている。(第1空走部)さらに、最終段のNo.
3誘導加熱コイル35Cから温度管理用の誘導加熱装置
出口板温計38までの間も空走部となっている。(第2
空走部)また、37は誘導加熱装置入口の板温を測定す
る誘導加熱装置入口板温計である。表2は計算機シュミ
レーションに使用した各条件値である。The induction heating apparatus of this example is one of the vertical continuous annealing furnaces.
Three induction heating devices (coils) with a rated output of 1000 kW are arranged in a tandem shape in the path, and No. 1 is sequentially installed from the upstream side in the strip passing direction. 1 induction heating device 33, No. 1
2 induction heating device 34, No. It is called a 3-induction heating device 35. In addition, No. No. 1 induction heating coil 33C.
The above-mentioned strip support roll 36 is installed between the two induction heating coils 34C, and the section is an idle section. (First free-running section) Furthermore, No. of the final stage.
The space from the induction heating coil 35C to the induction heating device outlet plate thermometer 38 for temperature management is also an idle section. (Second
In addition, 37 is an induction heating device inlet plate thermometer for measuring the plate temperature at the induction heating device inlet. Table 2 shows each condition value used for the computer simulation.
【0007】[0007]
【表2】 [Table 2]
【0008】計算機シュミレーションは、入側板温計か
ら出側板温計までのスパン(23m)を1m間隔で区切
り、入側板温計直下の板温を基準として、上流側より下
流側へ向かって、各区間での誘導加熱による温度上昇分
と熱放散による温度降下分を加えたもの(通電していな
いコイルを通過する場合や空走部を通過する場合は温度
降下分のみ)を出側板温計直下位置まで積算する熱収支
モデル式により収束計算を行って、加熱目標温度あるい
は目標昇温量を達成するときのコイルの設定電力値を求
める方法にて行った。また、各コイルへの電力設定配分
は各誘導加熱装置の最大投入電力に対して均等負荷率と
なるような配分とした。その試算結果を表3に示す。The computer simulation divides the span (23 m) from the inlet side plate thermometer to the outlet side plate thermometer at intervals of 1 m, and based on the plate temperature directly below the inlet side plate thermometer, from the upstream side to the downstream side, Immediately below the outlet plate thermometer, add the temperature rise due to induction heating in the section and the temperature drop due to heat dissipation (only the temperature drop when passing through a coil that is not energized or passing through an idle section) Convergence calculation was performed using the heat balance model equation that integrates up to the position, and the setting power value of the coil when the heating target temperature or target heating amount was achieved was obtained. In addition, the power setting distribution to each coil is such that the load factor is uniform with respect to the maximum input power of each induction heating device. Table 3 shows the trial calculation results.
【0009】[0009]
【表3】 [Table 3]
【0010】例えば、炉速が100mpm でストリップの
温度を300℃から100℃昇温させる場合には、熱損
失分を考慮すれば3基合計で1266(kW)を必要とす
る。一方、数式1の一般式にて求めた必要電力PG (k
W)は、下記の数式2に示すように、For example, when the temperature of the strip is raised from 300 ° C. to 100 ° C. at a furnace speed of 100 mpm, a total of 1266 (kW) is required considering the heat loss. On the other hand, the required power P G (k
W) is, as shown in Equation 2 below,
【0011】[0011]
【数2】 [Equation 2]
【0012】であり、303(kW)分の誤差があること
が判る。そしてこの303(kW)分に相当する温度誤差
は約24℃にもなる。よって、誘導加熱装置でストリッ
プの温度を制御する場合には、これらの熱損失分を見込
んだ電力値を誘導加熱装置に設定しなければ、その分が
誤差となり制御精度が確保できない。It can be seen that there is an error of 303 (kW). The temperature error corresponding to this 303 (kW) amount is about 24 ° C. Therefore, when the temperature of the strip is controlled by the induction heating device, unless the electric power value that accounts for these heat losses is set in the induction heating device, that amount becomes an error and control accuracy cannot be secured.
【0013】一方、特開昭51−87836、特開昭5
2−62110、特開昭52−122941、特開昭5
2−122942、特開昭57−37679、特開昭5
9−59824号公報などの公知の誘導加熱装置の制御
方法では、制御誤差を誘導加熱装置出口に設置する板温
計により検出して、誘導加熱装置への電力設定値を修正
するいわゆるフィードバック制御により、熱損失分に起
因するもの以外の諸条件の変化に起因するものも含め
て、制御誤差を抑制する方式を採っている。On the other hand, JP-A-51-87836 and JP-A-5-7836.
2-62110, JP-A-52-12941, and JP-A-5-512.
2-122942, JP-A-57-37679, JP-A-SHO-5
In a known induction heating device control method such as 9-59824, a so-called feedback control is used to detect a control error by a plate thermometer installed at the induction heating device outlet and correct the power set value to the induction heating device. In addition, a method of suppressing the control error is adopted, including those caused by changes in various conditions other than those caused by heat loss.
【0014】しかしながら、このフィードバック制御方
式は、制御結果を検知してから制御操作量すなわち電力
値の修正を行う制御方式であるから、ストリップ上のあ
る点がコイル内を通過して加熱されている間は当然制御
不可能でありまた、その点がコイルを出て板温計で測温
され、制御誤差が検知されてから制御が作動して誤差が
抑制されるまでの間のロスタイムも存在するので、これ
らの間に処理されたストリップは場合によっては規定の
温度誤差範囲を外れてしまう。すなわち、定常部におい
ては本方法は有効であるが、ストリップのサイズや加熱
目標温度あるいは目標昇温量の変更部直後においては、
目標とする温度制御精度を保証し得るものではなく、し
たがって、熱損失分を考慮した電力値の設定が必要であ
る。However, since this feedback control system is a control system in which the control operation amount, that is, the electric power value is corrected after detecting the control result, a certain point on the strip passes through the coil and is heated. During that time, of course, it is impossible to control, and there is also a loss time from the point where the coil exits the coil and the temperature is measured by the plate thermometer and the control error is detected until the control is activated and the error is suppressed. Therefore, the strips processed during these may sometimes fall outside the specified temperature error range. That is, this method is effective in the steady part, but immediately after the part where the size of the strip, the target heating temperature or the target heating amount is changed,
The target temperature control accuracy cannot be guaranteed, and therefore it is necessary to set the power value in consideration of the heat loss.
【0015】これに対して、特開昭54−29141号
公報では熱損失分を補償する電力値を被加熱材の入口温
度、速度、目標昇温量から導出するようにしている。し
かし、熱損失分は被加熱材のサイズや加熱途中でのその
時々の被加熱材の温度と周囲温度との差及び通過時間に
依存するものであるから、被加熱材の入口温度、速度、
目標昇温量のみからでは、被加熱材のサイズや目標昇温
量あるいは加熱目標温度の変更に対しては、目標制御精
度を確保できるに充分な電力設定値を導出し得るもので
はない。特に、ストリップの連続焼鈍炉に設置される誘
導加熱装置では、ストリップのサイズの変更点や加熱目
標温度あるいは目標昇温量の変更が頻繁に行われるが、
この方法では各変更点直後において所望の温度制御精度
を得ることができず用を成さない。On the other hand, in Japanese Patent Laid-Open No. 54-29141, the electric power value for compensating for the heat loss is derived from the inlet temperature of the material to be heated, the speed, and the target temperature rise amount. However, since the heat loss depends on the size of the material to be heated and the difference between the temperature of the material to be heated and the ambient temperature during heating and the passing time, the inlet temperature of the material to be heated, the speed,
It is not possible to derive a sufficient power setting value for ensuring the target control accuracy with respect to the size of the material to be heated, the target temperature rise amount, or the heating target temperature only from the target temperature rise amount. In particular, in the induction heating device installed in the continuous annealing furnace for strips, the change point of the size of the strip and the target heating temperature or the target heating amount are frequently changed,
In this method, the desired temperature control accuracy cannot be obtained immediately after each change point, and therefore it is useless.
【0016】また、特開昭55−78490号公報では
コイル間での冷却(熱損失分)の影響を目標温度設定を
調整することで補正するとあるが、この従来技術におい
ても特開昭54−29141について述べたことと同様
の理由があることに加えて、ストリップが誘導加熱装置
を通過中には、コイル間での熱損失分のみならずコイル
内での熱損失分もあるので、それが考慮されてない分が
制御誤差となる。よって、この方法も特開昭54−29
141と同様に、特に、ストリップの連続焼鈍炉に設置
される誘導加熱装置のようにストリップのサイズに変更
点や加熱目標温度あるいは目標昇温量の変更が頻繁に行
われるものに対しては、所望の温度制御精度を得るため
の電力設定値の導出方法を提供するものではない。Further, in JP-A-55-78490, the effect of cooling (heat loss) between the coils is corrected by adjusting the target temperature setting. In addition to having the same reasons as described for 29141, there is heat loss between the coils as well as heat loss between the coils while the strip is passing through the induction heating device. The part that is not taken into account is the control error. Therefore, this method is also disclosed in JP-A-54-29.
Similar to 141, particularly for an induction heating apparatus installed in a continuous annealing furnace for strips, such as an induction heating apparatus in which the size of the strip is changed and the heating target temperature or the target heating amount is frequently changed, It does not provide a method of deriving a power set value for obtaining a desired temperature control accuracy.
【0017】[0017]
【発明が解決しようとする課題】これに対し、本発明
は、ストリップのサイズや加熱目標温度あるいは目標昇
温量などの加熱状況の変化に対して柔軟性、即応性をも
ち、コイル間空走部のみならずコイル部での熱損失分を
も考慮した、加熱目標温度あるいは目標昇温量を得るた
めの誘導加熱装置への電力設定値の導出方法を提供する
ものである。On the other hand, the present invention has flexibility and quick response to changes in the heating conditions such as the size of the strip, the target heating temperature or the target heating amount, and idle running between the coils. Provided is a method for deriving a power set value to an induction heating device for obtaining a heating target temperature or a target temperature rise amount in consideration of a heat loss amount not only in a coil portion but also in a coil portion.
【0018】[0018]
【課題を解決するための手段】すなわち本発明は、複数
の加熱コイルがタンデム状に配列されかつ少なくとも1
ケ所のコイル間にサポートロールが設置されて空走部を
もつ誘導加熱装置にて、ストリップを搬送しながら加熱
し、所定の加熱温度あるいは所定の昇温量を確保する誘
導加熱装置の制御方法において、ストリップの加熱目標
温度または目標昇温量の変更部あるいはストリップのサ
イズ変更部が誘導加熱装置の入口に到達した際に、スト
リップのサイズ、各コイル部およびコイル間空送部に設
置した雰囲気温度計により検出した温度値に基づいて、
ストリップが誘導加熱装置入口から出口までを通過する
間に生じる熱損失分(温度降下分)を考慮した熱収支モ
デル式を用いて収束計算を行い、加熱目標温度または目
標昇温量を達成する誘導加熱装置への必要最適電力設定
値を求め設定することを特徴とする誘導加熱装置の制御
方法である。That is, according to the present invention, a plurality of heating coils are arranged in tandem and at least one heating coil is arranged.
A method for controlling an induction heating device, in which a support roll is installed between coils at a place and an induction heating device having a free running portion is used to heat a strip while being transported to secure a predetermined heating temperature or a predetermined temperature rise amount. When the strip heating target temperature or target heating amount change part or the strip size change part reaches the inlet of the induction heating device, the strip size and the ambient temperature installed in each coil part and inter-coil feeding part Based on the temperature value detected by the meter,
Induction that achieves the target heating temperature or target heating amount by performing convergence calculation using the heat balance model equation that takes into account the heat loss (temperature drop) that occurs while the strip passes from the inlet to the outlet of the induction heating device. It is a control method for an induction heating device, characterized in that a required optimum power set value for the heating device is obtained and set.
【0019】[0019]
【作用】本発明法によれば、熱損失分を考慮した電力設
定値を求めるにあたって、熱損失分の導出にあたり重要
な要因となる雰囲気温度を実測して用い、かつ、誘導加
熱装置通過中に、その各過程においてストリップに与え
られる熱量とストリップが失う熱量を熱収支モデル式に
より算出して、総じて、所望の加熱目標温度あるいは目
標昇温量を得ることのできる必要電力値を導出するよう
にしているので、加熱目標温度あるいは目標昇温量の変
更に対して、柔軟に精度良く対応することができる。ま
た、熱収支モデル式にはストリップのサイズが考慮され
ているので、サイズの変更に対しても同様に柔軟に精度
良く対応することができる。したがって、その結果、ス
トリップのサイズの変更や加熱目標温度あるいは目標昇
温量の変更が頻繁に行われても、所望の温度制御精度を
得ることができる。According to the method of the present invention, the atmospheric temperature, which is an important factor in deriving the heat loss amount, is actually measured and used when obtaining the electric power set value in consideration of the heat loss amount. , Calculate the amount of heat given to the strip in each process and the amount of heat lost by the strip by a heat balance model formula, and generally derive the required power value that can obtain the desired heating target temperature or target heating amount. Therefore, it is possible to flexibly and accurately respond to a change in the heating target temperature or the target temperature rise amount. Further, since the size of the strip is taken into consideration in the heat balance model formula, it is possible to flexibly and accurately respond to the size change. Therefore, as a result, the desired temperature control accuracy can be obtained even if the strip size is changed or the heating target temperature or the target temperature rise amount is changed frequently.
【0020】[0020]
【実施例】本発明の具体的な実施方法を図2,図3に示
す。図2において、1はストリップ、2は加熱コイルお
よびコイルカバー、3,4は加熱コイル2に接続された
整合コンデンサー、インバーター装置である。5は加熱
コイル内部雰囲気温度を計測する温度計、6は各コイル
間の空走部の温度を計測する温度計、7は加熱装置入口
のストリップ温度を計測する温度計、8は加熱装置出口
のストリップ温度を計測する温度計、9はストリップの
処理速度を計測する速度計、10は演算・判断処理装
置、11は上位計算機である。10と11は同一計算機
で実現してもよい。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A concrete method of carrying out the present invention is shown in FIGS. In FIG. 2, 1 is a strip, 2 is a heating coil and a coil cover, 3 and 4 are matching capacitors connected to the heating coil 2, and an inverter device. 5 is a thermometer for measuring the ambient temperature inside the heating coil, 6 is a thermometer for measuring the temperature of the idle portion between the coils, 7 is a thermometer for measuring the strip temperature at the inlet of the heating device, and 8 is for the outlet of the heating device. A thermometer for measuring the strip temperature, 9 a speedometer for measuring the processing speed of the strip, 10 an arithmetic / judgment processing device, and 11 a host computer. 10 and 11 may be realized by the same computer.
【0021】また、図3には、演算・判断処理装置10
内での処理フローを示す。ストリップ1のサイズ変更部
あるいは目標加熱温度または目標昇温量の変更部が誘導
加熱装置入口温度計7に達したときに処理フローがスタ
ートし(12)、ストリップの処理速度計9よりストリ
ップ1の実測速度を、また加熱装置入口の板温計7より
ストリップ1の加熱装置入口での実績温度を、また、各
温度計5,6よりコイル部およびコイル間空走部での雰
囲気温度の実測値を演算・判断処理装置10に取り込む
と共に、上位計計算機11からもストリップの断面積、
単位長当たりの表面積等の各データを演算・判断処理装
置10に取り込む(13)。Further, FIG. 3 shows an arithmetic / judgment processing device 10.
The processing flow inside is shown. When the size changing part of the strip 1 or the changing part of the target heating temperature or the target heating amount reaches the induction heating device inlet thermometer 7, the processing flow starts (12), and the strip processing speed meter 9 indicates the strip 1 The measured speed, the actual temperature at the inlet of the heating device of the strip 1 from the plate thermometer 7 at the inlet of the heating device, and the measured value of the atmospheric temperature at the coil part and the idle running part between the coils from the thermometers 5 and 6 respectively. Is taken into the calculation / judgment processing device 10, and the cross-sectional area of the strip is also calculated from the host computer 11.
Each data such as the surface area per unit length is taken into the arithmetic / judgment processing device 10 (13).
【0022】次に、14で温度積分計算の初期値T0 を
誘導加熱装置入口温度TE とし、また15にて温度積分
計算回数Nの初期値を0にセットして、a式計算部1
7、b式計算部18、c式計算部19にて第1区間での
温度上昇量(温度降下量)を算出した後積分計算回数N
を1増す(20)。ここで、c式計算部19の処理にお
いては、13で演算・判断処理装置10に取り込んだ温
度計5,6により実測した雰囲気温度TG を用いる。な
お、上記の各計算部17,18,19における計算式は
下記の数式3を用いる。Next, at 14 the initial value T0 of the temperature integration calculation is set to the induction heating device inlet temperature TE, and at 15 the initial value of the temperature integration calculation number N is set to 0, and the a-expression calculation unit 1
7. After calculating the temperature rise amount (temperature drop amount) in the first section by the b formula calculation unit 18 and the c formula calculation unit 19, the number of integration calculations N
Is increased by 1 (20). Here, in the processing of the c-expression calculation unit 19, the ambient temperature TG measured by the thermometers 5 and 6 loaded into the calculation / judgment processing device 10 at 13 is used. In addition, the following formula 3 is used as the calculation formula in each of the calculation units 17, 18, and 19 described above.
【0023】[0023]
【数3】 (Equation 3)
【0024】以降、Nが誘導加熱装置パス長さL(加熱
装置入口温度計測点から加熱装置出口温度管理点ー通
常、加熱装置出口温度計測点ーまでの距離)を温度計算
1区間の長さlで割った値の整数分NMAX 以上になるま
で、15,16,17,18,19,20,21,29
の順序で計算処理を繰り返す。但し、ここで、加熱コイ
ル部でない区間すなわち空走部に相当する区間の計算を
する場合には、加熱コイル区間判断部16にて分岐し、
T0 がT2 に置き換えられ(28)、17,18をバイ
パスして19に連結される。Thereafter, N is the length of the induction heating device path length L (the distance from the heating device inlet temperature measuring point to the heating device outlet temperature control point-usually, the heating device outlet temperature measuring point) is the length of one temperature calculation section. 15,16,17,18,19,20,21,29 until the integer divided by l becomes NMAX or more.
The calculation process is repeated in the order of. However, here, when calculating a section that is not the heating coil section, that is, a section that corresponds to the idle running section, the heating coil section determination unit 16 branches to
T0 is replaced by T2 (28), bypassing 17,18 and connected to 19.
【0025】一方、電力簡易算出部25にて前に示した
数式1により、加熱目標温度あるいは目標昇温量を得る
ための必要総電力の粗値を求め、各誘導加熱装置への電
力配分方式に応じて、電力仮配分部26にて各誘導加熱
装置への粗電力設定値PPRO を計算しておく。そして、
各誘導加熱装置(コイル)に該当する区間の計算処理に
おいて各々に対応する粗電力設定値PPRO を用いる。ま
た、各計算処理に用いる粗電力設定値PPRO 以外の諸デ
ータについても該当区間のものを用いることは言うまで
もなく、また、各区間での比熱Cはその区間での平均温
度の関数とする。On the other hand, the power simple calculation unit 25 obtains the rough value of the total electric power required to obtain the heating target temperature or the target heating amount by the above-mentioned formula 1 and distributes the electric power to each induction heating device. Accordingly, the temporary power distribution unit 26 calculates the rough power set value P PRO for each induction heating device. And
In the calculation process of the section corresponding to each induction heating device (coil), the corresponding coarse power set value P PRO is used. Needless to say, various data other than the crude power set value P PRO used in each calculation process are also those of the corresponding section, and the specific heat C in each section is a function of the average temperature in that section.
【0026】そしてNがNMAX に達したときには、以上
の温度積分計算処理(温度上昇量又は温度降下量の積分
計算)を終了し(21)、最終計算値をTD として(2
2)、TD と設定TD との差ERR を算出する(23)。
ここで、ERR が制御偏差許容値Aを越えるならば(2
4)、電力修正部27にてERR に相当する分だけ必要総
電力の粗値を修正して再度電力仮配分を行う(26)と
共に、修正後の粗電力設定値PPRO を用いて再度前述し
た温度計算処理を行う。こうして、ERR がA以下になる
まで以上の処理を繰り返す。ERR がA以下になったら、
そのときの各誘導加熱装置へ粗電力設定値PPRO を正式
な電力設定値PSET として(30)、各誘導加熱装置
(インバーター装置)へ出力して(31)、終了する
(32)。When N reaches NMAX, the above temperature integration calculation processing (integration calculation of the amount of temperature rise or the amount of temperature drop) is terminated (21), and the final calculated value is set to TD (2
2) Calculate the difference ERR between TD and the set TD (23).
Here, if ERR exceeds the control deviation allowable value A (2
4) modify the amount corresponding required total power roughness value corresponding to the ERR by the power correcting section 27 performs re-power the temporary distributed with (26), again using the crude power setting P PRO revised above The temperature calculation process is performed. In this way, the above processing is repeated until ERR becomes A or less. If ERR becomes less than A,
The rough power set value P PRO to each induction heating device at that time is set as a formal power set value P SET (30), output to each induction heating device (inverter device) (31), and the process ends (32).
【0027】以上が、本発明の具体的実施方法である
が、処理の中で用いるNMAX および制御偏差許容値Aに
ついて補足するならば、NMAX は要求される制御精度と
計算機への負荷を考慮して決めるのが望ましく、また、
更に、制御精度に大きく影響するコイル部での加熱効率
やコイル部及び空走部での総括熱伝達係数等の未知パラ
メータは、コイル部や空送部等各ゾーン毎の区画におい
て、カルマンフィルタ等を使用して推定、学習すること
により効果的に求めることができる。The above is a concrete implementation method of the present invention. If supplemented with NMAX and control deviation allowable value A used in the processing, NMAX takes into account the required control accuracy and the load on the computer. It is desirable to decide by
Furthermore, unknown parameters such as the heating efficiency in the coil section and the overall heat transfer coefficient in the coil section and the idle section, which greatly affect the control accuracy, can be determined by the Kalman filter in each zone such as the coil section and the idle section. It can be effectively obtained by using, estimating and learning.
【0028】また、制御偏差許容値Aは、温度計算式に
用いる諸データの誤差や温度計算式そのものの精度を考
慮して、実際の制御偏差許容値よりも小さく設定する方
が望ましいが、過度に小さくし過ぎると計算が収束しな
い危険性が高く、又、計算機への負荷が大きくなるなど
弊害が生じるので、これらを考慮して設定しなければな
らない。The control deviation allowable value A is preferably set smaller than the actual control deviation allowable value in consideration of the error of various data used in the temperature calculation formula and the accuracy of the temperature calculation formula itself. If it is too small, there is a high risk that the calculations will not converge, and there will be adverse effects such as an increase in the load on the computer, so these must be taken into consideration when setting.
【0029】なお、目標昇温量に対して電力設定値を導
出する場合には、図3の23において、ERR =(TD −
TEJ)−ΔTSET とすればよい。なお、TD は計算加熱
温度、TEJは誘導加熱装置入口実測板温、ΔTSET は目
標昇温量である。In the case of deriving the electric power set value for the target temperature rise amount, ERR = (TD-
TEJ) -ΔT SET . In addition, TD is a calculated heating temperature, TEJ is an induction heating device inlet actual measurement plate temperature, and ΔT SET is a target heating amount.
【0030】[0030]
【発明の効果】以上述べた本発明法によれば、熱損失分
を考慮した電力設定値を求めるにあたって、熱損失分の
導出に当たり重要な要因となる雰囲気温度を実測して用
い、かつ、誘導加熱装置通過中に、その各過程において
ストリップに与えられる熱量とストリップが失う熱量を
熱収支モデル式により算出して、総じて、所望の加熱目
標温度あるいは目標昇温量を得ることのできる必要電力
値を導出するようにしているので、加熱目標温度あるい
は目標昇温量の変更に対して、柔軟に精度よく対応する
ことができ、また、熱収支モデル式にはストリップのサ
イズが考慮されているので、サイズの変更に対しても同
様に柔軟に精度よく対応することができるので、ストリ
ップのサイズの変更や加熱目標温度あるいは目標昇温量
の変更が頻繁に行なわれる場合でも所望の温度制御精度
を得ることができる。According to the method of the present invention described above, in determining the power set value in consideration of the heat loss, the ambient temperature, which is an important factor in deriving the heat loss, is actually measured and used, and Electric power required to obtain a desired heating target temperature or target heating amount by calculating the amount of heat given to the strip and the amount of heat lost by the strip in each process while passing through the heating device, using the heat balance model formula. Therefore, it is possible to flexibly and accurately respond to changes in the heating target temperature or the target temperature rise amount, and the heat balance model formula considers the strip size. Similarly, since it is possible to flexibly and accurately respond to size changes, it is necessary to frequently change the strip size or the heating target temperature or target heating amount. It is possible to obtain the desired temperature control accuracy even when the crack.
【図1】誘導加熱装置のレイアウト図。FIG. 1 is a layout diagram of an induction heating device.
【図2】本発明の具体的な実施方法を説明する図。FIG. 2 is a diagram illustrating a specific implementation method of the present invention.
【図3】本発明方法の制御フロー図。FIG. 3 is a control flow chart of the method of the present invention.
1 ストリップ 2 加熱コイル 3 整合コンデンサー 4 インバーター 5〜8 温度計 9 速度計 10 演算・判断処理装置 11 上位計算機 1 Strip 2 Heating Coil 3 Matching Capacitor 4 Inverter 5-8 Thermometer 9 Speedometer 10 Arithmetic / Judgment Processing Device 11 High-end Computer
Claims (1)
れかつ少なくとも1ケ所のコイル間にサポートロールが
設置されて空走部をもつ誘導加熱装置にて、ストリップ
を搬送しながら加熱し、所定の加熱温度あるいは所定の
昇温量を確保する誘導加熱装置の制御方法において、ス
トリップの加熱目標温度または目標昇温量の変更部ある
いはストリップのサイズ変更部が誘導加熱装置の入口に
到達した際に、ストリップのサイズ、各コイル部および
コイル間空送部に設置した雰囲気温度計により検出した
温度値に基づいて、ストリップが誘導加熱装置入口から
出口までを通過する間に生じる熱損失分(温度降下分)
を考慮した熱収支モデル式を用いて収束計算を行い、加
熱目標温度または目標昇温量を達成する誘導加熱装置へ
の必要最適電力設定値を求め設定することを特徴とする
誘導加熱装置の制御方法。1. An induction heating apparatus having a plurality of heating coils arranged in tandem and having a idler section in which at least one coil is provided with a support roll, and heating is performed while the strip is being conveyed to a predetermined temperature. In a method for controlling an induction heating device that secures a heating temperature or a predetermined heating amount, when the heating target temperature of the strip or the target heating amount changing unit or the strip size changing unit reaches the inlet of the induction heating device, Based on the size of the strip and the temperature value detected by the atmospheric thermometers installed in each coil section and the inter-coil air feeding section, the heat loss (temperature drop) that occurs while the strip passes from the induction heating device inlet to the outlet )
Control of an induction heating device characterized by performing a convergence calculation using a heat balance model equation that takes into account the temperature, and finding and setting the necessary optimum power set value for the induction heating device that achieves the heating target temperature or the target heating amount. Method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2404555A JP2523991B2 (en) | 1990-12-20 | 1990-12-20 | Control method for induction heating device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2404555A JP2523991B2 (en) | 1990-12-20 | 1990-12-20 | Control method for induction heating device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH04221027A JPH04221027A (en) | 1992-08-11 |
JP2523991B2 true JP2523991B2 (en) | 1996-08-14 |
Family
ID=18514216
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2404555A Expired - Lifetime JP2523991B2 (en) | 1990-12-20 | 1990-12-20 | Control method for induction heating device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2523991B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104694732A (en) * | 2015-03-20 | 2015-06-10 | 江苏金基特钢有限公司 | Steel wire induction-heating device |
JP7207335B2 (en) * | 2020-01-08 | 2023-01-18 | Jfeスチール株式会社 | Plate temperature control method, heating control device, and metal plate manufacturing method |
-
1990
- 1990-12-20 JP JP2404555A patent/JP2523991B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH04221027A (en) | 1992-08-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6146553B1 (en) | Steel plate temperature control device and temperature control method | |
WO2017130508A1 (en) | Steel sheet temperature control device and temperature control method | |
KR102032039B1 (en) | Temperature calculation method, temperature calculation device, heating control method, and heating control device | |
JP2000167615A (en) | Method for controlling coiling temperature and controller | |
JP2017112182A (en) | Substrate processing apparatus and adjustment method of substrate processing apparatus | |
KR101821089B1 (en) | Rolling system | |
JP2523991B2 (en) | Control method for induction heating device | |
JP5493993B2 (en) | Thick steel plate cooling control device, cooling control method, and manufacturing method | |
TW202037419A (en) | Method of cooling control for thick steel plate, cooling control device, and method of producing thick steel plate | |
JPH0659493B2 (en) | Rolling mill outlet temperature control method for hot rolled material | |
JP6627609B2 (en) | Cooling control method and cooling device | |
JP2833461B2 (en) | Metal strip temperature control method | |
JP2005120409A (en) | Method for manufacturing high-strength steel plate superior in uniformity of material in longitudinal direction of steel sheet | |
TWI691856B (en) | Temperature profile prediction system and method thereof | |
JP2503332B2 (en) | Strip temperature control method for induction heating of strip | |
JPS63171215A (en) | Method for controlling rolled stock with water cooling | |
JP2607795B2 (en) | Method and apparatus for adjusting processing conditions of continuous furnace | |
JP3518504B2 (en) | How to set cooling conditions for steel sheets | |
JPS63307223A (en) | Method for changing speed in sheet temperature control in continuous annealing furnace | |
JP2715739B2 (en) | Control method of alloying furnace in alloying hot-dip galvanized steel sheet manufacturing facility | |
JPH07100166B2 (en) | Steel strip rolling method | |
JP2000144255A (en) | Method for controlling temperature of induction heating furnace | |
JP2001181744A (en) | Method for preventing variation of width in continuous annealing equipment | |
JPH0759722B2 (en) | Induction heating control method during subsequent induction heating of a slab previously gas-heated | |
JP2007077417A (en) | Method for determining parameter of model for estimating sheet temperature in inlet side, and apparatus therefor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 19960402 |