JPS6131639B2 - - Google Patents

Info

Publication number
JPS6131639B2
JPS6131639B2 JP54004093A JP409379A JPS6131639B2 JP S6131639 B2 JPS6131639 B2 JP S6131639B2 JP 54004093 A JP54004093 A JP 54004093A JP 409379 A JP409379 A JP 409379A JP S6131639 B2 JPS6131639 B2 JP S6131639B2
Authority
JP
Japan
Prior art keywords
powder
domain
piezoelectric
porcelain
ferroelectric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54004093A
Other languages
Japanese (ja)
Other versions
JPS5596689A (en
Inventor
Tsutomu Kadooka
Shigeo Saito
Nobuji Yamamoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Niterra Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Priority to JP409379A priority Critical patent/JPS5596689A/en
Priority to DE2922260A priority patent/DE2922260C2/en
Publication of JPS5596689A publication Critical patent/JPS5596689A/en
Priority to US06/722,199 priority patent/US4675123A/en
Publication of JPS6131639B2 publication Critical patent/JPS6131639B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Inorganic Insulating Materials (AREA)
  • Soft Magnetic Materials (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

この発明は、高分作複合圧電材料に関するもの
である。 一般にこの種圧電材料を、高分子物質に強誘電
性磁器粉末を複合することにより得ようとする試
みは既知であるが、従来はBaTiO3、PbTiO3ない
しはPbZrO3−PbTiO3固溶体などの強誘電性磁器
を加熱下の固相反応によつてつくり、或いはニオ
ブ酸カリウム・ナトリウム(PSN)などの単結晶
を合成したのち、通常ボールミルとか、振動ミル
などの粉砕機により破砕して所要の粒子の大きさ
に調整した単なる破砕粉の形で用いていたので、
上記の如き強誘電性磁器そのものから予想される
圧電特性からは著しくかけ離れて低い性能しか得
られなかつた。 発明者らは、上記した磁器粉末によるときに生
起した上述性能劣化の原因について根本的な究明
を行い、その結果として、固相反応後に或いは単
結晶合成後に施される破砕工程で、微結晶中に構
造破壊を生じることが避けられないため、それに
よつて無数の分域の生成とか不整化相ができ、こ
のような微結晶内の多分域化とか不整化相が、高
分子物質との複合化工程を経たのちに分極処理を
施す際に、磁器粉末に作用する実効電界につき、
高分子物質の誘電率との比率で、数十から数百分
の一程度に著減することと相まつて、配向の著し
い妨げとなり、従つてたとえ複合材料の耐電圧に
近いような高電圧で分極したとしても、上記のよ
うに低下した電界ではもはや分域のほとんどが電
界方向に揃わず、それ故充分な圧電性を具備させ
得ず、結局磁器粉末とか単結晶を高分子物質に混
用することの技術的意義はないに等しいことを知
つた。 そこで発明者らは、数多の実験と研鑽を重ねた
結果、次に示すようにして、上記のような破砕工
程を経た磁器粉末に加熱アニールを施すことによ
り破砕前における合成后の単一分域に近い微結晶
にもどつた強誘電性磁器粉末が得られること、そ
してかかる単一分域に近い微結晶よりなる強誘電
性磁器粉末は、これに対し特定の量の高分子物質
と複合することにより、圧電性高分子複合材料と
して従来比類がない卓抜した性能が、製造工程に
〓〓〓〓〓
おける何らの難点を伴うことなくして実現され得
ることを見出したものである。 ここにつくろうとする強誘電性磁器組成に対応
する原料粉末を調合し、混合後加熱合成を行い、
そのあとで所望の粒径になるよう破砕することを
前提とするが、この破砕粉末について次のアニー
ル処理を経て単一分域に近い微結晶質粉末を得る
事が出来る。 1 粉破粉末を、粉体のまま加熱する。 加熱温度は600〜1200℃の範囲が望ましい。 2 加熱は大気中又はそれ以上の酸素濃度の雰囲
気中にて施す。 3 加熱によるアニール処理は2〜4回繰返すこ
とが望ましい。 かようにして得られる強誘電性磁器粉末は、粉
化の手段として通常の粉破処理操作が加えられる
ので、それにより必要な任意の粒径(サブミクロ
ンから数10μ)に調整することができ、しかもこ
の破砕に伴われる構造破壊に基く微結晶内の多分
域化、不整化を、加熱アニールにより復元除去す
るので単一分域に近い微結晶より成ると見なし得
る。 もちろん物性論的見地から厳密にみれば、破砕
前の合成物自体が、すでに完全な単一分域結晶に
なつているわけではなく、不純物とか、構造不整
(格子欠陥、層状欠陥など)を含み、あるいは化
学量論化からのズレや組成の不均一とか、さらに
は外的要因(熱とか応力)などにより、それなり
の分域生成はみられ、それがさけられないのは現
在の科学技術水準においては自明の事実であり、
また上記したような加熱アニールを施すことによ
つても完全には破砕前の分域構造にもどるわけで
はないが、加熱アニール后に残る程度の軽度な結
晶内の分域は、分極時の電圧印加による電界方向
での整列や電界への配向性を妨げる要因とはなら
ず、事実上の方向性を示す特徴を呈することが発
明者らにより見出されているので便宣上ここで
は、上記の加熱アニールで破砕直前の状態にほぼ
回復した粉末を事実上の単一分域微結晶粒子とい
うこととしたものである。 これに対し従来の通常の手段による加熱合成後
の破砕により粉化したままでは、結晶の構造破壊
による無数の多分域化および不整化をおこしてい
て、はじめにのべたように電界方向への整列がも
はやほとんどみられなくなつている。 従つてこれらの多分域結晶粒子に対して単一分
域微結晶粒子の区別は明らかであるが単一分域微
結晶といつても、もとより理想的な、それを意味
するものではない。 加熱アニールを施した事実上の単一分域結晶粒
子からなる強誘電性磁器粉末は、種々な高分子物
質と混合し、任意な形状たとえばシート状に成形
し架橋結合ないしは加硫の如き硬化処理を経て有
利に分極を行うことができる。 ここに実効電界が高分子物質の誘電率との比率
で数十から数百分の一程度に甚しく低くなつても
粉化に由来した応力による微細結晶内の無数の分
域の如き構造破壊を伴つていないので、電界方向
に容易に揃つてとくに高い強誘電、圧電特性を呈
することが確認されたのである。 単一分域微結晶粒子よりなる強誘電性磁器粉末
は、高分子と種々な配合比で複合化することによ
り、何れも分極方向への配向性にすぐれる単方向
性をもち、しかも複合に際して加工性がとくに良
い。 そこでたとえば人体とのなじみのよい柔軟性を
必要とする生体用トランスジユーサー等には、高
分子を高配合したものを、また圧電シート上に多
数のスイツチを集積したキーボードスイツチ等、
柔軟性はやや欠けてもより高い圧電性能を必要と
するものは、逆に強誘電性磁器粉末を高配合とし
たものを用いるなど、磁器粉末と高分子の配合割
合とか、又高分子材料の選択により広く用途に応
じた機械的、電気的、物理的特性を有する複合物
圧電材料の提供が可能となり、機械電気変換とか
電気音響交換にはもちろん、発展的には焦電用材
料としても今後広範囲の分野への応用が期待出来
るわけである。 ここにこの明細書で圧電というのは、上記の各
変換のすべてを含めた広義の電歪作用を意味する
ものとする。 ところが従来の破砕による多分域化を免れ得な
かつた磁器粉を用いた既知圧電シートでは、上記
のように分極性が甚しく阻害されたが故に必要性
能を満たそうとして、いきおい磁器粉の高配合を
とらざるを得ないために、高分子物質との混合シ
ートが、製品化に至る各段階で、かたくかつもろ
く破れ易く、実際の用に供され得なかつたわけで
〓〓〓〓〓
もあるが、この発明では必ずしもかかる高配合と
する必要がないので、高分子物質それ自体の柔軟
性が、有利に維持され、それに拘らず充分に高度
な圧電性能が達成されるので、ここにはじめて両
方の特徴を合せもつ圧電性高分子複合材料の実用
化の用途が確立されたのである。 なお、圧電磁器粉末と高分子物質との配合比
(容量比)については、1:9以下では、これら
磁器粉末を配合する効界が認められず、又これを
下限として配合量が増加するに従つて圧電性は向
上し、特に55:45の辺りから顕著に増加するが、
9:1以上になると、混合物の流動性、加工性が
著るしく劣化し、成形加工が事実上不可能となる
ため、実用性を欠くので1:9〜9:1までの配
合比が望ましい。 なお、この発明は、次に示す各種結晶構造にな
る強誘電性磁器の単成分系、多成分系およびこれ
を基本組成として、それの置換及び添加変成した
ものの如きにおいて、好適に実施をすることがで
きる。 1 ペロブスカイト構造 (1) チタン酸バリウムとこれと中心とする固溶
体BaTiO3、(Ba、Pb、Ca)TiO3……など (2) チタン酸鉛とこれを中心にした固溶体、
PbTiO3、(Pb、La)TiO3、PbTiO3
BiFeO3、……など (3) チタン酸ジルコン酸鉛とこれを中心とする
固溶体、PbZrO3−PbTiO3、PbZrO3
PbSmO3−PbTiO3、……など (4) チタン酸ジルコン酸鉛と下記a、bおよび
cのごとき第三成分との固溶体より成る三成
分系磁器 a 一般式A2+(B1/3 2+、B2/3 5+)O3
あらわされる たとえばPb(Ni1/3、Nb2/3)O3、Pb
(Zn1/2、Nb2/3)O3、Pb(Co1/3
Nb1/3)O3、Pb(Mg1/3、Nb2/3)O3
……など b 一般式A2+(B1/2 2+、B1/2 6+)O3
あらわされるたとえばPb(Ni1/2、W1/
)O3、Pb(Co1/2、W1/2)O3…など c 一般式A2+(Bi1/2 3+、B5+ 1/2)O3であ
らわされるたとえばPb(Fe1/2
Nb1/2)O3、Pb(Sb1/2、Nb1/2)O3
Pb(Y1/2、Nb1/2)O3……など (5) ニオブ酸ナトリウムとこれを中心とする固
溶体たとえばNaNbO3、(Na、K)NbO3、Na
(Ta、Nb)O3……など 2 タングステンブロンズ構造 PbNb2O6、PbNb2O6−PbTa2O6、PbNb2O6
BaNb2O6……など 3 ビスコス層状構造 Bi4Ti3O12、Bi4PbTi4O15、Bi4Sr2Ti5O18……
など 4 その他 LiNbO3、LiTaO3、などならびに、 5 上記各成分系を基本組成とし、そのPbの一
部をアルカリ土類金属で置換したもの。 6 上記各成分系を基本組成とし、副成分として
次の()、()および()各群のうちから
選ばれる一種又は二種以上を添加し、変成した
もの () Nb2O5、Ta2O5、La2O3、Sb2O5
Sb2O3、Bi2O3、WO3など () MgO、Fe2O3、SO2O3、K2Oなど () Cr2O3、U2O3、MnO2など これら各種強誘電性磁器の基本組成及び置換と
か副成分の添加によりそれぞれの組成のもつ固有
の優れた強誘電性、圧電性、焦電性を選択して利
用することができる。 又、同時に、粒子径の制御とか、抗電界を低く
して電場配向性をさらに高めたり逆に抗電界を上
げて、静荷重に強い複合圧電材料にしたり、経時
変化を安定化したりすることが、可能となり、用
途に適応した幅広い特性を持つ複合圧電材料を得
ることができる。 次にこの発明で、上記したような強誘電性磁器
のとくに事実上単一分域微結晶粒子よりなる磁器
粉末を復合することができる高分子物質は、各種
ゴムすなめち天然、人造、合成および再生ゴム又
はそれらのブレンドゴム、とくにふつ素ゴムやク
ロロブレンドなど、ならびに熱可塑性樹脂、たと
えばポリふつ化ビニリデン(PVDF)、アクリロ
ニトリル−ブタジエン−スチレン共重合体
(ABS)、塩化ビニル(PVC)、ポリふつ化ビニル
(PVF)などである。 以下この発明の実施例について述べる。 実施例 1 〓〓〓〓〓
市販の純度99%以上のPbOおよびWC3、98.5%
以上のZrO2、98%以上のTiO2を用い、つくろう
とするPb(Ti0.5−Zr0.5)O3+1重量%WO3の組
成に応じて配合し、これらの合計純度99%以上と
したものを、2.5Kg秤取して振動ミルにより乾式
で5時間にわたつて混合した。このとき振動ミル
の内張りにウレタン樹脂内張をし、アルミナ玉石
を用いて不純物の混入を防いだ。 この混合粉末を、高アルミナ質るつぼに詰め
PbO雰囲気中で730℃に4時間保持し、固相反応
によつてPb(Ti0.5−Zr0.5)O3+1重量%WO3
合成した。 これより200gの合成粉末を分取し、2容積
のアルミナ質ボールミルを用い、300gのアルミ
ナ玉石とアセトンを投入し、16時間粉砕処理を施
した。 乾燥後、60メツシユの師にて粗粒を除いて二分
し、その一方を対照粉砕粉末とし、他方につきさ
らに小型のロータリーキルンにて大気中又はそれ
以上の酸素濃度の雰囲気中にて炉内最高温度800
゜〜950℃にて加熱アニール処理を施し、加熱ア
ニール粉末とした。アニール処理は1回につき約
15分とした。 これらの粉末の違いを、X線回折にて調べたの
が第1図a,bである。この発明による加熱アニ
ール粉末aは、対照粉砕末bと比べて、例えば
(200)のKβ線の半価幅がよりせまいピークを呈
し、結晶格子が整然と揃つていて、乱れの少ない
ことを示し結晶軸のそろつた単一分域の単結晶に
近い微結晶であることを示している。それぞれの
半価幅は粉末a0.195、粉末b0.345度であつた。 次にこれら粉末aとbを、それぞれ高分子物質
であるポリふつ化ビニリデン(PVDF)と、3:
2の容積割合の配合で混合したものの分域の電場
配向性の違いと複合物の圧電特性の相違について
述べる。 両者の磁器粉末は、離型剤のステアリン酸2重
量%を添加したポリふつ化ビニリデン(PVDF)
と、それぞれ3:2の容積割合いに配合し、溶剤
としてアセトンを投入して混合し、溶剤の揮発後
に170〜180℃に加熱してオープンロールで混練
し、厚み0.05mmのシート状に圧延し幅100mm、長
さ150mmの方形に切り揃えて供試シートをつくつ
た。 これらの供試シートは、とくに950℃、O2雰囲
気(O2濃度38%)、2時間の加熱アニールを2回
行つたアニール粉末を用いたもの(表2No.6)に
ついて、まずその片面における(200)および
(002)面のX線回折強度を測定し、ついで両面に
うすく銀蒸着電極を形成した上で100℃シリコン
オイル中にて150KV/cm、30分の条件で分極を行
つたのちに再び(200)、および(002)面のX線
回折強度を測定した結果を第2図a、また対照破
砕粉末を用いて同様な測定を行つた結果を第2図
bにそれぞれ示した。 これらの測定値に基いて分極前および分極後に
おけるC軸面のX線回折強度比(002)/
(002)+(200)をそれぞれ算出し、ついで分極
によつて電解方向に揃つた分域増加分を求めて表
1に示した。なお両粉末a、bの(200)Kβの
半価幅をあわせ示した。
The present invention relates to a highly fractionated composite piezoelectric material. Generally, attempts to obtain this type of piezoelectric material by combining ferroelectric ceramic powder with a polymer substance are known, but conventionally, ferroelectric materials such as BaTiO 3 , PbTiO 3 or PbZrO 3 −PbTiO 3 solid solution have been used. After producing porcelain by solid phase reaction under heating or synthesizing single crystals such as potassium sodium niobate (PSN), they are usually crushed using a crusher such as a ball mill or a vibration mill to obtain the desired particles. Since it was used in the form of simply crushed powder adjusted to a certain size,
The piezoelectric properties were significantly different from those expected from the ferroelectric ceramic itself as described above, and only low performance was obtained. The inventors conducted a fundamental investigation into the cause of the above-mentioned performance deterioration that occurred when using the above-mentioned porcelain powder, and as a result, they found that in the crushing process performed after solid phase reaction or single crystal synthesis, It is unavoidable that structural destruction occurs in the microcrystal, resulting in the generation of countless domains or irregular phases, and these multi-regional divisions or irregular phases within the microcrystals lead to the formation of complexes with polymeric substances. Regarding the effective electric field that acts on the porcelain powder when polarization treatment is performed after the oxidation process,
Coupled with the fact that the dielectric constant of the polymer material is significantly reduced from several tens to several hundredths, this significantly impedes orientation, and therefore even at high voltages close to the withstand voltage of composite materials. Even if it is polarized, most of the domains are no longer aligned in the direction of the electric field when the electric field is reduced as described above, and therefore sufficient piezoelectricity cannot be achieved.In the end, porcelain powder or single crystal is mixed with the polymer material. I realized that the technical significance of this was almost negligible. As a result of numerous experiments and studies, the inventors discovered the following: by applying heat annealing to the porcelain powder that had undergone the crushing process as described above, it was possible to obtain a single fraction after synthesis before crushing. Ferroelectric porcelain powder that has returned to microcrystals close to a single domain can be obtained, and ferroelectric porcelain powder consisting of microcrystals close to a single domain, on the other hand, can be composited with a specific amount of a polymeric substance. As a result, outstanding performance that has never been matched as a piezoelectric polymer composite material can be realized in the manufacturing process.
It has been discovered that this method can be realized without any difficulties in the process. We mix raw material powders that correspond to the ferroelectric porcelain composition that we are trying to make, and after mixing, heat synthesis.
After that, it is assumed that the powder is crushed to a desired particle size, and this crushed powder is subjected to a subsequent annealing treatment to obtain a microcrystalline powder having a nearly single domain. 1 Heat the crushed powder in its powder form. The heating temperature is preferably in the range of 600 to 1200°C. 2. Heating is performed in the atmosphere or in an atmosphere with a higher oxygen concentration. 3. It is desirable to repeat the heat annealing process 2 to 4 times. The ferroelectric porcelain powder obtained in this way is subjected to a normal powder crushing operation as a means of pulverization, so that it can be adjusted to any desired particle size (from submicrons to several tens of microns). Moreover, since the multi-domain division and irregularity within the microcrystal due to the structural destruction accompanying this fragmentation are restored and removed by heating annealing, it can be considered that the microcrystal consists of a nearly single domain. Of course, strictly speaking from the viewpoint of condensed matter theory, the composite before fracture is not already a perfect single-domain crystal, but contains impurities and structural irregularities (lattice defects, layer defects, etc.). Or, due to deviations from stoichiometry, non-uniform composition, or even external factors (heat, stress), some domain formation can be seen, and this cannot be avoided given the current level of science and technology. It is a self-evident fact that
In addition, even by applying heat annealing as described above, it does not completely return to the domain structure before fracture, but the domain structure in the crystal that remains after heat annealing is small enough to be affected by the voltage at the time of polarization. The inventors have found that the above-mentioned method is not a factor that hinders alignment in the direction of the applied electric field or orientation to the electric field, and exhibits characteristics that indicate de facto directionality. Powders that have almost recovered to the state immediately before crushing by heating annealing are defined as de facto single-domain microcrystalline particles. On the other hand, if the powder is left as it is by crushing after heating synthesis by conventional conventional means, countless multi-region and irregularities occur due to structural destruction of the crystal, and as mentioned at the beginning, alignment in the direction of the electric field occurs. It is almost no longer seen. Therefore, the distinction between these multi-domain crystal grains and single-domain microcrystal particles is clear, but the term "single-domain microcrystal" does not necessarily mean that it is ideal. Heat-annealed ferroelectric porcelain powder consisting essentially of single-domain crystal grains can be mixed with various polymeric substances, formed into any desired shape, such as a sheet, and subjected to a hardening process such as cross-linking or vulcanization. Polarization can be effected advantageously through . Here, even if the effective electric field becomes extremely low, ranging from tens to hundreds of times lower than the dielectric constant of the polymer material, the stress caused by powdering causes structural destruction in countless domains within the microcrystals. It has been confirmed that because it is not accompanied by ferroelectric and piezoelectric properties, it is easily aligned in the direction of the electric field and exhibits particularly high ferroelectric and piezoelectric properties. Ferroelectric ceramic powder consisting of single-domain microcrystalline particles has unidirectionality with excellent orientation in the polarization direction by compounding with polymers at various blending ratios, and when compounded, Particularly good workability. Therefore, for example, transducers for living bodies that require flexibility that is compatible with the human body are made with a high polymer content, and keyboard switches that have a large number of switches integrated on a piezoelectric sheet are used.
For items that require higher piezoelectric performance even if they are somewhat less flexible, a high proportion of ferroelectric porcelain powder is used. Depending on the selection, it is possible to provide composite piezoelectric materials with mechanical, electrical, and physical properties that suit a wide range of applications, and they can be used not only for mechanoelectric conversion and electroacoustic exchange, but also as pyroelectric materials in the future. This means that it can be expected to be applied to a wide range of fields. In this specification, piezoelectricity means electrostrictive action in a broad sense, including all of the above-mentioned transformations. However, in known piezoelectric sheets using porcelain powder that could not avoid multi-regionalization due to conventional crushing, the polarization was severely inhibited as described above. As a result, the mixed sheet with the polymer material became hard, brittle, and easily torn at each stage of productization, and could not be put to practical use.
However, in the present invention, it is not necessary to use such a high proportion, so the flexibility of the polymer material itself is advantageously maintained, and a sufficiently high piezoelectric performance is achieved regardless of this. For the first time, a practical application for a piezoelectric polymer composite material that combines both characteristics has been established. Regarding the blending ratio (volume ratio) of the piezoelectric ceramic powder and the polymeric substance, if it is less than 1:9, no effective field is recognized for blending these ceramic powders, and as the blending amount increases with this as the lower limit. Therefore, the piezoelectricity improves, especially from around 55:45, but
If the ratio exceeds 9:1, the fluidity and processability of the mixture will deteriorate significantly, making molding virtually impossible and therefore impractical, so a blending ratio of 1:9 to 9:1 is desirable. . The present invention can be suitably carried out in single-component systems, multi-component systems of ferroelectric ceramics having the following various crystal structures, as well as those obtained by substituting or adding/transforming the same as the basic composition. I can do it. 1 Perovskite structure (1) Barium titanate and a solid solution centered on it BaTiO 3 , (Ba, Pb, Ca)TiO 3 ..., etc. (2) Lead titanate and a solid solution centered on it,
PbTiO3 , (Pb, La) TiO3 , PbTiO3−
BiFeO 3 , etc. (3) Lead zirconate titanate and solid solutions centered on it, PbZrO 3 −PbTiO 3 , PbZrO 3
PbSmO 3 −PbTiO 3 , etc. (4) Three-component porcelain consisting of a solid solution of lead zirconate titanate and a third component such as a, b, and c below a General formula A 2+ (B 1/3 2 + , B 2/3 5+ ) O 3 For example, Pb (Ni 1/3 , Nb 2/3 ) O 3 , Pb
(Zn 1/2 , Nb 2/3 ) O 3 , Pb (Co 1/3 ,
Nb 1/3 ) O 3 , Pb (Mg 1/3 , Nb 2/3 ) O 3 ,
... etc . b For example , Pb(Ni 1/2 , W 1/
2 ) O 3 , Pb (Co 1/2 , W 1/2 ) O 3 ..., etc. c For example, Pb ( Fe 1/2 ,
Nb 1/2 ) O 3 , Pb (Sb 1/2 , Nb 1/2 ) O 3 ,
Pb(Y 1/2 , Nb 1/2 ) O 3 ..., etc. (5) Sodium niobate and solid solutions centered on it, such as NaNbO 3 , (Na, K)NbO 3 , Na
(Ta, Nb) O 3 ... etc. 2 Tungsten bronze structure PbNb 2 O 6 , PbNb 2 O 6 −PbTa 2 O 6 , PbNb 2 O 6
BaNb 2 O 6 ... etc.3 Viscose layered structure Bi 4 Ti 3 O 12 , Bi 4 PbTi 4 O 15 , Bi 4 Sr 2 Ti 5 O 18 ...
etc. 4 Others LiNbO 3 , LiTaO 3 , etc. 5 The basic composition is the above-mentioned component system, and some of the Pb is replaced with an alkaline earth metal. 6 The basic composition is the above-mentioned component system, and one or more selected from the following groups (), (), and () are added as accessory components and modified () Nb 2 O 5 , Ta 2O5 , La2O3 , Sb2O5 ,
Sb 2 O 3 , Bi 2 O 3 , WO 3 etc. () MgO, Fe 2 O 3 , SO 2 O 3 , K 2 O etc. () Cr 2 O 3 , U 2 O 3 , MnO 2 etc. These various ferroelectrics The excellent ferroelectricity, piezoelectricity, and pyroelectricity inherent to each composition can be selected and utilized by changing the basic composition of the porcelain, and by substituting or adding subcomponents. At the same time, it is also possible to control the particle size, lower the coercive electric field to further improve electric field orientation, or conversely increase the coercive electric field to create a composite piezoelectric material that is resistant to static loads, and to stabilize changes over time. This makes it possible to obtain composite piezoelectric materials with a wide range of properties suitable for various applications. Next, according to the present invention, the polymeric substance capable of decoupling the above-mentioned ferroelectric porcelain, especially the porcelain powder consisting of virtually single-domain microcrystalline particles, can be made of various types of rubber, including natural, artificial, and synthetic. and recycled rubber or blended rubber thereof, especially fluorocarbon rubber and chloroblend, and thermoplastic resins such as polyvinylidene fluoride (PVDF), acrylonitrile-butadiene-styrene copolymer (ABS), vinyl chloride (PVC), Examples include polyvinyl fluoride (PVF). Examples of the present invention will be described below. Example 1 〓〓〓〓〓
Commercially available PbO and WC3 with purity above 99%, 98.5%
Using the above ZrO 2 and 98% or more TiO 2 , they are blended according to the composition of Pb (Ti 0.5 - Zr 0.5 ) O 3 + 1% by weight WO 3 to be made, and the total purity of these is 99%. 2.5 kg of the above ingredients were weighed out and mixed in a dry manner for 5 hours using a vibrating mill. At this time, the lining of the vibrating mill was lined with urethane resin, and alumina cobbles were used to prevent contamination with impurities. This mixed powder is packed into a high alumina crucible.
The mixture was maintained at 730° C. for 4 hours in a PbO atmosphere, and Pb(Ti 0.5 −Zr 0.5 )O 3 + 1 % by weight WO 3 was synthesized by solid phase reaction. From this, 200 g of synthetic powder was separated, and 300 g of alumina cobbles and acetone were charged into it using a 2-volume alumina ball mill, and pulverized for 16 hours. After drying, coarse particles are removed using a 60-mesh mesh and divided into two parts, one of which is used as a control pulverized powder, and the other is placed in a smaller rotary kiln in an atmosphere with an oxygen concentration higher than or equal to the atmosphere at the maximum temperature inside the furnace. 800
A heat annealing treatment was performed at ˜950°C to obtain a heat annealed powder. The annealing process is approximately
It was set as 15 minutes. The differences between these powders were investigated by X-ray diffraction, as shown in Figures 1a and 1b. The heat-annealed powder a according to the present invention exhibits a narrower peak in the half-width of the Kβ line of (200) than the control crushed powder b, indicating that the crystal lattice is well-aligned and less disordered. This shows that it is a microcrystal close to a single crystal with a single domain with aligned crystal axes. The half-width of each powder was 0.195° for powder and 0.345° for powder b. Next, these powders a and b are mixed with polyvinylidene fluoride (PVDF), which is a polymeric substance, and 3:
We will discuss the differences in the electric field orientation of the domains and the piezoelectric properties of the composites when mixed at a volume ratio of 2. Both porcelain powders are made of polyvinylidene fluoride (PVDF) with 2% by weight of stearic acid as a mold release agent.
were mixed in a volume ratio of 3:2, acetone was added as a solvent, and after the solvent had evaporated, the mixture was heated to 170-180°C, kneaded with open rolls, and rolled into a sheet with a thickness of 0.05 mm. A test sheet was prepared by cutting it into squares with a width of 100 mm and a length of 150 mm. These test sheets were made using annealed powder that was heat-annealed twice for 2 hours at 950°C in an O 2 atmosphere (O 2 concentration 38%) (Table 2 No. 6). After measuring the X-ray diffraction intensity of the (200) and (002) planes, thinly deposited silver electrodes were formed on both sides, and polarization was performed in silicone oil at 100°C at 150 KV/cm for 30 minutes. The X-ray diffraction intensities of the (200) and (002) planes were measured again, and the results are shown in Figure 2a, and the results of a similar measurement using a control crushed powder are shown in Figure 2b. Based on these measured values, the X-ray diffraction intensity ratio of the C-axis plane before and after polarization (002)/
(002)+(200) was calculated, and then the domain increment aligned in the direction of electrolysis due to polarization was determined and shown in Table 1. The half-value widths of (200)Kβ of both powders a and b are also shown.

【表】 一般に分極前にあつては、C軸方向が、X、Y
およびZ各座標軸方向に対して同一の確率で向く
筈であり、従つてシートの厚み方向に向く確率は
本来1/3=0.33であるべきところ、両粉末の何れ
を用いた供試シートでも、それより低くなつてい
るのは、圧延のカレンダ成形の際に圧延面と平行
〓〓〓〓〓
な方向に粉末粒子が配向したためと考えられる
が、何れにしても、加熱アニール粉末を用いたも
のは、分極の前後でX線回折強度比が0.26から
0.69へかわり、分極によつて電界方向への分域の
著大な配向が、増加分0.43において生じるのに反
し、対照粉破粉末を用いたものでは、事実上、配
向の改善は生じていない。つまり粉砕により構造
破壊をおこし多分域化とか不整化した強誘電性磁
器粉末は、高分子物質に混合したときに、分域配
向性、すなわち分極性がそこなわれ、これが期待
の圧電性能の達成されない原因である。 次に上述のようにして得られる供試シートを、
幅20mm、長さ70mmに切断し、1V、1KHzの万能ブ
リツジで静電容量を測り、それより比誘電率ε/
ε(ここにε=8.854×10-12F/m)を算出
し、また各試片に45gのおもりをつけ、40Hzの正
弦波を100V/mmで印加し、この際に生じる伸びを
差動トランスにて計測して、圧電ひずみ定数d31
=t/V×Δl/l(m/V)を求め、これから
圧電出力定数g31=d31/ε・ε(V-m/N)を
求める性能試験を行つた結果を、アニール温度、
雰囲気および回数の異なる種々なアニール粉末の
成績について、対照破砕粉末との比較の下で表2
に示した。
[Table] Generally, before polarization, the C-axis direction is
and Z should be oriented with the same probability in each coordinate axis direction, and therefore the probability of oriented in the thickness direction of the sheet should originally be 1/3 = 0.33, but for the test sheet using either of the two powders, The reason why it is lower than that is that it is parallel to the rolling surface during calender forming during rolling.
This is thought to be due to the powder particles being oriented in the same direction, but in any case, the X-ray diffraction intensity ratio before and after polarization was 0.26 for those using heat-annealed powder.
0.69, the polarization causes a significant orientation of the domain in the direction of the electric field at an increment of 0.43, whereas with the control powder, virtually no improvement in orientation occurs. . In other words, when ferroelectric porcelain powder whose structure has been destroyed by crushing and has become multi-domain or irregular, when mixed with a polymer material, the dot-domain orientation, that is, polarization, is impaired, and this results in the achievement of the expected piezoelectric performance. This is the reason why it is not done. Next, the test sheet obtained as described above,
Cut into pieces 20mm wide and 70mm long, measure the capacitance with a 1V, 1KHz universal bridge, and calculate the dielectric constant ε/
Calculate ε 0 (here ε 0 = 8.854×10 -12 F/m), attach a 45 g weight to each specimen, apply a 40 Hz sine wave at 100 V/mm, and calculate the elongation that occurs at this time. Measured with a differential transformer, piezoelectric strain constant d 31
= t/V×Δl/l (m/V), and from this a performance test was performed to determine the piezoelectric output constant g 31 = d 310・ε(Vm/N).
Table 2 shows the performance of various annealed powders in different atmospheres and times in comparison with the control crushed powder.
It was shown to.

【表】 表2に示されているように、アニール温度は
950℃前后でとくに酸素雰囲気の濃度が大きい
程、そしてアニール回数は2〜4回が1番アニー
ル効果が大きくあらわれ優れた特性が得られる
が、アニール回数は8回にもなるとPbOの蒸発に
よる欠陥及び粒子間の融着現象が発生するため、
性能がさがつてくる。 何れにしてもこの発明に従う加熱アニール処理
により、対照粉砕粉末によるものと比べて圧電定
数d31で3〜5倍、g31では2.3〜3.3倍、誘電率は
1.2〜1.5倍の向上がみられる。 この発明の高分子複合圧電材料は、高分子物質
の特徴を失うことなく高い圧電性能が得られ電気
−機械変換材料、電気音響変換材料とか焦電材料
として、圧力や光または熱を電気に、逆に電気を
変位、振動にかえるようなシートあるいはフイル
ムとして、音響変換器、物理計測、なかでも血圧
計や脈拍計、心音マイクなど高分子物質の柔軟性
を活用する分野とか、高い圧電性を必要とする圧
電キーボードスイツチ等の分野など広い用途があ
る。 上述のようにしてこの発明によれば、強誘電性
磁器のもつ高い圧電特性と、高分子材料の柔軟性
をあまり阻害することなく、双方の特徴を合せ持
つ、文字通りの高分子複合圧電材料を実現するこ
とができる。 〓〓〓〓〓
[Table] As shown in Table 2, the annealing temperature is
Before 950℃, especially when the concentration of oxygen atmosphere is high and when the number of annealing is 2 to 4 times, the annealing effect becomes the largest and excellent characteristics can be obtained, but when the number of annealing reaches 8 times, defects due to evaporation of PbO occur. and fusion phenomenon between particles occurs,
Performance is getting worse. In any case, by the heat annealing treatment according to the present invention, the piezoelectric constant d 31 is 3 to 5 times that of the control pulverized powder, the g 31 is 2.3 to 3.3 times, and the dielectric constant is
An improvement of 1.2 to 1.5 times can be seen. The polymer composite piezoelectric material of the present invention can obtain high piezoelectric performance without losing the characteristics of a polymer material, and can be used as an electro-mechanical conversion material, an electroacoustic conversion material, or a pyroelectric material to convert pressure, light, or heat into electricity. On the other hand, as sheets or films that convert electricity into displacement or vibration, high piezoelectricity can be used in fields that utilize the flexibility of polymeric materials, such as acoustic transducers, physical measurements, and in particular, blood pressure monitors, pulse monitors, heart rate monitors, and heartbeat microphones. It has a wide range of applications, including areas such as piezoelectric keyboard switches, etc. As described above, according to the present invention, it is possible to create a polymer composite piezoelectric material that combines the high piezoelectric properties of ferroelectric porcelain and the flexibility of polymer materials without significantly impeding the characteristics of both. It can be realized. 〓〓〓〓〓

【図面の簡単な説明】[Brief explanation of the drawing]

第1図a,bはこの発明による磁気粉末と在来
の対照破砕粉末のX線回折図、第2図a,bは、
この両粉末それぞれの高分子材料との複合の際に
おけるC軸面のX線回折強度の分極前后に於ける
変化を示すX線回折図である。 〓〓〓〓〓
Figures 1a and b are X-ray diffraction diagrams of the magnetic powder according to the present invention and a conventional control crushed powder, and Figures 2a and b are
It is an X-ray diffraction diagram showing the change in the X-ray diffraction intensity of the C-axis plane before and after polarization when both of these powders are combined with a polymeric material. 〓〓〓〓〓

Claims (1)

【特許請求の範囲】 1 強誘電性を呈する磁器組成への合成、破砕及
び大気中又はその酸素濃度以上の高温雰囲気中に
おけるアニール処理による事実上の単一分域微結
晶粒子からなる、強誘電性磁器粉末と高分子物質
との混合物より成ることを特徴とする高分子複合
圧電材料。 2 磁器粉末と高分子物質との混合比が1:9〜
9:1である特許請求の範囲第1項記載の圧電材
料。
[Claims] 1. A ferroelectric material consisting of practically single-domain microcrystalline particles by synthesis into a porcelain composition exhibiting ferroelectricity, crushing, and annealing in the atmosphere or in a high-temperature atmosphere with an oxygen concentration higher than that of the ferroelectric material. A polymer composite piezoelectric material comprising a mixture of porcelain powder and a polymer substance. 2 The mixing ratio of porcelain powder and polymeric substance is 1:9 ~
9:1 piezoelectric material according to claim 1.
JP409379A 1978-06-01 1979-01-17 High molecular composite piezo-electric material Granted JPS5596689A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP409379A JPS5596689A (en) 1979-01-17 1979-01-17 High molecular composite piezo-electric material
DE2922260A DE2922260C2 (en) 1978-06-01 1979-05-31 Process for the production of piezoelectric composite materials with microcrystals with particularly good polarizability
US06/722,199 US4675123A (en) 1979-01-17 1985-04-11 Piezoelectric composite material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP409379A JPS5596689A (en) 1979-01-17 1979-01-17 High molecular composite piezo-electric material

Publications (2)

Publication Number Publication Date
JPS5596689A JPS5596689A (en) 1980-07-23
JPS6131639B2 true JPS6131639B2 (en) 1986-07-21

Family

ID=11575172

Family Applications (1)

Application Number Title Priority Date Filing Date
JP409379A Granted JPS5596689A (en) 1978-06-01 1979-01-17 High molecular composite piezo-electric material

Country Status (1)

Country Link
JP (1) JPS5596689A (en)

Also Published As

Publication number Publication date
JPS5596689A (en) 1980-07-23

Similar Documents

Publication Publication Date Title
JPS6047753B2 (en) Piezoelectric polymer composite material
DE102008021827B9 (en) Ceramic material, method for producing the ceramic material, component with the ceramic material and its use
CN101139202B (en) Piezoelectric/electrostrictive body, manufacturing method of the same, and piezoelectric/electrostrictive element
Dwivedi et al. Multifunctional lead-free K0. 5Bi0. 5TiO3-based ceramic reinforced PVDF matrix composites
JPH04130682A (en) Piezoelectric ceramic composition for actuator
Kumar et al. Energy harvesting with flexible piezocomposite fabricated from a biodegradable polymer
EP4373244A1 (en) Piezoelectric ceramic stacked structure
DE4442598A1 (en) Complex, substituted lanthanum-lead-zirconium-titanium perovskite, ceramic composition and actuator
JPS6131639B2 (en)
Zhao et al. Improved Piezoelectricity in (K 0.44 Na 0.52 Li 0.04)(Nb 0.91 Ta 0.05 Sb 0.04) O 3-x Bi 0.25 Na 0.25 NbO 3 Lead-Free Piezoelectric Ceramics
JP2001106568A (en) CRYSTAL-GRAIN-ORIENTED CERAMICS, MANUFACTURING PROCESS OF THE SAME AND PRODUCTION PROCESS OF PLATELIKE Ba6Ti17O40 POWDER FOR MANUFACTURING THE SAME
JPH09124366A (en) Piezoelectric ceramic
Mahmud et al. Effects of Fe 2 O 3 addition on the piezoelectric and the dielectric properties of 0.99 Pb (Zr 0.53 Ti 0.47) O 3-0.01 Bi (Y 1− x Fe x) O 3 ceramics for energy-harvesting devices
US3994823A (en) Ceramic material and method of making
JP3481832B2 (en) Piezoelectric ceramic
JPS6129085B2 (en)
Wang et al. Enhanced breakdown strength of Al2O3-modified Pb0. 99 (Zr0. 95Ti0. 05) 0.98 Nb0. 02O3 ferroelectric ceramics with core–shell structure
JPS6125229B2 (en)
JPS5946433B2 (en) Method for manufacturing piezoelectric polymer composite
JPH107460A (en) Piezoelectric porcelain composition
JPS6358777B2 (en)
JP2841344B2 (en) Piezoelectric ceramic composition
JP6260982B2 (en) Particle-oriented ceramics
Dudkina et al. Features of the technology for producing multicomponent ferropiezoelectric materials
JPH01242464A (en) Piezoelectric or pyroelectric ceramic composition