JPS5946433B2 - Method for manufacturing piezoelectric polymer composite - Google Patents

Method for manufacturing piezoelectric polymer composite

Info

Publication number
JPS5946433B2
JPS5946433B2 JP53026662A JP2666278A JPS5946433B2 JP S5946433 B2 JPS5946433 B2 JP S5946433B2 JP 53026662 A JP53026662 A JP 53026662A JP 2666278 A JP2666278 A JP 2666278A JP S5946433 B2 JPS5946433 B2 JP S5946433B2
Authority
JP
Japan
Prior art keywords
piezoelectric
fine particles
polarized
inorganic fine
sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53026662A
Other languages
Japanese (ja)
Other versions
JPS54120900A (en
Inventor
良経 藤森
裕彦 和泉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP53026662A priority Critical patent/JPS5946433B2/en
Publication of JPS54120900A publication Critical patent/JPS54120900A/en
Publication of JPS5946433B2 publication Critical patent/JPS5946433B2/en
Expired legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/85Piezoelectric or electrostrictive active materials
    • H10N30/852Composite materials, e.g. having 1-3 or 2-2 type connectivity
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/01Manufacture or treatment
    • H10N30/04Treatments to modify a piezoelectric or electrostrictive property, e.g. polarisation characteristics, vibration characteristics or mode tuning
    • H10N30/045Treatments to modify a piezoelectric or electrostrictive property, e.g. polarisation characteristics, vibration characteristics or mode tuning by polarising
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/01Manufacture or treatment
    • H10N30/09Forming piezoelectric or electrostrictive materials
    • H10N30/092Forming composite materials

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Transducers For Ultrasonic Waves (AREA)
  • Treatments Of Macromolecular Shaped Articles (AREA)
  • Shaping By String And By Release Of Stress In Plastics And The Like (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)

Description

【発明の詳細な説明】 本発明は可撓性を有する圧電性高分子複合体の製造方法
に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing a flexible piezoelectric polymer composite.

従来、圧電性を有する物質として水晶、ロツシエル塩等
の結晶及びチタン酸バリウム等のセラミックがよく知ら
れている。
Conventionally, crystals such as quartz, Rothsiel's salt, and ceramics such as barium titanate are well known as piezoelectric substances.

これ等の材料は、いずれも大きな圧電性を保持する反面
、硬くて覚く加工が難力化いため薄膜の圧電体や柔軟性
の圧電体を得ることは極めて困難であつた。一方、ポリ
ベンジルグルタメートの如きアミノ酸重合体の一軸延伸
膜やポリ塩化ビニル、ポリアミド、コラーゲン等の有機
材料にも圧電性を保持させることは確認されているもの
の、いずれも圧電性が小さく、圧電効果の最も大きいと
されるポリ弗化ビニリデンにおいてさえも長さ縦振動の
圧電定数は6.7×10−12m/りに過ぎない。
Although these materials all have great piezoelectricity, they are hard and difficult to process, making it extremely difficult to obtain thin film piezoelectric bodies or flexible piezoelectric bodies. On the other hand, although it has been confirmed that uniaxially stretched membranes of amino acid polymers such as polybenzyl glutamate and organic materials such as polyvinyl chloride, polyamide, and collagen can maintain piezoelectricity, the piezoelectricity of all of them is small and the piezoelectric effect Even in polyvinylidene fluoride, which is said to have the largest value, the piezoelectric constant of longitudinal vibration is only 6.7 x 10-12 m/liter.

更に、高分子材料に圧電体微粒子を複合化させ、次いで
適当な温度で直流電圧を印加して分極操作を施すもので
は、分極時の電界がほとんど高分子材料に分配され、強
誘電体微粒子を十分配向しきれない。つまり圧電体微粒
子添加による圧電性向上の効果が充分発揮されたものと
は言えなかつた。この事実は、熱可塑性高分子中に複合
化される強誘電体微粒子の量が増加するに従い顕著とな
る。他方熱可塑性高分子材料を選択する際も、分極時の
電界をもつと圧電体微粒子に多く分配し強誘電体微粒子
をもつと十分に配向させるためには、高分子材料の誘電
率の大きなものを選ばなければならず、実用上、ポリ弗
化ビニリデンが多く用いられていた。本発明は上記の欠
点に鑑み、薄膜への成形加工が容易で圧電性の大きな圧
電性高分子複合体を得ることのできる製造方法を提供す
ることを目的とする。
Furthermore, in the case where piezoelectric fine particles are composited with a polymeric material and then polarization is performed by applying a DC voltage at an appropriate temperature, most of the electric field during polarization is distributed to the polymeric material, and the ferroelectric fine particles are I can't get enough orientation. In other words, it could not be said that the effect of improving piezoelectricity by adding piezoelectric fine particles was sufficiently exhibited. This fact becomes more noticeable as the amount of ferroelectric fine particles compounded into the thermoplastic polymer increases. On the other hand, when selecting a thermoplastic polymer material, it is necessary to select a polymer material with a large dielectric constant so that the electric field during polarization can distribute the electric field to the piezoelectric particles, and the ferroelectric particles can be sufficiently oriented. In practice, polyvinylidene fluoride was often used. In view of the above-mentioned drawbacks, the present invention aims to provide a manufacturing method that can easily be formed into a thin film and that can obtain a piezoelectric polymer composite having high piezoelectricity.

即ち本発明では、あらかじめ分極処理を施し配向された
圧電性無機物微粒子を熱可塑性高分子材料に含有せしめ
て成る複合体を延伸し、然る後に更に分極操作を施して
、大きな圧電性を得ることを特徴としている。
That is, in the present invention, a composite consisting of a thermoplastic polymer material containing piezoelectric inorganic fine particles that have been polarized and oriented in advance is stretched, and then a polarization operation is further performed to obtain large piezoelectricity. It is characterized by

このあらかじめ分極処理を施し、配向された圧電性無機
物微粒子を熱可塑性高分子材料と複合化し、延伸後更に
直流電界下で配向の方向を整えることによつて、圧電性
無機物微粒子に依存した圧電性が大巾に改善される。
By subjecting the piezoelectric inorganic fine particles that have been polarized and oriented in advance to a composite with a thermoplastic polymer material, and then adjusting the orientation direction under a DC electric field after stretching, piezoelectricity that depends on the piezoelectric inorganic fine particles can be achieved. is greatly improved.

即ち従来知られている複合型の場合に比較して数倍大き
な圧電定数が得られた。なお熱可塑性高分子材料として
は特に、ポリ弗化ビニリデン、ポリ塩化ビニル、ポリ塩
化ビニリデン、フッ素系プラスチック、ポリアクリロニ
トリル、ナイロン11(商品名)を用いることが好まし
く、また圧電性無機物としては、強誘電体圧電物が好ま
しくPbTiO3−PbZrO3系などの他にロツシエ
ル塩、水晶などを用いることもできる。
That is, a piezoelectric constant several times larger than that of the conventionally known composite type was obtained. As the thermoplastic polymer material, it is particularly preferable to use polyvinylidene fluoride, polyvinyl chloride, polyvinylidene chloride, fluorine-based plastics, polyacrylonitrile, and nylon 11 (trade name), and as the piezoelectric inorganic material, strong Dielectric piezoelectric materials are preferred, and in addition to PbTiO3-PbZrO3 systems, Rothsiel salt, quartz, etc. can also be used.

さらに、分極した圧電性無機物微粒子を得る方法として
、1高分子バインダーを用いたセラミツク成形体を11
00′C〜1400℃の温度下で本焼成し、得られた固
体を分極するか或いは任意の厚みにスライス、ラツピン
グ後両表面に電極を設け分極し粉砕する(この場合、粉
砕の前に電極をエツチング等で除去してもかまわない)
。21同様本焼成した固体を粉砕し分極する。
Furthermore, as a method for obtaining polarized piezoelectric inorganic fine particles, a ceramic molded body using a polymeric binder was
Main firing is carried out at a temperature of 00'C to 1400℃, and the obtained solid is polarized or sliced to an arbitrary thickness, wrapped, and then electrodes are provided on both surfaces for polarization and pulverization. (You may remove it by etching etc.)
. Similar to No. 21, the main fired solid is crushed and polarized.

3セラミツク粉末を本焼成し分極する。3 Ceramic powder is fired and polarized.

更に熱可塑性高分子材料と圧電性無機物微粒子との複合
化方法には、次の方法がある。
Further, there are the following methods for combining a thermoplastic polymer material and piezoelectric inorganic fine particles.

1軟化点以上の温度で、熱可塑性高分子材料とあらかじ
め分極されている圧電性無機物微粒子とをロール・プラ
ストグラフ等を用いて混合複合化した後に、フイルム又
はシートに成形する。
A thermoplastic polymer material and pre-polarized piezoelectric inorganic fine particles are mixed and composited using a roll plastograph or the like at a temperature of 1 softening point or higher, and then formed into a film or sheet.

2熱可塑性高分子材料を適当な溶剤に溶かして後、あら
かじめ分極された圧電性無機物微粒子とボールミル等に
より十分混合した後、溶液流延法を用いてシート状又は
フイルム状に成形する。
2. After dissolving the thermoplastic polymer material in a suitable solvent, it is thoroughly mixed with pre-polarized piezoelectric inorganic fine particles using a ball mill, etc., and then formed into a sheet or film using a solution casting method.

熱可塑性高分子材料と圧電体無機物微粒子との割合は熱
可塑性高分子材料に対して10〜97重量%の圧電性無
機物微粒子を混合することが可能である。し力化機械的
強度、誘起電圧の大きさ、延伸の良否等の条件により望
ましくは30〜92重量%圧電体無機物微粒子を含んだ
ものを用いた方が良い。更にあらかじめ分極された圧電
性微粒子を熱可塑性高分子材料に複合化する際の問題点
として1あらかじめ分極された圧電性微粒子の配向方向
がランダムになる。
As for the ratio of the thermoplastic polymer material to the piezoelectric inorganic fine particles, it is possible to mix the piezoelectric inorganic fine particles in an amount of 10 to 97% by weight based on the thermoplastic polymer material. It is preferable to use a material containing 30 to 92% by weight of piezoelectric inorganic fine particles depending on conditions such as mechanical strength, magnitude of induced voltage, and quality of stretching. Further, there is a problem when compounding pre-polarized piezoelectric fine particles with a thermoplastic polymer material: 1. The orientation direction of the pre-polarized piezoelectric fine particles becomes random.

2配向方向をそろえるために十分高電界をフイルム又は
シートに印加するため、十分なフイルム又はシートの耐
圧が挙げられる。
In order to apply a sufficiently high electric field to the film or sheet to align the two orientation directions, the film or sheet must have a sufficient withstand voltage.

しかし本発明者等は、絶縁油中、不活性気体中で分極処
理を施すことによつて上記1,2の問題点を解決し、極
めて大きな圧電性を保持した複合フイルム又はシートを
得ている。圧電性無機物微粒子の大きさは、100メツ
シユ以上の細かさのものなら良く、350メツシユ以上
の微粒子のものでも有効であるが、望ましくは、微粒子
の形状は球形で複合化の際、2つ以上の粒径をもつこと
が望ましい。
However, the present inventors have solved the problems 1 and 2 above by performing polarization treatment in insulating oil or inert gas, and have obtained a composite film or sheet that retains extremely high piezoelectricity. . The size of the piezoelectric inorganic fine particles is fine as long as it is 100 meshes or more, and fine particles of 350 meshes or more are also effective, but preferably the shape of the fine particles is spherical, and when compounding, two or more fine particles are used. It is desirable to have a particle size of .

延伸方法は、次のいずれの方法についても十分効果のあ
ることが確認された。
It was confirmed that all of the following stretching methods were sufficiently effective.

1室温でのロール延伸。1 Roll stretching at room temperature.

延伸の難かしい場合には、可能な限り低い温度にロール
を温めて延伸。2機械的引張りによる延伸。
If stretching is difficult, warm the rolls to the lowest possible temperature and stretch. 2 Stretching by mechanical tension.

3溶液流延法で成膜したものを、まだ溶媒がぬけ切つて
いない状態で上記1又は2と同様な方法で延伸した後、
溶媒を完全に除去する。
3. After stretching the film formed by the solution casting method in the same manner as in 1 or 2 above, with the solvent still not completely removed,
Remove solvent completely.

このように延伸した後、適当な電極をフイルム又はシー
トの両面に取り付け、直流電圧を絶縁油中又は不活性気
体中で分極操作を施す。この場合も温度は90〜130
℃位にした方が有効である。また前にも述べた様に直流
印加電圧は、ランダムな方向に配向している圧電性微粒
子の一部を改めて配向させ直し同方向に配向ならしめる
ため、高い程良く、絶縁破壊に近いくらいまで印加した
方が、圧電電圧は大きくなる。また延伸性及び製品の機
械的強度を増すために必要に応じて可塑剤を添加するこ
ともできるが、あまり絶縁抵抗を低下させない程度なら
、あらかじめ分極したセラミツク板上の電極をエツチン
グ等で除去せずに直接粉砕し複合化しても、圧電々圧に
は大きく影響しない。
After stretching in this manner, suitable electrodes are attached to both sides of the film or sheet, and a polarization operation is applied to the film or sheet in an insulating oil or inert gas by applying a DC voltage. In this case too, the temperature is 90-130
It is more effective to keep it at around ℃. In addition, as mentioned before, the DC applied voltage reorients some of the piezoelectric fine particles that are oriented in random directions and makes them align in the same direction, so the higher the voltage, the better. The more applied, the larger the piezoelectric voltage becomes. Additionally, a plasticizer can be added as necessary to increase the stretchability and mechanical strength of the product, but if it does not significantly reduce the insulation resistance, the electrodes on the pre-polarized ceramic plate can be removed by etching, etc. Even if it is directly pulverized and composited without cutting, it does not have a large effect on the piezoelectric voltage.

以下本発明の実施例を示す。Examples of the present invention will be shown below.

実施例 1 あらかじめ分極処理された(D3l=1.2×10−1
0m/v)チタン酸ジルコン酸鉛系(以下PZTと称す
Example 1 Pre-polarized (D3l=1.2×10-1
0 m/v) lead zirconate titanate (hereinafter referred to as PZT).

)磁器を、スタンプミル及びボールミルで平均粒径2μ
,5μ,10μの3種類に粉砕し、圧電性無機物微粒子
とした。この圧電性無機物微粒子(2μ:5μ:10μ
ニJメF2:1)100gr.とポリ弗化ビニリデン粉末
100gr.を180〜200℃の加熱ロールで混練し
、同温でプレスにより厚さ約200μのシート状に成形
する。次いでシートを室温でロール間を通して2倍に延
伸する。このシートの両面に真空蒸着、スバツタリング
、メツキ、印刷等の方法で電極を設け、120℃のシリ
コーン油中で24時間500K′I/Cmの直流電界を
印加して圧電体を得た。そしてこれより巾5關、長さ4
2顛のサンプルを切り出してアルミ箔で両表面から圧電
々圧をとり出した。なお圧電性無機物微粒子として、圧
電率の異なるPZT系磁器圧電体4種(D3l=1.2
刈0−10rn/V,l.O×10−10m/V,O.
7×10−10,0.4×10−105−なお同一材料
について分極条件を変え、圧電率を変化させたもの)を
用いた場合の圧電率(D3l)を測定し、従来法(熱可
塑性高分子材料にあらかじめ分極処理を施していない上
記七圧電体微粒子を用いた場合)によるものを併せて第
1表に示す。実施例 2 実施例1同様あらかじめ分極されたPZT磁器(0.4
×10−10町へ,0.7×10−10晒,1.0×1
0−10町勺,1.2×10−10m/、)をスタンプ
ミル及びボールミルで平均粒径2μ,5μ,10μの3
種類に粉砕し、圧電性微粒子とした。
) Porcelain was milled using a stamp mill and a ball mill to reduce the average particle size to 2μ.
, 5μ, and 10μ to obtain piezoelectric inorganic fine particles. These piezoelectric inorganic fine particles (2μ:5μ:10μ
NiJ Me F2:1) 100gr. and polyvinylidene fluoride powder 100g. The mixture is kneaded with heated rolls at 180 to 200°C, and then formed into a sheet with a thickness of about 200μ by pressing at the same temperature. The sheet is then stretched twice between rolls at room temperature. Electrodes were provided on both sides of this sheet by vacuum deposition, sputtering, plating, printing, etc., and a direct current electric field of 500 K'I/Cm was applied for 24 hours in silicone oil at 120° C. to obtain a piezoelectric body. And from this the width is 5 and the length is 4
Two samples were cut out and piezoelectric pressure was extracted from both surfaces using aluminum foil. In addition, as the piezoelectric inorganic fine particles, four types of PZT-based porcelain piezoelectric materials with different piezoelectric constants (D3l = 1.2
Mowing 0-10rn/V, l. O×10-10m/V, O.
7 x 10-10, 0.4 x 10-105 - the same material with different polarization conditions and piezoelectric constant) was measured, and the piezoelectric constant (D3l) was measured using the conventional method (thermoplastic Table 1 also shows the cases where the above seven piezoelectric fine particles whose polymeric material was not subjected to polarization treatment in advance were used. Example 2 Similar to Example 1, pre-polarized PZT porcelain (0.4
×10-10 town, 0.7×10-10 exposure, 1.0×1
0-10 m/m/cm) with an average particle size of 2μ, 5μ, and 10μ using a stamp mill and a ball mill.
It was crushed into different types to produce piezoelectric fine particles.

この圧電性微粒子(2μ:5μ:10μ=7:2:1)
100gr.とナイロン11粉末100gr.を**1
50〜170℃の加熱ロールで混練し、同温でプレスに
より厚さ約200μのシート状に成形する。次いで延伸
ロールで約2倍に延伸し、電極を装着後、120℃のシ
リコーン油中で24時間、500KVん1の直流電界を
印加して圧電体を得た。以下実施例1と同様に長さ方向
の圧電率を測定した。結果を第2表に示す。以上の結果
、本発明方法により製造した圧電性高分子複合体にでは
優れた圧電率を示し、さらに可撓性を有するため、フイ
ルム状として音声帯域での電気機械変換器として極めて
有効である。
This piezoelectric fine particle (2μ:5μ:10μ=7:2:1)
100 gr. and nylon 11 powder 100g. **1
The mixture is kneaded with heated rolls at 50 to 170°C, and then formed into a sheet with a thickness of about 200 μm by pressing at the same temperature. Next, it was stretched to about twice the size using a stretching roll, and after attaching electrodes, a DC electric field of 500 KV was applied for 24 hours in silicone oil at 120° C. to obtain a piezoelectric body. Thereafter, the piezoelectric constant in the longitudinal direction was measured in the same manner as in Example 1. The results are shown in Table 2. As a result of the above, the piezoelectric polymer composite produced by the method of the present invention exhibits excellent piezoelectric constant and also has flexibility, so that it is extremely effective in the form of a film as an electromechanical transducer in the audio band.

Claims (1)

【特許請求の範囲】[Claims] 1 熱可塑性高分子材料に、あらかじめ分極処理を施し
た圧電性無機物微粉子を含有せしめてなるフィルム状も
しくはシート状複合体を延伸する工程と、前記延伸した
複合体に直流電圧を印加し、分極処理を施す工程とを具
備したことを特徴とする圧電性高分子複合体の製造方法
1. A step of stretching a film-like or sheet-like composite made of a thermoplastic polymer material containing piezoelectric inorganic fine powder that has been polarized in advance, and applying a DC voltage to the stretched composite to polarize it. 1. A method for producing a piezoelectric polymer composite, comprising a step of performing a treatment.
JP53026662A 1978-03-10 1978-03-10 Method for manufacturing piezoelectric polymer composite Expired JPS5946433B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP53026662A JPS5946433B2 (en) 1978-03-10 1978-03-10 Method for manufacturing piezoelectric polymer composite

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP53026662A JPS5946433B2 (en) 1978-03-10 1978-03-10 Method for manufacturing piezoelectric polymer composite

Publications (2)

Publication Number Publication Date
JPS54120900A JPS54120900A (en) 1979-09-19
JPS5946433B2 true JPS5946433B2 (en) 1984-11-12

Family

ID=12199618

Family Applications (1)

Application Number Title Priority Date Filing Date
JP53026662A Expired JPS5946433B2 (en) 1978-03-10 1978-03-10 Method for manufacturing piezoelectric polymer composite

Country Status (1)

Country Link
JP (1) JPS5946433B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4412148A (en) * 1981-04-24 1983-10-25 The United States Of America As Represented By The Secretary Of The Navy PZT Composite and a fabrication method thereof
US4514247A (en) * 1983-08-15 1985-04-30 North American Philips Corporation Method for fabricating composite transducers
US4977547A (en) * 1985-06-07 1990-12-11 Hoechst Celanese Corp. Method of detecting sound in water using piezoelectric-polymer composites with 0-3 connectivity
DE8611844U1 (en) * 1986-04-30 1986-08-07 Siemens AG, 1000 Berlin und 8000 München Ultrasonic applicator with an adaptation layer
JPS6428974A (en) * 1987-07-24 1989-01-31 Toyama Prefecture Piezoelectric pressure sensitive element and manufacture thereof

Also Published As

Publication number Publication date
JPS54120900A (en) 1979-09-19

Similar Documents

Publication Publication Date Title
US4917810A (en) Piezoelectric composite material
JPH05152638A (en) High polymer piezo-electric material
US4668449A (en) Articles comprising stabilized piezoelectric vinylidene fluoride polymers
Tamura et al. Piezoelectricity in uniaxially stretched poly (vinylidene fluoride)
US4675123A (en) Piezoelectric composite material
Fukada New piezoelectric polymers
JP2002513514A (en) Ferroelectric relaxor polymer
DE2657536C2 (en)
US4340786A (en) Piezo-electric film manufacture
EP2489064A1 (en) Energy conversion materials fabricated with boron nitride nanotubes (bnnts) and bnnt polymer composites
JP2000507392A (en) Improved piezoelectric ceramic-polymer composites
JPS5946433B2 (en) Method for manufacturing piezoelectric polymer composite
JPH06342947A (en) Manufacture of porous piezoelectric element and polymer piezoelectric porous film
US5246610A (en) Piezoelectric composite material
JPS61295678A (en) Manufacture of piezoelectric film
JPH0219984B2 (en)
Taleb et al. Enhanced performance of flexible Piezoelectric PVDF sensors by ultrasonic spray coating method
Sakai et al. Preparation of Ba (Ti, Zr) O3 thick-film microactuators on silicon substrates by screen printing
EP0174838A2 (en) Stabilized piezoelectric vinylidene fluoride polymers
JPS6239551B2 (en)
JPS63217674A (en) Composite piezoelectric material
JPS6212677B2 (en)
KR102481353B1 (en) Magnetoelectric film including two-dimensional multi-phase magnetostrictive filler and manufacturing method thereof
US20070278445A1 (en) Smart material
Tandon Dielectric and Piezoelectric Properties of a Flexible Polymer-Ceramic Composite Based on Polyvinylidene Fluoride and Barium Titanate