JP6260982B2 - Particle-oriented ceramics - Google Patents

Particle-oriented ceramics Download PDF

Info

Publication number
JP6260982B2
JP6260982B2 JP2013048463A JP2013048463A JP6260982B2 JP 6260982 B2 JP6260982 B2 JP 6260982B2 JP 2013048463 A JP2013048463 A JP 2013048463A JP 2013048463 A JP2013048463 A JP 2013048463A JP 6260982 B2 JP6260982 B2 JP 6260982B2
Authority
JP
Japan
Prior art keywords
particles
substrate
orientation
crystal structure
plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013048463A
Other languages
Japanese (ja)
Other versions
JP2014172800A (en
Inventor
宗泰 鈴木
宗泰 鈴木
明渡 純
純 明渡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2013048463A priority Critical patent/JP6260982B2/en
Publication of JP2014172800A publication Critical patent/JP2014172800A/en
Application granted granted Critical
Publication of JP6260982B2 publication Critical patent/JP6260982B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Compositions Of Oxide Ceramics (AREA)

Description

本発明は、粒子配向セラミックスに関する。   The present invention relates to particle-oriented ceramics.

圧電材料やリチウムイオン二次電池等に用いられる無機材料が持つ機能性は、結晶の構造と結晶方位に依存することが多い。これまで、機能性の向上を図る手法として、組成の変化による結晶構造の制御や結晶方位を揃える粒子配向化などの検討がなされている。
特に、セラミックスを圧電材料として用いる場合、外部電圧を加えて分極のベクトル方向を揃える必要があるが、その機能性から結晶方位を一方向に揃えた配向セラミックスの研究が盛んに行われている。
The functionality of inorganic materials used for piezoelectric materials and lithium ion secondary batteries often depends on the crystal structure and crystal orientation. So far, as a method for improving functionality, studies have been made on controlling the crystal structure by changing the composition and orienting the grains to align the crystal orientation.
In particular, when ceramics are used as a piezoelectric material, it is necessary to apply an external voltage to align the vector direction of polarization, but due to its functionality, research on oriented ceramics in which the crystal orientation is aligned in one direction has been actively conducted.

例えば、非特許文献1では、ビスマス層状構造強誘電体の粒子が板状に成長することを利用し、ホット・フォージング法(押しつぶしながら焼結する方法)で緻密なc軸方向への粒子配向セラミックスを得ている。
また、非特許文献2では、ビスマス層状構造強誘電体の一つであるBiTの板状の粒子を合成し、ドクターブレードによりテープキャスティングしたグリーンシートを焼結することで緻密なc軸方向への粒子配向セラミックスを得ている。ここでBiTとはチタン酸ビスマスのことであり、組成式はBi4Ti312である。
さらに、非特許文献3では、BiTはc軸方向とa(b)軸方向でごく僅かに磁化率が異なることを利用、スラリー状にしたBiTを強磁場中(10T以上)で堆積することでa(b)軸方向に粒子が揃ったグリーンシートを作製し、これを焼結することで緻密なa(b)軸方向への粒子配向セラミックスを得ている。
For example, Non-Patent Document 1 utilizes the fact that particles of a bismuth layer-structured ferroelectric material grow in a plate shape, and fine particle orientation in the c-axis direction by a hot forging method (a method of sintering while crushing). I have ceramics.
Further, in Non-Patent Document 2, BiT plate-like particles, which are one of bismuth layered structure ferroelectrics, are synthesized, and a green sheet that has been tape-cast by a doctor blade is sintered, so that the fine c-axis direction can be obtained. Obtained grain oriented ceramics. Here, BiT means bismuth titanate, and the composition formula is Bi 4 Ti 3 O 12 .
Furthermore, in Non-Patent Document 3, BiT uses the fact that the magnetic susceptibility is slightly different between the c-axis direction and the a (b) -axis direction, and deposits BiT in the form of slurry in a strong magnetic field (10T or more). A green sheet in which particles are aligned in the a (b) axial direction is manufactured and sintered, thereby obtaining a dense particle-oriented ceramic in the a (b) axial direction.

しかしながら、これまでの手法はいずれも熱処理を要するものであって、十分に緻密な微細構造を持ったセラミックスを、熱処理することなく配向制御することは実現されていなかった。
これに対して、本発明者等は、BiTの板状粒子を用いて、エアロゾルデポジション(AD)法により室温で配向膜を作製できることを見いだしている(非特許文献5)。AD法は、粉末材料の噴射加工技術の1つであり、セラミック微粒子を高温で焼結することなく常温で固化・緻密化できる方法である。
However, all of the conventional techniques require heat treatment, and it has not been possible to control the orientation of a ceramic having a sufficiently fine microstructure without heat treatment.
On the other hand, the present inventors have found that an alignment film can be produced at room temperature by an aerosol deposition (AD) method using BiT plate-like particles (Non-patent Document 5). The AD method is one of powder material injection processing techniques, and is a method in which ceramic fine particles can be solidified and densified at room temperature without sintering at high temperature.

圧電セラミックスは、強誘電体セラミックスに電界を印加し、強誘電体の分域の方向を一定の方向にそろえる、いわゆる分極処理を施したものである。圧電セラミックスにおいて、分極処理により自発分極を一定方向にそろえるためには、自発分極の方向が三次元的に取りうる等方性ペロブスカイト型の結晶構造が有利である。そのため、実用化されている圧電セラミックスの大部分は、等方性ペロブスカイト型強誘電体セラミックスである。等方性ペロブスカイト型強誘電体セラミックスとしては、例えばPZT,BTO,BNT等が知られている。ここでPZTとはチタン酸ジルコン酸鉛のことであり、組成式はPb(Zr,Ti)O3である。BTOはチタン酸バリウムのことであり、組成式はBaTiO3である。また、BNTとは単純ペロブスカイト構造を持つチタン酸ビスマスナトリウムのことであり、組成式はBi0.5Na0.5TiO3である。 Piezoelectric ceramics have been subjected to so-called polarization treatment in which an electric field is applied to ferroelectric ceramics to align the direction of the domain of the ferroelectric material in a certain direction. In piezoelectric ceramics, an isotropic perovskite-type crystal structure in which the direction of spontaneous polarization can be taken three-dimensionally is advantageous in order to align spontaneous polarization in a certain direction by polarization treatment. For this reason, most of the piezoelectric ceramics in practical use are isotropic perovskite ferroelectric ceramics. As isotropic perovskite ferroelectric ceramics, for example, PZT, BTO, BNT and the like are known. Here, PZT means lead zirconate titanate, and the composition formula is Pb (Zr, Ti) O 3 . BTO is barium titanate, and the composition formula is BaTiO 3 . BNT is bismuth sodium titanate having a simple perovskite structure, and the composition formula is Bi 0.5 Na 0.5 TiO 3 .

これらの中で、PZTに代表される鉛系の圧電セラミックスは、他の圧電セラミックスに比較して高い圧電特性を有しており、現在実用化されている圧電セラミックスの大部分を占めている。しかしながら、蒸気圧の高い酸化鉛(PbO)を含んでいるために、環境に対する負荷が大きいという問題がある。そのため、低鉛あるいは無鉛でPZTと同等の圧電特性を有する圧電セラミックスが求められている。
しかしながらBNT、BTOなどの非鉛圧電体材料は、これまで置換や固溶などの組成制御による機能性向上が試みられてきたが、圧電定数が低い、キュリー温度が低いなどの理由から代替が実現できていない。
Among these, lead-based piezoelectric ceramics represented by PZT have higher piezoelectric properties than other piezoelectric ceramics, and occupy most of the piezoelectric ceramics currently in practical use. However, since lead oxide (PbO) having a high vapor pressure is contained, there is a problem that the load on the environment is large. Therefore, there is a demand for piezoelectric ceramics that have low or no lead and have piezoelectric properties equivalent to PZT.
However, lead-free piezoelectric materials such as BNT and BTO have been tried to improve their functionality by composition control such as substitution and solid solution, but they can be replaced because of their low piezoelectric constant and low Curie temperature. Not done.

例えば、非特許文献5、特許文献1等では、組成がBNT−BTOになるようBiT板状粒子のテンプレート周辺へ原料粉末を混ぜ、テープキャスティングして焼結することで、板状粒子が得にくい組成系(BNT−BTO)でも緻密な(100)c粒子配向セラミックスを得ている。
しかしながら、キュリー温度については、検討されておらず、また、ビスマス等の低融点の元素を含む材料では、熱処理温度が高いと酸素欠陥を生成してしまい、絶縁性の劣化などを引き起こす。
For example, in Non-Patent Document 5, Patent Document 1, etc., it is difficult to obtain plate-like particles by mixing raw material powder around the template of BiT plate-like particles so as to have a composition of BNT-BTO, and tape casting and sintering. Even in the composition system (BNT-BTO), a dense (100) c grain oriented ceramic is obtained.
However, the Curie temperature has not been studied, and a material containing a low melting point element such as bismuth generates oxygen defects when the heat treatment temperature is high, which causes deterioration of insulation.

さらに、250〜300℃の環境下でも比誘電率が低下しない誘電体材料は「高温高耐圧コンデンサ」としてハイブリッド車や電気自動車での応用が期待されている。現在、電子デバイスに搭載されている積層セラミックコンデンサなどで用いられている誘電体材料のBTOはキュリー温度が130℃程度であり、それより高い温度環境下で利用できない。これまでBTOのキュリー温度を上げるための研究が盛んに行われているが、組成制御では十分な特性改善に至っていない。
また、近年、ガソリン自動車のノックセンサーやインジェクターに圧電体材料を用いることで低燃費化をはかる研究開発が進められており、高温環境下で利用できる圧電体の開発が求められているなか、BTOのキュリー温度は130℃程度であり、BNTも180℃程度までしか利用できない。
Furthermore, a dielectric material whose relative dielectric constant does not decrease even under an environment of 250 to 300 ° C. is expected to be applied as a “high temperature high voltage capacitor” in hybrid vehicles and electric vehicles. At present, BTO, which is a dielectric material used in multilayer ceramic capacitors mounted on electronic devices, has a Curie temperature of about 130 ° C. and cannot be used in a temperature environment higher than that. So far, extensive research has been conducted to raise the Curie temperature of BTO, but the composition control has not yet improved the characteristics sufficiently.
In recent years, research and development for reducing fuel consumption has been promoted by using piezoelectric materials for knock sensors and injectors in gasoline vehicles, and there is a need for the development of piezoelectric materials that can be used in high-temperature environments. The Curie temperature is about 130 ° C, and BNT can only be used up to about 180 ° C.

近年、薄膜作製技術の進化により結晶方位に対して特定の方向から大きな応力を印加することで、等方的もしくは擬等方的な結晶構造を持つ物質の組成を変えることなく、結晶構造を制御する方法が注目を集めている。
例えば、非特許文献6では、擬等方的な結晶構造を持つBTOを単結晶基板上へエピタキシャル成長させることで、基板から膜に働く内部応力によってBTOの結晶構造を変化させ、BTOの単結晶が示す本来の物性よりも大幅な機能性改善(高相転移温度化)を導いている。
該方法は、BTO膜の堆積を終え、膜と基板を冷却するものであり、基板の線膨張係数がBTOよりも大きいと、室温に戻った際、基板の方が縮んでいるため、BTO膜には大きな内部圧縮応力が働き、この内部応力によって、BTOのa軸とb軸が縮むかわりにc軸が伸び、これにより、組成を変更することなく大きな強誘電体性の発現と高いキュリー温度変化を実現するものである。
しかしながら、非特許文献6のBTOを利用する上で問題点であった低相転移温度も、基板からの応力印加による結晶構造の制御で解決が図られつつも、特定の基板を利用しなければならないことや高い合成温度など、作製条件に大きな制約があり実用化の域には達していない。
In recent years, with the evolution of thin film fabrication technology, by applying a large stress from a specific direction to the crystal orientation, the crystal structure can be controlled without changing the composition of materials with isotropic or quasi-isotropic crystal structures. How to do is attracting attention.
For example, in Non-Patent Document 6, BTO having a pseudo-isotropic crystal structure is epitaxially grown on a single crystal substrate, thereby changing the BTO crystal structure by internal stress acting on the film from the substrate. This leads to a significant improvement in functionality (higher phase transition temperature) than the original physical properties shown.
The method finishes the deposition of the BTO film and cools the film and the substrate. If the linear expansion coefficient of the substrate is larger than that of the BTO, the substrate shrinks when returning to room temperature. A large internal compressive stress acts on this, and this internal stress causes the c-axis to expand instead of shrinking the a-axis and b-axis of the BTO. This makes it possible to develop a large ferroelectricity and a high Curie temperature without changing the composition. Realize change.
However, the low phase transition temperature, which has been a problem in using BTO of Non-Patent Document 6, can be solved by controlling the crystal structure by applying stress from the substrate, but a specific substrate must be used. There are significant restrictions on the production conditions such as incompatibility and high synthesis temperature, and it has not yet reached practical use.

“Hot-forged ferroelectric ceramics of some bismuth compounds with layer structure”, K. Sakata, T. Takenaka, and K. Shoji, Ferroelectrics 22, 825-826 (1978)“Hot-forged ferroelectric ceramics of some bismuth compounds with layer structure”, K. Sakata, T. Takenaka, and K. Shoji, Ferroelectrics 22, 825-826 (1978) “Templated Grain Growth of Textured Bismuth Titanate”, Jeffery A. Horn et al., J. Am. Ceram. Soc., 82 [4] 921-26 (1999).“Templated Grain Growth of Textured Bismuth Titanate”, Jeffery A. Horn et al., J. Am. Ceram. Soc., 82 [4] 921-26 (1999). “Crystal-Oriented Bi4Ti3O12 Ceramics Fabricated by High-Magnetic-Field Method”, Y. Doshida et al., Jpn. J. Appl. Phys. 43, 6645-6648 (2004).“Crystal-Oriented Bi4Ti3O12 Ceramics Fabricated by High-Magnetic-Field Method”, Y. Doshida et al., Jpn. J. Appl. Phys. 43, 6645-6648 (2004). 「エアロゾルデポジション法で作製したチタン酸ビスマスセラミック膜の構造評価」2011年セラミックス協会年会 (産総研)鈴木宗泰 明渡純"Structural evaluation of bismuth titanate ceramic films prepared by aerosol deposition" 2011 Annual Meeting of the Ceramic Society (AIST) Muneyasu Suzuki Jun Jun Awatari “Preparation of crystallographically textured Bi0.5Na0.5TiO3-BaTiO3 ceramics by reactive-templated grain growth method”, T. Kimura et al., Ceramics International 30 1161-1167 (2004).“Preparation of crystallographically textured Bi0.5Na0.5TiO3-BaTiO3 ceramics by reactive-templated grain growth method”, T. Kimura et al., Ceramics International 30 1161-1167 (2004). “Enhancement of Ferroelectricity in Strained BaTiO3 Thin Films”, K. J. Choi, M. Biegalski, Y. L. Li, A. Sharan, J. Schubert, R. Uecker, P. Reiche, Y. B. Chen, X. Q. Pan, V. Gopalan, L.-Q. Chen, D. G. Schlom, C. B. Eom, Science 306, 1005-1009 (2004).“Enhancement of Ferroelectricity in Strained BaTiO3 Thin Films”, KJ Choi, M. Biegalski, YL Li, A. Sharan, J. Schubert, R. Uecker, P. Reiche, YB Chen, XQ Pan, V. Gopalan, L.- Q. Chen, DG Schlom, CB Eom, Science 306, 1005-1009 (2004).

特開2010−222194号公報JP 2010-222194 A

このように、応力によって結晶構造を制御しやすい擬等方的な結晶構造を持つ物質に対して、配向化と内部応力の印加を可能にすることにより、特性の向上が期待されるが、基板の種類や膜の合成方法(低スループット、高コスト)、高温での熱処理温度などが課題とされてきた。   As described above, improvement in characteristics is expected by enabling orientation and application of internal stress to a substance having a pseudo-isotropic crystal structure in which the crystal structure is easily controlled by stress. The type of film, the method of synthesizing the film (low throughput, high cost), the heat treatment temperature at high temperature, and the like have been problems.

本発明は、こうした現状を鑑みてなされたものであって、応力の影響を受けやすい結晶異方性の小さい(等方性の比較的高い)物質を用いて、熱処理なく、緻密かつ微細な構造を持った粒子配向膜を作製し、必要に応じて低い熱処理温度をかけ、膜に働く内部応力を利用し結晶構造を制御することを提供することを目的とするものである。   The present invention has been made in view of such a situation, and uses a substance having a small crystal anisotropy (relatively high isotropic property) that is easily affected by stress, and has a dense and fine structure without heat treatment. It is an object of the present invention to provide a grain orientation film having a thickness, to apply a low heat treatment temperature as required, and to control the crystal structure using internal stress acting on the film.

本発明者らは、上記目的を達成すべく鋭意研究を重ねた結果、AD法に用いる原料粒子の形状を制御することで、等方性の高い結晶構造を持った物質の粒子配向化膜を作製できることを見いだした。すなわち、BNT等の等方性の高い結晶構造を持つものは、通常、球状か立法体もしくは直方体の粒子に成長するが、本発明では、板状形状に作製された粒子を用いることで、上記目的を達成するという知見を得た。   As a result of intensive research to achieve the above object, the present inventors have controlled the shape of the raw material particles used in the AD method, and thereby have a particle orientation film of a substance having a highly isotropic crystal structure. I found out that it can be made. That is, those having a highly isotropic crystal structure, such as BNT, usually grow into spherical, cubic or cuboid particles, but in the present invention, by using particles prepared in a plate shape, I gained the knowledge to achieve my goal.

本発明はこれらの知見に基づいて完成に至ったものであり、本発明によれば、以下の発明が提供される。
[1]エアロゾルデポジション法により粒子配向膜を製造する方法であって、原料粉末として、等方性の高い結晶構造を持った物質の板状形状に作製された粒子を用いて粒子配向させるとともに、該等方性の高い結晶構造を持った物質の結晶構造を制御することを特徴とする粒子配向膜の製造方法。
[2]前記等方性の高い結晶構造を持った物質が、単純ペロブスカイト構造のチタン酸ビスマスナトリウムであることを特徴とする請求項1に記載の粒子配向膜の製造方法。
[3]エアロゾルデポジション法による粒子配向膜であって、等方性の高い結晶構造を持った物質の板状形状に作製された粒子が配向するとともに、該等方性の高い結晶構造を持った物質の結晶構造が制御されていることを特徴とする粒子配向膜。
[4]前記等方性の高い結晶構造を持った物質が、単純ペロブスカイト構造のチタン酸ビスマスナトリウムであることを特徴とする請求項3に記載の粒子配向膜。
The present invention has been completed based on these findings, and according to the present invention, the following inventions are provided.
[1] A method for producing a particle alignment film by an aerosol deposition method, in which particles are oriented using, as a raw material powder, particles prepared in a plate shape of a substance having a highly isotropic crystal structure. A method for producing a grain alignment film, comprising controlling a crystal structure of a substance having a highly isotropic crystal structure.
[2] The method for producing a grain oriented film according to [1], wherein the substance having a highly isotropic crystal structure is bismuth sodium titanate having a simple perovskite structure.
[3] A particle orientation film by the aerosol deposition method, in which particles produced in a plate-like shape of a substance having a highly isotropic crystal structure are oriented and have a highly isotropic crystal structure. A grain alignment film characterized in that the crystal structure of the substance is controlled.
[4] The grain alignment film according to [3], wherein the substance having a highly isotropic crystal structure is bismuth sodium titanate having a simple perovskite structure.

本発明によれば、AD法に用いる原料粒子として板状形状を有するものを用いることで、等方性の高い結晶構造を持った物質でも十分に緻密で熱処理することなく配向制御でき、低温で基板を選ぶことなく効果的にその物質の結晶構造を応力によって制御することができる。   According to the present invention, by using particles having a plate-like shape as raw material particles used in the AD method, even a substance having a highly isotropic crystal structure can be sufficiently densely controlled without being heat-treated, and at a low temperature. The crystal structure of the substance can be effectively controlled by stress without selecting a substrate.

無配向膜と一軸配向膜について、X線回折による評価を行った際の違いを示す図。The figure which shows the difference at the time of evaluating by X-ray diffraction about a non-orientated film and a uniaxially oriented film. 球形形状のBNT原料粒子と、板状のBNT原料粒子。Spherical BNT raw material particles and plate-like BNT raw material particles. BNTの粉末、通常の固相法により作製したBNT粉末を用いて作製したAD膜およびBNTを板状粒子化した原料粉末のX線回折パターン。X-ray diffraction pattern of BNT powder, AD film produced using BNT powder produced by a normal solid phase method, and raw material powder obtained by forming BNT into plate-like particles. 配向メカニズムを示す図。The figure which shows the orientation mechanism.

本発明は、AD法に用いる原料粒子の形状を制御することで、等方性の高い結晶構造を持った物質を配向するものである。
すなわち、BNT等の等方性の高い結晶構造を持つものは、通常、球状か立法体もしくは直方体の粒子に成長するが、本発明では、AD法に用いる原料粒子として板状形状に作製されたBNT粒子を用いることを特徴とするものである。
In the present invention, a material having a highly isotropic crystal structure is oriented by controlling the shape of raw material particles used in the AD method.
That is, a material having a highly isotropic crystal structure such as BNT usually grows into a spherical, cubic or cuboidal particle, but in the present invention, it was produced in a plate shape as a raw material particle used in the AD method. BNT particles are used.

本発明におけるエアロゾルデポジション法(以下AD法)は、あらかじめ他の手法で準備された微粒子、超微粒子原料をガスと混合してエアロゾル化し、ノズルを通して基板に噴射して被膜を形成する方法である。このAD法でセラミックス原料粉末を用い、その粒子径、機械的強度等を調製し適切な成膜条件を選ぶと、常温衝撃固化現象(Room Temperature Impact Consolidation)により、基板に噴射する際の基板の加熱処理や成膜後の熱処理をすることなく、高密度かつ透明なセラミックス被膜が常温で高速形成できるものである。   The aerosol deposition method (hereinafter referred to as AD method) in the present invention is a method of forming a film by mixing fine particles and ultrafine particle raw material prepared in advance with other methods with a gas to form an aerosol and spraying it onto a substrate through a nozzle. . When ceramic raw material powder is used in this AD method, the particle diameter, mechanical strength, etc. are adjusted and appropriate film forming conditions are selected, the room temperature impact consolidation phenomenon (Room Temperature Impact Consolidation) causes the substrate A high-density and transparent ceramic film can be formed at high speed at room temperature without heat treatment or heat treatment after film formation.

本発明に基づき、板状BTO粒子をAD法で常温にて成膜すると、板状粒子の面垂直方向の結晶方位と基板の面垂直方向が揃い、一軸配向膜を得ることができる。AD法は基板へ粒子を衝突させて膜を堆積させるため、得られた膜には基板から大きな圧縮内部応力が働く(ショットピーニング効果)。この圧縮内部応力によってBTOの結晶構造が変化し、BTOを高キュリー温度化させることができる。
また、非鉛圧電体材料の板状粒子を用いてAD法により一軸配向化した膜を常温で形成することで、内部圧縮応力により結晶構造を制御し、高い圧電定数、高いキュリー温度を示す非鉛圧電体材料を開発することが可能となる。
さらに、2種類以上の異なる無機材料を緻密に積層することは、それぞれの材料が緻密になる熱処理温度が異なる為、困難であり、組み合わせが限られていたが、AD法はあらゆる無機材料を常温で緻密な膜に形成できるため、2種類以上の異なる無機材料を緻密に積層することが容易である。この際、板状の粒子を用いて一軸配向化させた層を積み重ねて低温で熱処理すると、内部圧縮応力がセラミックス内に閉じ込められる。この閉じ込められた内部圧縮応力により、結晶構造を制御し、高い圧電定数、高いキュリー温度を示す非鉛圧電体材料を開発することが可能となる。
When the plate-like BTO particles are formed at room temperature by the AD method based on the present invention, the crystal orientation in the plane perpendicular direction of the plate-like particles is aligned with the plane perpendicular to the substrate, and a uniaxially oriented film can be obtained. Since the AD method deposits a film by colliding particles with the substrate, a large internal compression stress acts on the obtained film from the substrate (shot peening effect). This compressive internal stress changes the crystal structure of the BTO, and the BTO can be raised to a high Curie temperature.
Also, by forming a uniaxially oriented film by AD method using plate-like particles of lead-free piezoelectric material at room temperature, the crystal structure is controlled by internal compressive stress, and a high piezoelectric constant and high Curie temperature are exhibited. Lead piezoelectric material can be developed.
Furthermore, it is difficult to densely laminate two or more different inorganic materials because the heat treatment temperatures at which the materials become dense differ, and the combinations are limited. Thus, it is easy to densely stack two or more different inorganic materials. At this time, when layers uniaxially oriented using plate-like particles are stacked and heat-treated at a low temperature, the internal compressive stress is confined in the ceramic. This confined internal compressive stress makes it possible to control a crystal structure and develop a lead-free piezoelectric material exhibiting a high piezoelectric constant and a high Curie temperature.

以下、本発明を実施例に基づいて説明するが、本発明はこの実施例に限定されるものではない。   EXAMPLES Hereinafter, although this invention is demonstrated based on an Example, this invention is not limited to this Example.

〈XRDによる構造解析〉
最初に、本発明において用いた、X線回折(XRD)による無配向膜と一軸配向膜の評価方法について記載する。
図1は、無配向膜と一軸配向膜について、X線回折による評価を行った際の違いを示すものである。
図1に示すとおり、無配向膜は結晶の向きがそろっていないため、すべての回折ピークが観察されるため、X線回折結果によるそれぞれのピーク強度比は、粉末を測定した場合と同一となる。
一方で、一軸配向膜は、基板の面垂直方向に結晶方向がそろっており、その結晶方位に起因した回折ピーク強度が強くなり、他のピークは小さくなる。
<Structural analysis by XRD>
First, a method for evaluating a non-oriented film and a uniaxial oriented film by X-ray diffraction (XRD) used in the present invention will be described.
FIG. 1 shows the difference between an unoriented film and a uniaxially oriented film when evaluated by X-ray diffraction.
As shown in FIG. 1, since the crystal orientation of the non-oriented film is not aligned, all diffraction peaks are observed, so that the respective peak intensity ratios based on the X-ray diffraction results are the same as when the powder is measured. .
On the other hand, the uniaxially oriented film has crystal directions aligned in the direction perpendicular to the plane of the substrate, the diffraction peak intensity resulting from the crystal orientation becomes stronger, and the other peaks become smaller.

〈結晶異方性の小さい材料を用いたAD法による配向膜の作製〉
結晶異方性の小さい物質として、単純ペロブスカイト構造を持ったBNTを用い、原料粉末に板状粒子を用いたAD膜と、原料粉末に通常の球状粒子を用いたAD膜について配向性の違いを確認した。
<Preparation of alignment film by AD method using material with small crystal anisotropy>
As a substance having a small crystal anisotropy, BNT having a simple perovskite structure is used, and there is a difference in orientation between an AD film using plate-like particles as raw material powder and an AD film using normal spherical particles as raw material powder. confirmed.

図2は、比較試料として固相法800℃2時間で作製した球形形状のBNT粒子(左側)と、本発明で用いた板状のBNT原料粒子(右側)の電子顕微鏡(SEM)による粒子の形状の観察結果を示す図である。   FIG. 2 shows a comparison of the spherical BNT particles (left side) prepared in a solid phase method at 800 ° C. for 2 hours as comparative samples and the plate-like BNT raw material particles (right side) used in the present invention by an electron microscope (SEM). It is a figure which shows the observation result of a shape.

この板状粒子の作製方法は次のとおりである。Bi23(粒子サイズ約2〜3μmで純度は99.99%)、TiO2(粒子サイズは約2μmで純度は99.99%)、Na2CO3(純度は99%)の出発原料をNBTiの化学量論比になるように秤量し、プラスチック製の容器にエタノールとジルコニアボールと共に入れ、1時間、遊星ボールミル(200rpm)により粉砕、混合した。ここでNBTiとはビスマス層状構造強誘電体のチタン酸ビスマスナトリウムのことであり、組成式はNa0.5Bi4.5Ti415である。得られた試料は約60℃のトレイに移しエタノールを揮発させた。この試料をアルミナ坩堝に入れて大気中で800℃2時間熱処理し、NBTiの粉末を得た。得られたNBTiの粉末は、ジルコニア製の容器にアセトン、ジルコニアボールと共に、NBTiと等量のNaCl(粒子径サイズはおよそ100μm)を入れ1時間、遊星ボールミル(200rpm)により粉砕混合した。得られた混合体は、およそ60℃のトレイに移し、十分アセトンを揮発させた。NBTiとNaClの混合体はアルミナ坩堝に移し、1000℃2時間の熱処理を行った。得られた試料を純水で洗浄し、NaClを取り除いてNBTiの板状粒子を得た。この板状NBTi粒子に次の式に則ってBNTが得られるようにアセトン中でNaNO3を加え、さらにその混合物に3mol%過剰のNaNO3を加え、さらにそれらの重量と等量のNaClを加えて撹拌し、そのまま、エバポレーターで乾燥させた。得られた混合体は670℃で10時間の熱処理を加えた。
Na0.5Bi4.5Ti415+1.5NaNO3
4(Bi0.5Na0.5)TiO3+1.25Bi23+1.5NO2+0.375O2
The method for producing the plate-like particles is as follows. The starting materials of Bi 2 O 3 (particle size is about 2 to 3 μm and purity is 99.99%), TiO 2 (particle size is about 2 μm and purity is 99.99%), Na 2 CO 3 (purity is 99%) are used as starting materials for NBTi They were weighed so as to have a stoichiometric ratio, placed in a plastic container together with ethanol and zirconia balls, and ground and mixed with a planetary ball mill (200 rpm) for 1 hour. Here, NBTi is bismuth sodium titanate, which is a bismuth layer structure ferroelectric, and its composition formula is Na 0.5 Bi 4.5 Ti 4 O 15 . The obtained sample was transferred to a tray at about 60 ° C. to evaporate ethanol. This sample was put in an alumina crucible and heat-treated in the atmosphere at 800 ° C. for 2 hours to obtain NBTi powder. The obtained NBTi powder was mixed with acetone and zirconia balls together with NBTi in an amount equal to NBTi (particle size is about 100 μm) in a zirconia container for 1 hour by a planetary ball mill (200 rpm). The obtained mixture was transferred to a tray at about 60 ° C., and acetone was volatilized sufficiently. The mixture of NBTi and NaCl was transferred to an alumina crucible and heat-treated at 1000 ° C. for 2 hours. The obtained sample was washed with pure water, and NaCl was removed to obtain NBTi plate-like particles. To this plate-like NBTi particles, NaNO 3 was added in acetone so that BNT was obtained according to the following formula, 3 mol% excess NaNO 3 was added to the mixture, and NaCl equivalent to their weight was added. The mixture was stirred and dried with an evaporator. The obtained mixture was heat-treated at 670 ° C. for 10 hours.
Na 0.5 Bi 4.5 Ti 4 O 15 + 1.5NaNO 3
4 (Bi 0.5 Na 0.5 ) TiO 3 + 1.25Bi 2 O 3 + 1.5NO 2 + 0.375O 2

合成された試料を3M塩酸で、NaCl、過剰NaNO3、Bi23を溶解し、さらに純水で洗浄することで板状のBNT粒子を得た。板状粒子は、形状が四角く、厚さが500〜1000nm程度の板状であった。 The synthesized sample was dissolved in NaCl, excess NaNO 3 and Bi 2 O 3 with 3M hydrochloric acid, and further washed with pure water to obtain plate-like BNT particles. The plate-like particle was a plate having a square shape and a thickness of about 500 to 1000 nm.

AD法の原料粉末として、これらの2種の粒子形状が異なる粒子を用いて、前述と同様の方法により、AD法による成膜をおこなった。
図3は、左から順に、固相法で作製した球状粒子のBNT粉末、固相法で作製したBNT粉末によるAD膜、及び板状BNT粉末によるAD膜、下の図は板状BNT粒子をガラス板に押し付けた試料のX線回折パターンを示す図である。
Using these two kinds of particles having different particle shapes as the raw material powder for the AD method, a film was formed by the AD method by the same method as described above.
FIG. 3 shows, from the left, a spherical BNT powder prepared by a solid phase method, an AD film using a BNT powder prepared by a solid phase method, and an AD film using a plate-like BNT powder, and the lower figure shows a plate-like BNT particle. It is a figure which shows the X-ray-diffraction pattern of the sample pressed on the glass plate.

固相法で作製した球状粒子のBNT粉末のX線回折パターンと板状BNT粒子をガラス板に押し付けた試料のX線回折パターンの図を比較する。ガラス板がX線回折しないことは事前に確認しているため、板状BNT粒子をガラス板に押し付けた試料のX線回折パターンは板状粒子に対して面垂直方向の結晶構造の状態を示している。従って、100cに起因したピークが強くなっていることから、BNT結晶の100cの方位と板状粒子の面垂直方向が一致していることが確認できる。また、格子定数を確認したところ、固相法で作製した球状粒子のBNT粉末と板状BNT粉末のどちらも格子定数が一致していることを確認した。   The X-ray diffraction pattern of the spherical BNT powder produced by the solid phase method is compared with the X-ray diffraction pattern of the sample in which the plate-like BNT particles are pressed against a glass plate. Since it has been confirmed in advance that the glass plate does not diffract X-rays, the X-ray diffraction pattern of the sample in which the plate-like BNT particles are pressed against the glass plate shows the state of the crystal structure perpendicular to the plate-like particles. ing. Therefore, since the peak due to 100c is strong, it can be confirmed that the orientation of 100c of the BNT crystal coincides with the plane perpendicular direction of the plate-like particles. Further, when the lattice constant was confirmed, it was confirmed that both the spherical BNT powder and the plate-like BNT powder produced by the solid phase method had the same lattice constant.

固相法で作製した球状粒子のBNT粉末、固相法で作製したBNT粉末によるAD膜、及び板状BNT粉末によるAD膜を比較すると、固相法で作製した球状粒子のBNT粉末、固相法で作製したBNT粉末によるAD膜はピーク強度比が一致しているため、固相法で作製したBNT粉末によるAD膜は無配向であることが確認できる。固相法で作製した球状粒子のBNT粉末と板状BNT粉末によるAD膜のX線回折パターンを比較すると、板状BNT粉末によるAD膜のX線回折パターンは100cに起因したピーク強度が強くなっていることから、一軸粒子配向膜化していることが確認できる。   A comparison between the spherical BNT powder produced by the solid phase method, the AD film produced by the BNT powder produced by the solid phase method, and the AD film produced by the plate-like BNT powder. Since the peak intensity ratio of the AD film made of the BNT powder produced by the method is the same, it can be confirmed that the AD film produced by the solid phase method is non-oriented. Comparing the X-ray diffraction pattern of the AD film with the spherical BNT powder and the plate-like BNT powder produced by the solid phase method, the peak intensity due to 100c is stronger in the X-ray diffraction pattern of the AD film with the plate-like BNT powder. Therefore, it can be confirmed that the film is a uniaxial particle alignment film.

球状粒子のBNT粉末を用いて作製したAD膜と、板状粒子のBNT粉末を用いて作製したAD膜を比較すると、若干、板状BNT粉末を用いたほうが、100c由来のピーク強度が強くなっていることが確認された。
これらの結果から、原料粒子形状を制御することで、AD法により配向制御できる可能性が示唆された。
また、AD膜の100c由来のピークから算出された格子定数では、a軸長が0.3915ナノメートルであり焼結体の値(0.388ナノメートル)より大きく、特定の方位に対して結晶構造を変えることができた。
Comparing the AD film produced using the BNT powder of spherical particles and the AD film produced using the BNT powder of plate-like particles, the peak intensity derived from 100c is slightly stronger when the plate-like BNT powder is used. It was confirmed that
From these results, it was suggested that the orientation can be controlled by the AD method by controlling the raw material particle shape.
Moreover, in the lattice constant calculated from the peak derived from 100c of the AD film, the a-axis length is 0.3915 nanometers, which is larger than the value of the sintered body (0.388 nanometers), and the crystal is in a specific orientation. I was able to change the structure.

〈板状粒子の配向メカニズム〉
図4は、以上の結果より、想定される板状粒子の配向メカニズムを示すものである。
板状粒子はエアロゾルの状態で凝集しているものと考えられる。つまり、板状粒子が基板に衝突する際、そのほとんどが基板に対して垂直から外れているものと考えられる。基板に衝突すると、その衝突の際の力の影響で、粒子の面と基板の面が平行になる状態が安定である。これにより、配向したものと考えられる。
<Orientation mechanism of plate-like particles>
FIG. 4 shows an assumed orientation mechanism of plate-like particles based on the above results.
The plate-like particles are considered to be aggregated in an aerosol state. That is, when the plate-like particles collide with the substrate, most of them are considered to be out of perpendicular to the substrate. When it collides with the substrate, the surface of the particle and the surface of the substrate are stable due to the influence of the force at the time of the collision. This is considered to be oriented.

Claims (9)

等方性の高い結晶構造を持った物質の板状形状を備える粒子が基板上に堆積した粒子配向膜であって、該板状粒子が、粒子の面垂直方向の結晶方位と基板の面垂直方位とが揃うように一軸配向して基板上に堆積するとともに、該等方性の高い結晶構造を持った物質は、基板上に堆積される以前と比べて該結晶方位に対応する格子定数が伸長した結晶構造を有することを特徴とする、粒子配向膜。  A particle orientation film in which particles having a plate-like shape of a substance having a highly isotropic crystal structure are deposited on a substrate, wherein the plate-like particles have a crystal orientation perpendicular to the plane of the particles and a plane perpendicular to the substrate. A material having a highly isotropic crystal structure is deposited on the substrate in a uniaxial orientation so that the orientation is aligned, and the lattice constant corresponding to the crystal orientation is higher than that before the material is deposited on the substrate. A grain alignment film characterized by having an elongated crystal structure. 前記基板上に配向して堆積した板状粒子の面垂直方向の結晶方位に起因したX線回折強度が、無配向で堆積した粒子の該結晶方位に起因したX線回折強度よりも強いことを特徴とする、請求項1に記載の粒子配向膜。  The X-ray diffraction intensity caused by the crystal orientation in the plane perpendicular direction of the plate-like particles oriented and deposited on the substrate is stronger than the X-ray diffraction intensity caused by the crystal orientation of the non-oriented particles deposited. The particle alignment film according to claim 1, wherein the particle alignment film is characterized. 前記基板上に堆積した板状粒子の面内方向の結晶方位に対応する格子定数が縮み、かつ面垂直方向の結晶方位に対応する格子定数が伸長していることを特徴とする、請求項1または2に記載の粒子配向膜。  The lattice constant corresponding to the crystal orientation in the in-plane direction of the plate-like particles deposited on the substrate is contracted, and the lattice constant corresponding to the crystal orientation in the plane perpendicular direction is extended. Or the particle | grain orientation film of 2. 前記等方性の高い結晶構造を持った物質が、圧電性を示すことを特徴とする、請求項1〜3のいずれか一項に記載の粒子配向膜。  The particle alignment film according to any one of claims 1 to 3, wherein the substance having a highly isotropic crystal structure exhibits piezoelectricity. 前記等方性の高い結晶構造を持った物質が、等方性ペロブスカイト型強誘電体セラミックスであることを特徴とする、請求項1〜4のいずれか一項に記載の粒子配向膜。  5. The particle alignment film according to claim 1, wherein the substance having a highly isotropic crystal structure is an isotropic perovskite type ferroelectric ceramic. 前記等方性ペロブスカイト型強誘電体セラミックスが、単純ペロブスカイト構造のチタン酸ビスマスナトリウムであることを特徴とする、請求項5に記載の粒子配向膜。  6. The particle alignment film according to claim 5, wherein the isotropic perovskite ferroelectric ceramic is bismuth sodium titanate having a simple perovskite structure. 基板上に粒子配向膜を製造する方法であって、原料粉末として、等方性の高い結晶構造を持った物質の板状形状に作製された粒子を用い、これを基板上にエアロゾルデポジション法により積層させることにより、該板状粒子を、粒子の面垂直方向の結晶方位と基板の面垂直方位とが揃うように一軸配向させて積層させるとともに、該等方性の高い結晶構造を持った物質の結晶構造を、該結晶方位に対応する格子定数が伸長するように制御することを特徴とする、粒子配向膜の製造方法。  A method for producing a particle alignment film on a substrate, using particles produced in a plate shape of a material having a highly isotropic crystal structure as a raw material powder, and applying this to the substrate by an aerosol deposition method By laminating the particles, the plate-like particles are laminated so that the crystal orientation in the plane direction of the grains and the plane direction of the substrate are aligned in a uniaxial orientation, and the crystal structure having the high isotropic property is obtained. A method for producing a grain alignment film, wherein the crystal structure of a substance is controlled so that a lattice constant corresponding to the crystal orientation extends. 前記等方性の高い結晶構造を持った物質が、等方性ペロブスカイト型強誘電体セラミックスであることを特徴とする、請求項7に記載の粒子配向膜の製造方法。  8. The method for producing a grain alignment film according to claim 7, wherein the substance having a highly isotropic crystal structure is an isotropic perovskite ferroelectric ceramic. 前記等方性ペロブスカイト型強誘電体セラミックス質が、単純ペロブスカイト構造のチタン酸ビスマスナトリウムであることを特徴とする、請求項8に記載の粒子配向膜の製造方法。  9. The method for producing a grain oriented film according to claim 8, wherein the isotropic perovskite ferroelectric ceramic material is bismuth sodium titanate having a simple perovskite structure.
JP2013048463A 2013-03-11 2013-03-11 Particle-oriented ceramics Active JP6260982B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013048463A JP6260982B2 (en) 2013-03-11 2013-03-11 Particle-oriented ceramics

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013048463A JP6260982B2 (en) 2013-03-11 2013-03-11 Particle-oriented ceramics

Publications (2)

Publication Number Publication Date
JP2014172800A JP2014172800A (en) 2014-09-22
JP6260982B2 true JP6260982B2 (en) 2018-01-17

Family

ID=51694418

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013048463A Active JP6260982B2 (en) 2013-03-11 2013-03-11 Particle-oriented ceramics

Country Status (1)

Country Link
JP (1) JP6260982B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102089701B1 (en) * 2015-10-21 2020-03-16 삼성전기주식회사 Dielectric ceramic composition and multilayer ceramic capacitor comprising the same

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007245567A (en) * 2006-03-16 2007-09-27 Fujifilm Corp Functional film-containing structure and its manufacturing method
JP5307379B2 (en) * 2007-02-26 2013-10-02 日本碍子株式会社 Plate-like polycrystalline particles, method for producing plate-like polycrystalline particles, method for producing crystal-oriented ceramics
JP5355148B2 (en) * 2008-03-19 2013-11-27 キヤノン株式会社 Piezoelectric material
JP2009242161A (en) * 2008-03-31 2009-10-22 Tdk Corp Ceramic powder, method for producing the same and piezoelectric element
JP2011249489A (en) * 2010-05-26 2011-12-08 Panasonic Corp Piezoelectric thin film and its manufacturing method, inkjet head, method for forming image using inkjet head, angular velocity sensor, method for measuring angular velocity using angular velocity sensor, piezoelectric power generation element, and method for generating power using piezoelectric power generation element

Also Published As

Publication number Publication date
JP2014172800A (en) 2014-09-22

Similar Documents

Publication Publication Date Title
Zhao et al. Multifunctional barium titanate ceramics via chemical modification tuning phase structure
Liu et al. Enhanced energy storage properties of BaTiO3-Bi0. 5Na0. 5TiO3 lead-free ceramics modified by SrY0. 5Nb0. 5O3
Zhang et al. Preparation and enhanced electrical properties of grain-oriented (Bi1/2Na1/2) TiO3-based lead-free incipient piezoceramics
Ghayour et al. A brief review of the effect of grain size variation on the electrical properties of BaTiO3-based ceramics
Fan et al. Large strain with low hysteresis in Bi4Ti3O12 modified Bi1/2 (Na0. 82K0. 18) 1/2TiO3 lead-free piezoceramics
Hao et al. A comprehensive review on the progress of lead zirconate-based antiferroelectric materials
US7931821B2 (en) Oxynitride piezoelectric material and method of producing the same
Malik et al. Enhanced electromechanical properties of (1-x) BiFeO3–BaTiO3–xLiNbO3 ceramics by quenching process
Zhao et al. Enhanced energy storage efficiency by modulating field-induced strain in BaTiO3-Bi (Ni2/3Ta1/3) O3 lead-free ceramics
EP1253121A2 (en) Grain oriented ceramics and a production process thereof, as well as an anisotropically-shaped powder and a production process thereof
Gio Enhancement in dielectric, ferroelectric, and piezoelectric properties of BaTiO3-modified Bi0. 5 (Na0. 4K0. 1) TiO3 lead-free ceramics
Jiao et al. Energy storage performance of 0.55 Bi0. 5Na0. 5TiO3-0.45 SrTiO3 ceramics doped with lanthanide elements (Ln= La, Nd, Dy, Sm) using a viscous polymer processing route
WO2012044313A1 (en) Lead-free piezoelectric materials with enhanced fatigue resistance
Zhao et al. Fabrication of Na0. 5Bi0. 5TiO3–BaTiO3‐textured ceramics templated by plate‐like Na0. 5Bi0. 5TiO3 particles
Chen et al. Effects of A‐Site S m Substitution and Textured Structure on Electric Properties of C a B i2 N b2 O 9‐Based High‐Curie‐Temperature Ceramics
Perumal et al. Investigations on electrical and energy storage behaviour of PZN-PT, PMN-PT, PZN–PMN-PT piezoelectric solid solutions
Xu et al. Enhanced piezoelectricity and reduced leakage current of a novel (1− x) Bi 0.5 Na 0.5 TiO 3–x (Sr 0.7 Bi 0.2□ 0.1) TiO 3 thin film
Liu et al. Cu-modified Pb (Mg1/3Nb2/3) O3-PbZrO3-PbTiO3 textured ceramics with enhanced electromechanical properties and improved thermal stability
Shi et al. Enhanced piezoelectric properties and phase transition in PZT ceramics induced by Li+-Sm3+ ionic pairs
Chen et al. Effect of nanocrystalline structures on the large strain of LiNbO3 doped (Bi0. 5Na0. 5) TiO3-BaTiO3 materials
Cheng et al. Excellent energy storage performance in NaNbO3-based relaxor antiferroeic ceramics under a low electric field
JP2007084408A (en) Piezoelectric ceramic
Guan et al. Phase structure, domain structure, thermal stability, and high-temperature piezoelectric response of BiFeO3–BaTiO3 lead-free piezoelectric ceramics
Dong et al. Investigations on electric properties and domain structures of Nd-doped 0.70 Pb (Mg1/3Nb2/3) O3–0.30 PbTiO3 relaxor ferroelectric ceramics with high piezoelectric properties
Shahzad et al. Structural and electrical properties of cation and anion doped BiScO3-PbTiO3 ceramics

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151016

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160729

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160802

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161003

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170404

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171205

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171206

R150 Certificate of patent or registration of utility model

Ref document number: 6260982

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250