JP5307379B2 - Plate-like polycrystalline particles, method for producing plate-like polycrystalline particles, method for producing crystal-oriented ceramics - Google Patents

Plate-like polycrystalline particles, method for producing plate-like polycrystalline particles, method for producing crystal-oriented ceramics Download PDF

Info

Publication number
JP5307379B2
JP5307379B2 JP2007283185A JP2007283185A JP5307379B2 JP 5307379 B2 JP5307379 B2 JP 5307379B2 JP 2007283185 A JP2007283185 A JP 2007283185A JP 2007283185 A JP2007283185 A JP 2007283185A JP 5307379 B2 JP5307379 B2 JP 5307379B2
Authority
JP
Japan
Prior art keywords
plate
polycrystalline
particles
crystal
particle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007283185A
Other languages
Japanese (ja)
Other versions
JP2009040672A (en
Inventor
昌平 横山
伸行 小林
七瀧  努
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2007283185A priority Critical patent/JP5307379B2/en
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to EP11162966A priority patent/EP2351720A3/en
Priority to EP09012266A priority patent/EP2138472B1/en
Priority to EP08250248A priority patent/EP1975137B1/en
Priority to EP08250249A priority patent/EP1972604B1/en
Priority to US12/017,567 priority patent/US8158255B2/en
Priority to EP08711646A priority patent/EP2128111B1/en
Priority to PCT/JP2008/052840 priority patent/WO2008105290A1/en
Priority to EP08250650A priority patent/EP1972606A1/en
Publication of JP2009040672A publication Critical patent/JP2009040672A/en
Application granted granted Critical
Publication of JP5307379B2 publication Critical patent/JP5307379B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a plate-like polycrystalline particle in which a particle size and an aspect ratio are easily adjusted. <P>SOLUTION: A plate-like polycrystalline particle 10 is produced by forming inorganic particles into a self-supported, sheet-like shaped body with a predetermined thickness (15 &mu;m) or less, firing the shaped body, and crushing and classifying the fired shaped body by passing through a mesh having openings with a predetermined size. The inorganic particles are composed of an oxide having a perovskite structure and growing into crystal grains with an isotropic and polyhedral shape (e.g., cubic shape). Since grain growth in the thickness direction is limited and grain growth is more promoted in the surface direction of the sheet, it is possible to obtain crystal grains 12 having a high aspect ratio and a high degree of orientation. Therefore, in the plate-like polycrystalline particle 10, in most parts, the number of crystal grains 12 present in the thickness direction of the particle at any one point is one, and a high aspect ratio and a high degree of orientation are achieved. In the plate-like polycrystalline particle 10, crystal grains 12 are bonded together at grain boundaries 14, and crushing easily takes place at the grain boundaries 14. <P>COPYRIGHT: (C)2009,JPO&amp;INPIT

Description

本発明は、板状多結晶粒子、板状多結晶粒子の製造方法、結晶配向セラミックスの製造方法に関する。   The present invention relates to plate-like polycrystalline particles, a method for producing plate-like polycrystalline particles, and a method for producing crystal-oriented ceramics.

従来、結晶配向セラミックスとしては、結晶に含まれる特定の結晶面の配向度を高めることにより圧電特性を向上させるものが提案されている(特許文献1、2参照)。また、結晶配向セラミックスの製造方法としては、例えば、形状異方性を有するホスト材料Aとホスト材料Aの少なくとも一つの結晶面と結晶整合性を有し且つ結晶異方性の小さいゲスト材料Bとを混合する混合工程と、ホスト材料Aの結晶面を配向させる配向工程と、配向したものを加熱してゲスト材料Bの結晶面を配向させる焼成工程とを含むことにより、結晶異方性の小さなゲスト材料Bを用いても配向性を高めたセラミックスを得るものが提案されている(例えば、特許文献2、3参照)。更に、水熱合成によってホスト材料自体の配向性を高めるものなどが提案されている(特許文献4)。
特開平11−60333号公報 特開2003−12373号公報 特開平10−330184号公報 特開2007−22857号公報
2. Description of the Related Art Conventionally, as crystal-oriented ceramics, those that improve piezoelectric characteristics by increasing the degree of orientation of a specific crystal plane included in a crystal have been proposed (see Patent Documents 1 and 2). In addition, as a method for producing crystal-oriented ceramics, for example, a host material A having shape anisotropy and a guest material B having crystal matching with at least one crystal plane of the host material A and having a small crystal anisotropy Including a mixing step of mixing, an orientation step of orienting the crystal plane of the host material A, and a firing step of orienting the crystal plane of the guest material B by heating the oriented one. Proposals have been made to obtain ceramics with improved orientation even when the guest material B is used (see, for example, Patent Documents 2 and 3). Furthermore, the thing etc. which improve the orientation of host material itself by hydrothermal synthesis are proposed (patent document 4).
Japanese Patent Laid-Open No. 11-60333 JP 2003-12373 A Japanese Patent Laid-Open No. 10-330184 JP 2007-22857 A

しかしながら、この特許文献1〜3に記載された製造方法では、ホスト材料が単結晶であることから、ホスト材料の粒径やアスペクト比などを容易に変更することができなかった。また、この結晶配向セラミックスの製造において、成形時の配向を有利とするためホスト材料のアスペクト比を大きくしようとすると、一次粒子径も大きくなり、これを用いた場合、例えば焼結性が低下したり、結晶配向セラミックスの密度が低下したり、粒径が大きくなってしまう場合などがあり、機械的強度や絶縁性などの低下が起きる問題があった。また、特許文献2では、層状ペロブスカイト構造を有する組成において板状結晶を得たあと、この組成の一部を置換させることにより、望ましい元素から成るホスト材料を合成するものであるが、この置換反応が十分に進まないことがあり、最終的に得られる材料に望ましくない元素が残留することがあった。また、処理が煩雑であった。更に、特許文献4に記載されたホスト材料は、原料を含む水溶液を高温・高圧にして合成する水熱合成によって作製されるため、合成する処理に手間がかかった。   However, in the manufacturing methods described in Patent Documents 1 to 3, since the host material is a single crystal, the particle size, aspect ratio, and the like of the host material cannot be easily changed. In addition, in the production of this crystal-oriented ceramic, if the aspect ratio of the host material is increased in order to favor the orientation during molding, the primary particle size also increases. When this is used, for example, the sinterability decreases. Or the density of the crystallographically oriented ceramics may be reduced, or the particle size may be increased, resulting in problems such as a decrease in mechanical strength and insulation. Further, in Patent Document 2, after obtaining a plate crystal in a composition having a layered perovskite structure, a part of this composition is substituted to synthesize a host material composed of a desired element. May not proceed sufficiently, and undesirable elements may remain in the final material. Moreover, the process was complicated. Furthermore, since the host material described in Patent Document 4 is produced by hydrothermal synthesis in which an aqueous solution containing a raw material is synthesized at a high temperature and high pressure, the synthesis process takes time.

本発明は、このような課題に鑑みなされたものであり、粒径やアスペクト比を容易に調整することができる板状多結晶粒子、板状多結晶粒子の製造方法、結晶配向セラミックスの製造方法を提供することを目的の一つとする。また、組成がより均質な板状多結晶粒子、板状多結晶粒子の製造方法、結晶配向セラミックスの製造方法を提供することを目的の一つとする。また、より簡単な処理で結晶の配向度を高めることができる板状多結晶粒子、板状多結晶粒子の製造方法、結晶配向セラミックスの製造方法を提供することを目的の一つとする。   The present invention has been made in view of such problems, and is capable of easily adjusting the particle size and aspect ratio. Plate-like polycrystalline particles, plate-like polycrystalline particle production method, and crystal-oriented ceramic production method Is one of the purposes. Another object is to provide plate-like polycrystalline particles having a more uniform composition, a method for producing plate-like polycrystalline particles, and a method for producing crystal-oriented ceramics. Another object of the present invention is to provide plate-like polycrystalline particles, a method for producing plate-like polycrystalline particles, and a method for producing crystal-oriented ceramics that can increase the degree of crystal orientation by simpler treatment.

上述した目的の少なくとも一部を達成するために、本発明者らは、無機粒子を厚さが15μm以下の自立したシート状の成形体に成形し、この成形体を該成形体と実質的に反応しない不活性層に隣接させ又は、該成形体のまま焼成し、所定サイズの開口部を通過させることにより焼成後の成形体を解砕及び分級したところ、板状多結晶粒子やこれに含まれる結晶粒子の粒径やアスペクト比を容易に調整することができ、より簡単な処理で結晶粒子の配向度を高めることができることを見いだし、本発明を完成するに至った。   In order to achieve at least a part of the object described above, the present inventors formed inorganic particles into a self-supporting sheet-like molded body having a thickness of 15 μm or less, and this molded body was substantially combined with the molded body. Adjacent to an inert layer that does not react or is fired as it is, and the fired compact is crushed and classified by passing through an opening of a predetermined size. The present inventors have found that the grain size and aspect ratio of the crystal grains can be easily adjusted, and that the degree of orientation of the crystal grains can be increased by simpler processing, and the present invention has been completed.

即ち、本発明の板状多結晶粒子は、
結晶粒子を複数含み、
実質的に厚さ方向の該結晶粒子が1個であり該複数の結晶粒子が特定の結晶面を揃えた状態で粒界部で結合されている、ものである。
That is, the plate-like polycrystalline particles of the present invention are
Including a plurality of crystal grains,
There is substantially one crystal grain in the thickness direction, and the plurality of crystal grains are bonded at a grain boundary portion with a specific crystal plane aligned.

また、本発明の板状多結晶粒子の製造方法は、
結晶粒子を複数含む板状多結晶粒子の製造方法であって、
無機粒子を厚さが15μm以下の自立したシート状の成形体に成形する成形工程と、
前記成形体を該成形体と実質的に反応しない不活性層に隣接させ又は、該成形体のまま焼成する焼成工程と、
所定サイズの開口部を通過させることにより前記焼成後の成形体を解砕及び分級する粉砕工程と、
を含むものである。
The method for producing the plate-like polycrystalline particles of the present invention includes
A method for producing plate-like polycrystalline particles containing a plurality of crystal particles,
A molding step of molding the inorganic particles into a self-supporting sheet-like molded body having a thickness of 15 μm or less;
A firing step in which the molded body is adjacent to an inert layer that does not substantially react with the molded body, or is fired as the molded body;
A pulverizing step of pulverizing and classifying the fired compact by passing through an opening of a predetermined size;
Is included.

更に、本発明の結晶配向セラミックスの製造方法は、
上述した本発明の板状多結晶粒子と、原料粉体とを混合する混合工程と、
前記混合した粉体のうち前記板状多結晶粒子を所定方向に配向させ所定の2次成形体に成形する第2成形工程と、
前記板状多結晶粒子が配向している方向に前記原料粉体を配向させるよう前記2次成形体を焼成する第2焼成工程と、
を含むものである。
Furthermore, the method for producing the crystallographically-oriented ceramic of the present invention includes:
A mixing step of mixing the plate-like polycrystalline particles of the present invention described above and the raw material powder;
A second forming step of orienting the plate-like polycrystalline particles in a predetermined direction in the mixed powder to form a predetermined secondary compact;
A second firing step of firing the secondary molded body so as to orient the raw material powder in a direction in which the plate-like polycrystalline particles are oriented;
Is included.

本発明の板状多結晶粒子、板状多結晶粒子の製造方法及び結晶配向セラミックスの製造方法によれば、無機粒子を所定厚さの自立したシート状の成形体に成形しこれを焼成し、所定サイズの開口部を通過させることにより焼成後の成形体を解砕及び分級すればよいため、より簡単な処理で結晶の配向度を高めることができる。また、板状多結晶粒子が、粒界部で結晶粒子同士が結合された構造であり、実質的に厚さ方向の該結晶粒子が1個であり、この粒界部で解砕しやすいため、粒径やアスペクト比などを容易に調整することができる。また、添加剤などを加えたり、望まない元素を含んだ組成を経由する必要がないため、より組成が均質なものを得ることができる。なお、「添加剤などを加える必要がない」とは、本発明に添加剤を加えて配向度を更に高めることを排除する趣旨ではない。   According to the plate-like polycrystalline particles of the present invention, the method for producing plate-like polycrystalline particles and the method for producing crystal-oriented ceramics, the inorganic particles are formed into a self-supporting sheet-like molded body having a predetermined thickness, and this is fired. Since the fired compact may be crushed and classified by passing through an opening having a predetermined size, the degree of crystal orientation can be increased by a simpler treatment. Further, the plate-like polycrystalline particles have a structure in which the crystal grains are bonded at the grain boundary part, and the number of the crystal grains in the thickness direction is substantially one, and it is easy to crush at the grain boundary part. The particle size, aspect ratio, etc. can be easily adjusted. Further, since it is not necessary to add an additive or the like or go through a composition containing an undesired element, a more homogeneous composition can be obtained. Note that “no need to add an additive or the like” does not exclude the addition of an additive to the present invention to further increase the degree of orientation.

本発明の板状多結晶粒子を図面を用いて説明する。図1は、本実施形態の板状多結晶粒子10の一例を表す説明図である。この板状多結晶粒子10は、特定の結晶面11を有する結晶粒子12を複数含み、実質的に厚さ方向の該結晶粒子が1個でありこの複数の結晶粒子12がこの特定の結晶面11を揃えた状態で粒界部14で結合されている形状を有している。即ち、板状多結晶粒子10は、特定の結晶面11を揃えた複数の結晶粒子12が略2次元的に連なった形状を有している。この「特定の結晶面11を揃えた状態」とは、複数の結晶粒子12の結晶面11が同一面上にある場合や(図1(a))、同一面上ではないが結晶面11の向いている方向が同じ場合(図1(b))、結晶面11の向いている方向が異なるものがあってもおおよそ複数の結晶粒子12の結晶面11が同一面上にあるか、同一面上ではないが結晶面11の向いている方向が同じ場合(図1(c))などの状態をいうものとする。この板状多結晶粒子10は、無機粒子をシート状の成形体に成形し、この成形体を焼成して粒成長させた焼成成形体を解砕して得られるものである。なお、ここでは、説明の便宜のため、未焼成のシート状の成形体を「成形体」と称し、焼成後のシート状の成形体を「焼成成形体」と称し、焼成成形体を所定の粒径に解砕・分級したものを「板状多結晶粒子」と称するものとする。   The plate-like polycrystalline particles of the present invention will be described with reference to the drawings. FIG. 1 is an explanatory diagram illustrating an example of the plate-like polycrystalline particle 10 of the present embodiment. The plate-like polycrystalline particle 10 includes a plurality of crystal particles 12 having a specific crystal face 11, and is substantially one crystal grain in the thickness direction. 11 are aligned at the grain boundary portion 14 in a state in which 11 are aligned. That is, the plate-like polycrystalline particle 10 has a shape in which a plurality of crystal particles 12 having a specific crystal plane 11 are arranged in a two-dimensional manner. The “state in which the specific crystal planes 11 are aligned” means that the crystal planes 11 of the plurality of crystal grains 12 are on the same plane (FIG. 1A) or the crystal plane 11 is not on the same plane. When the facing directions are the same (FIG. 1 (b)), the crystal planes 11 of the plurality of crystal grains 12 are approximately on the same plane or the same plane even if the crystal plane 11 is directed in a different direction. Although not above, the state where the crystal plane 11 is facing is the same (FIG. 1C). The plate-like polycrystalline particles 10 are obtained by forming inorganic particles into a sheet-like formed body, and pulverizing the fired formed body obtained by firing the formed body and growing the grains. Here, for convenience of explanation, an unfired sheet-shaped molded body is referred to as a “molded body”, a sheet-shaped molded body after firing is referred to as a “fired molded body”, and the fired molded body is defined as a predetermined body. Those that have been crushed and classified into particle sizes are referred to as “plate-like polycrystalline particles”.

この板状多結晶粒子10は、実質的に厚さ方向の結晶粒子が1個である。この「実質的に厚さ方向の結晶粒子が1個」とは、一部で結晶粒子12が重なり合う部分があっても、他の大部分では結晶粒子12が重なり合わずに、厚さ方向に結晶粒子12を1個だけ含むことをいう。また、中心部分など板状多結晶粒子10の大部分が2個以上の結晶粒子12が結合した状態であり、端部のみ厚さ方向に1個であるようなものは含まない趣旨である。この板状多結晶粒子10は、厚さ方向に存在する材料が限られているため、焼成などにより粒成長すると、厚さ方向に結晶粒子12を1個有する状態となり、厚さ方向よりも面方向に粒成長が促される。このため、面方向に扁平な結晶粒子12が配列すると共に、特定の結晶面11が配向するのである。この板状多結晶粒子10は、粒成長時に、結晶粒子12の粒成長がシート状の成形体の厚さまで達しないものや、結晶面11の向く方向が異なるものが存在することがあるため、図1(b),(c)などのように、結晶粒子12が重なり合う部分や結晶面11の向いている方向が異なるものなどが局所的に存在するが、概して結晶面11の方向が同じ複数の結晶粒子12が粒界部14で結合された形状を有している。この板状多結晶粒子10は、結晶粒子12を1個だけ含む部分が、板状多結晶粒子10の面積割合で70%以上であることが好ましく、80%以上であることがより好ましく、90%以上であることが最も好ましい。この面積割合は、できる限り板状多結晶粒子10を分散した状態で電子顕微鏡観察(SEM観察)を行い、得られたSEM写真に含まれる面積の割合として求めるものとする。なお、厚さ方向に結晶粒子12を1個だけ含む部分の面積は、面方向の長さが厚さ以上である結晶粒子の総面積から予測することも可能である。この板状多結晶粒子10は、結晶粒子12が重なるような部分は全体の一部分(例えば面積割合で30%以下など)であり、結晶粒子12同士が結合する粒界部14で比較的簡単に解砕することができる。   The plate-like polycrystalline particles 10 have substantially one crystal particle in the thickness direction. The term “substantially one crystal grain in the thickness direction” means that even if there is a part where the crystal grains 12 overlap in some parts, the crystal grains 12 do not overlap in most other parts. It means that only one crystal particle 12 is included. Further, most of the plate-like polycrystalline particles 10 such as the central portion are in a state in which two or more crystal particles 12 are combined, and only one end portion is not included in the thickness direction. Since the plate-like polycrystalline particles 10 are limited in the materials present in the thickness direction, when grains are grown by firing or the like, the plate-like polycrystalline particles 10 have a single crystal particle 12 in the thickness direction, and are more planar than the thickness direction. Grain growth is promoted in the direction. For this reason, the flat crystal particles 12 are arranged in the plane direction, and the specific crystal plane 11 is oriented. The plate-like polycrystalline particles 10 may have grain growth of the crystal grains 12 that does not reach the thickness of the sheet-like molded body or grains with different orientations of the crystal plane 11 during grain growth. As shown in FIGS. 1B and 1C, there are locally overlapping portions of the crystal grains 12 and those having different directions in which the crystal plane 11 faces. The crystal grains 12 are joined at the grain boundary part 14. In this plate-like polycrystalline particle 10, the portion containing only one crystal particle 12 is preferably 70% or more, more preferably 80% or more in terms of the area ratio of the plate-like polycrystalline particle 10, and 90% % Or more is most preferable. This area ratio is obtained as the ratio of the area included in the obtained SEM photograph by performing electron microscope observation (SEM observation) with the plate-like polycrystalline particles 10 dispersed as much as possible. The area of the portion including only one crystal grain 12 in the thickness direction can be predicted from the total area of crystal grains whose length in the plane direction is equal to or greater than the thickness. In this plate-like polycrystalline particle 10, the portion where the crystal particles 12 overlap is a part of the whole (for example, the area ratio is 30% or less), and it is relatively easy at the grain boundary portion 14 where the crystal particles 12 are bonded to each other. Can be crushed.

本発明の板状多結晶粒子10において、板状多結晶粒子10の長手方向の長さYは(図1(a)参照)、1.0mm以下や、50μm以下、20μm以下とすることができる。この長さYは、目的の板状多結晶粒子10のサイズに合わせて適宜変更することが可能である。また、板状多結晶粒子10の厚さWに対する板状多結晶粒子10の長手方向の長さYの比である板状多結晶粒子10のアスペクト比(Y/W)は、2以上100以下であることが好ましい。例えば、板状多結晶粒子10を結晶配向セラミックスの結晶配向用の原料として用いる場合には、板状多結晶粒子10のアスペクト比が2以上では、成形時における配向が容易となり、結晶配向性を高めることができるし、100以下では、例えば後述する結晶配向セラミックスの混合工程において、粉砕されにくく、アスペクト比を維持することができるため、板状多結晶粒子10が配向した成形体を容易に得ることができる。ここで、板状多結晶粒子10の厚さWは、板状多結晶粒子10の厚さのうち最も厚い部分の長さとする。板状多結晶粒子10は、厚さWが15μm以下に形成されているのが好ましく、10μm以下がより好ましく、5μm以下が更に好ましく、2μm以下であるのが最も好ましい。また、この厚さWは、0.1μm以上に形成されていることが好ましい。厚さWが0.1μm以上であれば、平板状の板状多結晶粒子10を作成しやすいし、15μm以下であればより配向度を高めることができる。なお、板状多結晶粒子10の厚さWは、通常、結晶粒子12の厚さZと略同じ長さとなる。この板状多結晶粒子10のアスペクト比は、以下のようにして求めるものとする。まず、走査型電子顕微鏡を用いてSEM観察を行い、撮影したSEM写真などから板状多結晶粒子10の厚さWを求める。次に、アルコールなどの溶媒に1〜10重量%となるように板状多結晶粒子10を入れ、例えば30分間の超音波などを用いて分散させ、この分散液を1000〜4000rpmの条件でスピンコートしガラス基板にコートすることにより、できるだけ重ならないように、且つ板状多結晶粒子10に含まれる結晶面11が基板面に対して平行になるように板状多結晶粒子10を薄層に分散させ、この状態でSEM観察を行い、板状多結晶粒子10が5〜30個程度含まれる視野において、板状多結晶粒子10の結晶面を観察し、撮影したSEM写真から板状多結晶粒子10の最長長さYを求める。このとき、重なっている板状多結晶粒子10については無視して構わない。次に、求めた最長長さYを板状多結晶粒子10の粒径と仮定しこの粒径を板状多結晶粒子10の厚さWで除算して各板状多結晶粒子10のアスペクト比を算出し、これを平均した値を板状多結晶粒子10のアスペクト比とする。   In the plate-like polycrystalline particle 10 of the present invention, the length Y in the longitudinal direction of the plate-like polycrystalline particle 10 (see FIG. 1A) can be 1.0 mm or less, 50 μm or less, and 20 μm or less. . This length Y can be appropriately changed according to the size of the target plate-like polycrystalline particle 10. Further, the aspect ratio (Y / W) of the plate-like polycrystalline particle 10 that is the ratio of the length Y in the longitudinal direction of the plate-like polycrystalline particle 10 to the thickness W of the plate-like polycrystalline particle 10 is 2 or more and 100 or less. It is preferable that For example, when the plate-like polycrystalline particles 10 are used as a raw material for crystal orientation of crystal-oriented ceramics, if the aspect ratio of the plate-like polycrystalline particles 10 is 2 or more, the orientation during molding is facilitated, and the crystal orientation is improved. If it is 100 or less, for example, in the crystal-oriented ceramic mixing step described later, it is difficult to be pulverized and the aspect ratio can be maintained, so that a molded body in which the plate-like polycrystalline particles 10 are oriented can be easily obtained. be able to. Here, the thickness W of the plate-like polycrystalline particles 10 is the length of the thickest portion of the thickness of the plate-like polycrystalline particles 10. The plate-like polycrystalline particles 10 are preferably formed with a thickness W of 15 μm or less, more preferably 10 μm or less, still more preferably 5 μm or less, and most preferably 2 μm or less. The thickness W is preferably formed to be 0.1 μm or more. If the thickness W is 0.1 μm or more, the flat plate-like polycrystalline particles 10 can be easily formed, and if the thickness W is 15 μm or less, the degree of orientation can be further increased. In addition, the thickness W of the plate-like polycrystalline particles 10 is usually substantially the same length as the thickness Z of the crystal particles 12. The aspect ratio of the plate-like polycrystalline particles 10 is determined as follows. First, SEM observation is performed using a scanning electron microscope, and the thickness W of the plate-like polycrystalline particles 10 is obtained from the photographed SEM photograph or the like. Next, the plate-like polycrystalline particles 10 are put in a solvent such as alcohol so as to be 1 to 10% by weight, and dispersed using, for example, ultrasonic waves for 30 minutes, and this dispersion is spun at 1000 to 4000 rpm. By coating and coating the glass substrate, the plate-like polycrystalline particles 10 are made into a thin layer so that they do not overlap as much as possible and the crystal face 11 included in the plate-like polycrystalline particles 10 is parallel to the substrate surface. SEM observation is performed in this state, and the crystal plane of the plate-like polycrystalline particles 10 is observed in a field of view containing about 5 to 30 plate-like polycrystalline particles 10, and the plate-like polycrystalline is obtained from the photographed SEM photograph. The longest length Y of the particle 10 is obtained. At this time, the overlapping plate-like polycrystalline particles 10 may be ignored. Next, the obtained longest length Y is assumed to be the particle size of the plate-like polycrystalline particle 10, and this particle size is divided by the thickness W of the plate-like polycrystalline particle 10 to obtain the aspect ratio of each plate-like polycrystalline particle 10. Is calculated, and the average of these values is taken as the aspect ratio of the plate-like polycrystalline particles 10.

本発明の板状多結晶粒子10において、特定の結晶面11の配向度は、ロットゲーリング法で25%以上であることが好ましく、30%以上であることがより好ましく、60%以上であることが最も好ましい。配向度が25%以上であると、例えばこの板状多結晶粒子10を更に2次配向させて成形し結晶配向セラミックスを得るのに十分な配向度であるといえる。この配向度が60%以上であると、より高い特性を得ることができる。この特定の結晶面11は、焼成成形体の面内にある擬立方(100)面としてもよい。この擬立方(100)とは、等方性ペロブスカイト型の酸化物は正方晶、斜方晶及び三方晶など、立方晶からわずかに歪んだ構造をとるがその歪みがわずかであるため立方晶とみなしてミラー指数により表示することを意味する。ここで、ロットゲーリング法による配向度は、板状多結晶粒子10に含まれる結晶面11をできるだけ均一な方向にして板状多結晶粒子10をサンプルホルダとしての基板上に載置してXRD回折パターンを測定し、次式(1)により求めるものとした。この、XRD回折パターンの測定は、上述したアスペクト比を求める際のSEM観察のサンプル調整と同様の工程を行うことにより、できるだけ重ならないように、且つ板状多結晶粒子10に含まれる結晶面11がガラスなどの基板面に対して平行になるように板状多結晶粒子10を薄層に分散させ、この状態で測定するものとする。なお、板状多結晶粒子10の大部分が分散しているかどうかをSEM観察などで確認することが好ましい。この数式(1)において、ΣI(hkl)が板状多結晶粒子で測定されたすべての結晶面(hkl)のX線回折強度の総和であり、ΣI0(hkl)が板状多結晶粒子と同一組成であり無配向のものについて測定されたすべての結晶面(hkl)のX線回折強度の総和であり、Σ’I(HKL)が板状多結晶粒子で測定された結晶学的に等価な特定の結晶面(例えば(100)面)のX線回折強度の総和であり、Σ’I0(HKL)が板状多結晶粒子と同一組成であり無配向のものについて測定された特定の結晶面のX線回折強度の総和である。
In the plate-like polycrystalline particle 10 of the present invention, the degree of orientation of the specific crystal plane 11 is preferably 25% or more, more preferably 30% or more, and 60% or more by the Lotgering method. Is most preferred. If the degree of orientation is 25% or more, for example, it can be said that the degree of orientation is sufficient to obtain a crystal-oriented ceramic by forming the plate-like polycrystalline particles 10 by further secondary orientation. When this degree of orientation is 60% or more, higher characteristics can be obtained. The specific crystal plane 11 may be a pseudo cubic (100) plane in the plane of the fired molded body. This pseudo-cubic (100) is an isotropic perovskite type oxide, which has a slightly distorted structure such as tetragonal, orthorhombic and trigonal crystals, but the distortion is slight. It means to display with Miller index. Here, the degree of orientation by the Lotgering method is determined by XRD diffraction by placing the plate-like polycrystalline particle 10 on a substrate as a sample holder with the crystal plane 11 included in the plate-like polycrystalline particle 10 as uniform as possible. The pattern was measured and determined by the following formula (1). The measurement of the XRD diffraction pattern is performed by performing the same process as the sample adjustment for SEM observation when obtaining the aspect ratio described above, so that the crystal planes 11 included in the plate-like polycrystalline particles 10 are not overlapped as much as possible. The plate-like polycrystalline particles 10 are dispersed in a thin layer so that is parallel to the substrate surface such as glass, and measurement is performed in this state. In addition, it is preferable to confirm by SEM observation etc. whether most of the plate-like polycrystalline particles 10 are dispersed. In this formula (1), ΣI (hkl) is the sum of X-ray diffraction intensities of all crystal planes (hkl) measured on the plate-like polycrystalline particles, and ΣI0 (hkl) is the same as that of the plate-like polycrystalline particles. This is the sum of the X-ray diffraction intensities of all crystal planes (hkl) measured for the non-oriented composition, and Σ'I (HKL) is the crystallographically equivalent measured by the plate-like polycrystalline particles This is the sum of the X-ray diffraction intensities of a specific crystal plane (for example, (100) plane), and the specific crystal plane measured for Σ'I0 (HKL) having the same composition as that of the plate-like polycrystalline particles and having no orientation. Is the sum of the X-ray diffraction intensities.

本発明の板状多結晶粒子10において、結晶粒子12は、厚さZが15μm以下に形成されているのが好ましく、10μm以下がより好ましく、5μm以下が更に好ましく、2μm以下であるのが最も好ましい。また、この厚さZは、0.1μm以上に形成されていることが好ましい。厚さZが0.1μm以上であれば、平板状の板状多結晶粒子10を作成しやすいし、15μm以下であればより配向度を高めることができる。厚さZが15μm以下であれば、等方的且つ多面体形状の結晶粒子に成長する無機粒子を含んでいても、厚さ方向への粒成長が限られており、板状多結晶粒子10の面方向に結晶粒子12の粒成長がより促されるため、特定の結晶面が板状多結晶粒子10の面内に成長することにより、アスペクト比が大きく配向度の高いものとなる。   In the plate-like polycrystalline particle 10 of the present invention, the crystal particle 12 is preferably formed with a thickness Z of 15 μm or less, more preferably 10 μm or less, still more preferably 5 μm or less, and most preferably 2 μm or less. preferable. The thickness Z is preferably formed to be 0.1 μm or more. If the thickness Z is 0.1 μm or more, the flat plate-like polycrystalline particles 10 can be easily formed, and if the thickness Z is 15 μm or less, the degree of orientation can be further increased. If the thickness Z is 15 μm or less, even if inorganic particles that grow into isotropic and polyhedral crystal grains are included, grain growth in the thickness direction is limited. Since the grain growth of the crystal grains 12 is further promoted in the plane direction, a specific crystal plane grows in the plane of the plate-like polycrystalline grains 10, thereby increasing the aspect ratio and the degree of orientation.

本発明の板状多結晶粒子10において、結晶粒子12の厚さZに対する結晶粒子12の結晶面11の方向の長さX(図1(a)参照)の比である結晶粒子12のアスペクト比(X/Z)は、1以上であることが好ましく、2以上であるのがより好ましく、4以上であることが更に好ましい。アスペクト比が2以上では、結晶粒子12を配向させやすいため、板状多結晶粒子の配向度も高くなる。このアスペクト比は50以下であることが好ましい。アスペクト比が50以下では、板状多結晶粒子10の大きさを調整しやすい。この結晶粒子12のアスペクト比は、以下のようにして求めるものとする。まず、走査型電子顕微鏡を用いてSEM観察を行い、撮影したSEM写真などから結晶粒子12の厚さZを求める。次に、上述した板状多結晶粒子10のアスペクト比と同様に、できるだけ重ならないように板状多結晶粒子10を薄層に分散させた状態でSEM観察を行い、結晶粒子12が20〜40個程度含まれる視野において、板状多結晶粒子10の結晶面を観察し、撮影したSEM写真から結晶粒子12の結晶面11の最長長さXを求める。このとき、重なっている板状多結晶粒子10については無視して構わない。次に、求めた結晶面11の最長長さXを結晶粒子12の粒径と仮定しこの粒径を結晶粒子12の厚さZで除算して各結晶粒子12のアスペクト比を算出し、これを平均した値を板状多結晶粒子10に含まれる結晶粒子12のアスペクト比とする。   In the plate-like polycrystalline particle 10 of the present invention, the aspect ratio of the crystal particle 12 which is the ratio of the length X (see FIG. 1A) in the direction of the crystal plane 11 of the crystal particle 12 to the thickness Z of the crystal particle 12 (X / Z) is preferably 1 or more, more preferably 2 or more, and still more preferably 4 or more. When the aspect ratio is 2 or more, since the crystal grains 12 are easily oriented, the degree of orientation of the plate-like polycrystalline grains is also increased. This aspect ratio is preferably 50 or less. When the aspect ratio is 50 or less, it is easy to adjust the size of the plate-like polycrystalline particles 10. The aspect ratio of the crystal grains 12 is obtained as follows. First, SEM observation is performed using a scanning electron microscope, and the thickness Z of the crystal particle 12 is obtained from the photographed SEM photograph or the like. Next, similarly to the aspect ratio of the plate-like polycrystalline particles 10 described above, SEM observation is performed in a state where the plate-like polycrystalline particles 10 are dispersed in a thin layer so that they do not overlap as much as possible. In the field of view included in about one, the crystal plane of the plate-like polycrystalline particle 10 is observed, and the longest length X of the crystal plane 11 of the crystal grain 12 is obtained from the photographed SEM photograph. At this time, the overlapping plate-like polycrystalline particles 10 may be ignored. Next, the longest length X of the obtained crystal plane 11 is assumed to be the grain size of the crystal grain 12, and the grain ratio is divided by the thickness Z of the crystal grain 12 to calculate the aspect ratio of each crystal grain 12. Is an aspect ratio of the crystal grains 12 included in the plate-like polycrystalline particles 10.

本発明の板状多結晶粒子10において、結晶粒子12の結晶面11の方向の長さXは、50μm以下であることが好ましく、25μm以下であることがより好ましく、20μm以下であることが最も好ましい。この長さXが50μm以下であれば、板状多結晶粒子10の大きさを調整しやすい。   In the plate-like polycrystalline particle 10 of the present invention, the length X in the direction of the crystal plane 11 of the crystal particle 12 is preferably 50 μm or less, more preferably 25 μm or less, and most preferably 20 μm or less. preferable. If the length X is 50 μm or less, it is easy to adjust the size of the plate-like polycrystalline particles 10.

また、結晶粒子12の結晶面方向の長さXと板状多結晶粒子10の長手方向の長さYとの比であるY/Xは、3以上100以下であることが好ましい。例えば、板状多結晶粒子10を結晶配向セラミックスの結晶配向用の原料として用いる場合には、Y/Xが3以上では、板状多結晶粒子10のアスペクト比が大きくできるため、結晶配向性を高めることができるし、100以下では、例えば結晶配向セラミックスに含まれる板状多結晶粒子10の粒指数が少なくなるため、配向しやすく、結晶配向セラミックスの成形が容易である。   Y / X, which is the ratio of the length X in the crystal plane direction of the crystal particles 12 and the length Y in the longitudinal direction of the plate-like polycrystalline particles 10, is preferably 3 or more and 100 or less. For example, when the plate-like polycrystalline particles 10 are used as a raw material for crystal orientation of crystal-oriented ceramics, when Y / X is 3 or more, the aspect ratio of the plate-like polycrystalline particles 10 can be increased. If it is 100 or less, for example, since the grain index of the plate-like polycrystalline particles 10 contained in the crystal-oriented ceramic is reduced, it is easy to orient and form the crystal-oriented ceramic.

本発明の板状多結晶粒子10において、結晶粒子12は、等方的且つ多面体形状の結晶粒子に成長する無機粒子により構成されていてもよいし、異方的な結晶粒子に成長する無機粒子により構成されていてもよい。ここで、等方的且つ多面体形状の結晶粒子に成長するということは、状況によっては特定の結晶面を成長させることが可能であると考えられる。ここでは、等方的且つ多面体形状の結晶粒子に成長する無機粒子を含んでいても、厚さ方向への粒成長が限られており、面方向に粒成長がより促されるため、結晶成長の優先方向を面内方向に持った結晶粒子が、結晶成長の優先方向を面内にない結晶粒子を取り込むなどして選択的に面方向へ成長することにより、アスペクト比が大きく配向度の高いものとなる。多面体形状の中でも、6面体形状に粒成長するものが好ましい。6面体であれば、平板形状としたときに、この平板形状の面積の大きな2面(シート面とも称する)に平行な表面を持った粒子は、その2面を除く他の4面が成長面として成形体内の全方位に含まれるから、成形体内で等方的に粒成長したときには、2つのシート面が無理なく拡がるため、アスペクト比の大きな粒子が得られやすく、好ましい。また、結晶粒子12は、ペロブスカイト構造を有する酸化物により構成されているのが好ましい。ペロブスカイト構造を有する酸化物は、擬立方晶のサイコロ状に粒成長するものがあり、成形体面内に(100)面(あるいは(001)面)が成長することによりシート面の垂直方向に結晶面(100)(あるいは(001)面)が配向しやすく、好ましい。なお、板状多結晶粒子10に含まれる結晶粒子12は、異方的であってもよいし、等方的であってもよいが、異方的である方が好ましい。   In the plate-like polycrystalline particles 10 of the present invention, the crystal particles 12 may be composed of inorganic particles that grow into isotropic and polyhedral crystal particles, or inorganic particles that grow into anisotropic crystal particles. It may be constituted by. Here, growing to isotropic and polyhedral crystal grains is considered to allow a specific crystal plane to be grown depending on the situation. Here, even if inorganic particles that grow into isotropic and polyhedral crystal grains are included, grain growth in the thickness direction is limited, and grain growth is further promoted in the plane direction. Crystal grains having a preferred direction in the in-plane direction have a large aspect ratio and a high degree of orientation by selectively growing in the plane direction by taking in crystal grains that do not have the preferred direction of crystal growth in the plane. It becomes. Among the polyhedral shapes, those that grow into a hexahedral shape are preferable. In the case of a hexahedron, when a flat plate shape is used, particles having a surface parallel to two large planes (also referred to as sheet surfaces) of the flat plate shape are grown on the other four planes except the two planes. Is included in all orientations in the molded body, and therefore, when isotropic grain growth occurs in the molded body, the two sheet surfaces expand without difficulty, which is preferable because particles having a large aspect ratio can be easily obtained. The crystal particles 12 are preferably composed of an oxide having a perovskite structure. Some oxides having a perovskite structure grow in the form of pseudocubic dice, and the (100) plane (or (001) plane) grows in the surface of the molded body, so that the crystal plane is perpendicular to the sheet plane. (100) (or (001) plane) is preferred because it is easily oriented. The crystal particles 12 included in the plate-like polycrystalline particles 10 may be anisotropic or isotropic, but are preferably anisotropic.

本発明の板状多結晶粒子10において、結晶粒子12は、一般式ABO3で表される酸化物を主成分とし、AサイトがLi,Na,K,Bi及びAgから選ばれる1種以上を含み、BサイトがNb,Ta及びTiから選ばれる1種以上を含む粒子であるものとしてもよく、このうち(LiXNaYZ)NbMTaN3や(BiXNaYZAgN)TiO3など(X,Y,Z,M,Nは任意の数を表す)が特に好ましい。こうすれば、所定厚さ(例えば15μm以下など)において、アスペクト比が大きく、特定の結晶面が成長した結晶粒子として得られやすい。なお、ここに挙げた元素以外を含んでいても構わない。このとき、結晶粒子12は、焼成前(後述する焼成工程前をいう)のA/Bが1.0以上1.1以下であることが好ましい。一般式ABO3で表される酸化物のA/Bが1.0以上1.1以下の範囲では、アスペクト比や配向度を大きいものとすることができる。ここでは、化学式ABO3で表される酸化物の一例について示したが、本発明はこれ以外にも、例えば、Al23、ZrO2、TiO2、MgO、CaO、Y23、SnO2、ZnO、SiO2などの酸化物およびPZT、BaTiO3、BiFeO3、YBa2Cu37などの複合酸化物、AlN、Si34、BNなどの窒化物、CaB6、MgB2、LaB6などのほう化物、TiC、SiC、WCなどの炭化物、さらには、Bi2Te3、Bi2Sb8Te15、PbTeなどのテルル系化合物や、CrSi2、MnSi1.73、FeSi2、CoSi2などのシリサイド系材料、その他、金属、合金、金属間化合物等へも適用可能である。あるいは、結晶粒子は、一般式ABO3で表される酸化物を主成分とし、AサイトがPbを含み、BサイトがMg,Zn,Nb,Ni,Ti及びZrから選ばれる1種以上を含む粒子であるものとしてもよい。 In the plate-like polycrystalline particle 10 of the present invention, the crystal particle 12 is mainly composed of an oxide represented by the general formula ABO 3 , and the A site is one or more selected from Li, Na, K, Bi and Ag. In addition, the B site may be a particle containing one or more selected from Nb, Ta and Ti, and among these, (Li X Na Y K Z ) Nb M Ta N O 3 and (Bi X Na Y K Z Ag N ) TiO 3 and the like (X, Y, Z, M, and N represent any number) are particularly preferable. By doing so, it is easy to obtain crystal grains having a large aspect ratio and a specific crystal plane grown at a predetermined thickness (for example, 15 μm or less). Note that elements other than those listed here may be included. At this time, it is preferable that A / B of the crystal particles 12 before firing (referring to a firing step described later) is 1.0 or more and 1.1 or less. When the A / B of the oxide represented by the general formula ABO 3 is 1.0 or more and 1.1 or less, the aspect ratio and the degree of orientation can be increased. Here, although an example of an oxide represented by the chemical formula ABO 3 was shown, the present invention is not limited to this example, but includes, for example, Al 2 O 3 , ZrO 2 , TiO 2 , MgO, CaO, Y 2 O 3 , SnO. 2 , oxides such as ZnO and SiO 2 and composite oxides such as PZT, BaTiO 3 , BiFeO 3 and YBa 2 Cu 3 O 7 , nitrides such as AlN, Si 3 N 4 and BN, CaB 6 , MgB 2 , Borides such as LaB 6 , carbides such as TiC, SiC, and WC, and tellurium compounds such as Bi 2 Te 3 , Bi 2 Sb 8 Te 15 , and PbTe, CrSi 2 , MnSi 1.73 , FeSi 2 , CoSi 2 It can also be applied to silicide-based materials such as metals, alloys, and intermetallic compounds. Alternatively, the crystal particle contains an oxide represented by the general formula ABO 3 as a main component, the A site contains Pb, and the B site contains one or more selected from Mg, Zn, Nb, Ni, Ti, and Zr. It may be a particle.

次に、板状多結晶粒子10の製造方法について説明する。本発明の板状多結晶粒子の製造方法は、(1)板状多結晶粒子の原料である無機粒子の調製工程、(2)無機粒子からシート状の成形体への成形工程、(3)成形した成形体の焼成工程、(4)焼成した焼成成形体のメッシュ粉砕工程を含み、これら各工程の順に説明する。   Next, the manufacturing method of the plate-like polycrystalline particle 10 will be described. The method for producing plate-like polycrystalline particles of the present invention includes (1) a preparation step of inorganic particles that are raw materials for plate-like polycrystalline particles, (2) a forming step from inorganic particles to a sheet-like formed body, (3) A step of firing the molded body, and (4) a step of pulverizing the mesh of the fired fired body will be described in the order of these steps.

(1)無機粒子の調製工程
板状多結晶粒子10に用いる無機材料としては、所定焼成条件において異方形状の結晶粒子に成長するもの、即ち、所定焼成条件における成長形が異方形状の結晶粒子に成長するものや、所定焼成条件において等方的且つ多面体形状の結晶粒子に成長するもの、即ち、所定焼成条件における成長形が等方的且つ多面体形状の結晶粒子であるものを用いることができる。この点について、本発明では、厚さが15μm以下のシート状の成形体を焼成させ粒成長させるので、成形体の厚さ方向への粒成長は限られており、成形体の面方向に、より粒成長が促進されるから、所定焼成条件において等方的且つ多面体形状の結晶粒子に成長するもの、例えば立方体に成長するものでも、これを用いて板状多結晶粒子10を作製することができるのである。ここで、「所定焼成条件における成長形」とは、与えられた熱処理条件下で無機材料の結晶が平衡に達したときに見られるモルフォロジーと定義され、例えば、バルクを焼成し結晶化を進めた際に表面の粒子の形状を観察することにより得られるものである。また、「異方形状」とは、例えば板状、短冊状、柱状、針状及び鱗状など、長軸長さと短軸長さとの比(アスペクト比)が大きいもの(例えばアスペクト比が2以上など)をいう。また、「等方的且つ多面体形状」とは、例えば立方体形状などをいう。ここで、一般的に、粒成長によって生成する結晶粒子のモルフォロジーは、固体の融点もしくは分解温度に対し、例えば400℃以下など粒成長する温度が十分に低ければ、ほとんど球状となる。本来、原子の配列に異方性があり、結晶面によって成長速度に差があるにもかかわらず、球状に粒成長するのは、固体原子が非常に動きにくいからである。一方、固体の融点もしくは分解温度と、粒成長する温度とが近い場合、例えば両者の温度差が200℃以内となると、粒成長する際の粒子表面の原子の動きが活発となり、結晶構造に起因した表面形態が現れる。すなわち、粒成長において、結晶面による成長速度の差が出るようになり、成長の遅い結晶面は発達するが、成長の速い結晶面は、小さくなるか消滅してしまう。このように面成長速度の差で定まるモルフォロジーを成長形という。成長形として、異方形状や多面形状となるのは、先に述べたように、固体の融点、もしくは分解温度と、粒成長する温度が近い材料の他に、ガラスなどの低融点化合物をフラックスとして添加し、フラックスを介した粒成長を行わせるようにした系が好ましく選ばれる。フラックスを介することで、粒子表面での固体構成元素の動きが活発となるためである。なお、無機材料は、多面体形状に成長するものの中で、6面体形状に成長するものを利用することができる。6面体であれば、平板形状としたときに、この平板形状のシート面に平行な表面を持った粒子は、その2面を除く他の4面が成長面として成形体内の全方位に含まれるから、成形体内で等方的に粒成長したときには、2つのシート面が無理なく拡がるため、アスペクト比の大きな粒子が得られやすく、好ましい。同様の理由で6角柱や8角柱など、柱形状を用いることもできる。なお、アスペクト比の大きな結晶粒子を得る目的で、粒成長を促進する添加剤を添加してもよい。この無機材料は、ペロブスカイト構造を有する酸化物となるものが好ましく、更に、焼成後の結晶が一般式ABO3で表される酸化物であり、このAサイトがLi,Na,K,Bi及びAgから選ばれる1種以上を含み、BサイトがNb,Ta及びTiから選ばれる1種以上を含むものとなるものを用いるのが好ましい。例えば、無機材料として、NaNbO3のAサイトの一部をLi,Kなどで置換し、Bサイトの一部をTaなどで置換したもの((LiXNaYZ)NbMTaN3:X,Y,Z,M,Nは任意の数を表す)となるようなものとすると、900℃〜1300℃での成長形が立方体形状となるため、好ましい。なお、ここに挙げた元素以外を添加しても構わない。また、(Bi0.5Na0.5-xx)TiO3 を主組成とするものにおいては、X>0.01とすることで成長形が立方体形状となるため、好ましい。また、AサイトとしてPbを主成分として含み、Bサイトとして、Mg、Zn、Nb、Ni、Ti、Zrから選ばれる1種以上を含むものも好ましい。さらにフラックスとして、鉛ホウ酸系ガラス、亜鉛ホウ酸系ガラス、ホウ珪酸ガラス、鉛−珪酸ガラス、亜鉛−珪酸ガラス及びビスマス−珪酸ガラスなど、融点が1000℃以下のガラスを、0.1wt%以上添加したものとすると、900℃〜1300℃での成長形がより立方体形状となりやすいため好ましい。この場合、ガラスの分散性の観点から、ガラス粉末をそのままシート状にするのではなく、一度仮焼しガラスを十分拡散したあとこの仮焼した材料を粉砕し、この粉砕した粉末を用いて成形体を作製するものとするのが好ましい。ABO3で表される酸化物となるものを用いるとき、AサイトとBサイトの比であるA/Bが1.0以上1.1以下となるよう原料を調製することが好ましい。A/Bが1.0以上1.1以下の範囲では、焼成後の板状多結晶粒子に含まれる結晶のアスペクト比や配向度を大きいものとすることができる。また、A/Bが1.0以上1.1以下の範囲では、焼成時に揮発するアルカリ成分や鉛成分などを補償する点で好ましい。なお、得られた焼成成形体から、結晶粒子12を得る場合に、A/Bが1.0以上1.1以下の範囲にあると焼成成形体を水に入れた際などに粒界部に存在するアルカリリッチ相が溶解し結晶粒子が各粒子単位に簡単に分離することがあるため、好ましい。更に、成形シートの厚みが3μm以下のように極めて薄い場合や、焼成時の鞘内部の雰囲気(アルカリ成分や鉛成分の蒸気など)が薄い場合など、焼成時における成形シートからのアルカリ成分や鉛成分などの揮発による組成変化が大きくなることがあるため、A/Bが1.1以上1.3以下の範囲も好ましい。
(1) Inorganic particle preparation step The inorganic material used for the plate-like polycrystalline particles 10 grows into anisotropically shaped crystal particles under a predetermined firing condition, that is, a crystal whose growth shape under the predetermined firing condition is anisotropic. What grows into particles, grows into isotropic and polyhedral crystal grains under a predetermined firing condition, that is, grows under isotropic and polyhedral crystal grains under a predetermined firing condition. it can. In this regard, in the present invention, since a sheet-like molded body having a thickness of 15 μm or less is fired and grain growth is performed, grain growth in the thickness direction of the molded body is limited, and in the surface direction of the molded body, Since the grain growth is further promoted, it is possible to produce the plate-like polycrystalline particles 10 by using those which grow into isotropic and polyhedral crystal grains under predetermined firing conditions, for example, those which grow into cubes. It can be done. Here, the “growth form in a predetermined firing condition” is defined as a morphology that is observed when crystals of an inorganic material reach an equilibrium under a given heat treatment condition. For example, a bulk is fired to promote crystallization. In this case, it is obtained by observing the shape of the surface particles. Further, the “anisotropic shape” means, for example, a plate shape, a strip shape, a column shape, a needle shape, a scale shape, or the like having a large ratio (aspect ratio) between the major axis length and the minor axis length (for example, an aspect ratio of 2 or more) ). Further, “isotropic and polyhedral shape” refers to a cubic shape, for example. Here, in general, the morphology of crystal grains produced by grain growth is almost spherical when the grain growth temperature is sufficiently low, such as 400 ° C. or less, with respect to the melting point or decomposition temperature of the solid. Originally, although the atomic arrangement is anisotropic and there is a difference in the growth rate depending on the crystal plane, the spherical grains grow because the solid atoms are very difficult to move. On the other hand, when the melting point or decomposition temperature of the solid is close to the temperature at which the grain grows, for example, when the temperature difference between them is within 200 ° C., the movement of the atoms on the grain surface during grain growth becomes active, resulting in the crystal structure. Surface morphology appears. That is, in the grain growth, a difference in the growth rate due to the crystal plane comes out, and the slow growth crystal plane develops, but the fast growth crystal plane becomes smaller or disappears. The morphology determined by the difference in the plane growth rate is called a growth type. As described above, the growth shape is anisotropic or multi-faceted, and as described above, in addition to materials with a solid melting point or decomposition temperature close to the temperature at which grains grow, low melting point compounds such as glass are fluxed. A system is preferably selected which is added to cause grain growth via a flux. This is because the movement of solid constituent elements on the particle surface becomes active through the flux. In addition, among inorganic materials that grow into a polyhedral shape, those that grow into a hexahedral shape can be used. If it is a hexahedron, when it is made into a flat plate shape, the particles having a surface parallel to the flat plate-like sheet surface are included in all orientations in the molded body as growth surfaces other than the two surfaces. Therefore, when the grains grow isotropically in the molded body, the two sheet surfaces expand without difficulty, which is preferable because it is easy to obtain particles having a large aspect ratio. For the same reason, a column shape such as a hexagonal column or an octagonal column can be used. An additive for promoting grain growth may be added for the purpose of obtaining crystal grains having a large aspect ratio. This inorganic material is preferably an oxide having a perovskite structure. Further, the fired crystal is an oxide represented by the general formula ABO 3 , and this A site is Li, Na, K, Bi and Ag. It is preferable to use one that includes one or more selected from the group B and the B site includes one or more selected from Nb, Ta, and Ti. For example, as an inorganic material, a part of the NaNbO 3 A site is substituted with Li, K, etc., and a part of the B site is substituted with Ta ((Li X Na Y K Z ) Nb M Ta N O 3 : X, Y, Z, M, and N represent an arbitrary number), since the growth shape at 900 ° C. to 1300 ° C. becomes a cubic shape. Note that elements other than those listed here may be added. In the case of using (Bi 0.5 Na 0.5-x K x ) TiO 3 as the main composition, X> 0.01 is preferable because the growth shape becomes a cubic shape. Further, it is also preferable that the A site contains Pb as a main component and the B site contains one or more selected from Mg, Zn, Nb, Ni, Ti, and Zr. Furthermore, as the flux, glass having a melting point of 1000 ° C. or lower, such as lead borate glass, zinc borate glass, borosilicate glass, lead-silicate glass, zinc-silicate glass, and bismuth-silicate glass, is 0.1 wt% or more. If added, the growth form at 900 ° C. to 1300 ° C. is more likely to be a cubic shape, which is preferable. In this case, from the viewpoint of dispersibility of the glass, the glass powder is not made into a sheet as it is, but after calcination once the glass is sufficiently diffused, the calcined material is pulverized and molded using the pulverized powder. It is preferable to produce a body. When an oxide that is represented by ABO 3 is used, it is preferable to prepare the raw material so that A / B, which is the ratio of the A site to the B site, is 1.0 or more and 1.1 or less. When A / B is in the range of 1.0 to 1.1, the aspect ratio and the degree of orientation of the crystals contained in the fired plate-like polycrystalline particles can be increased. Moreover, when A / B is in the range of 1.0 or more and 1.1 or less, it is preferable in terms of compensating for an alkali component, a lead component, or the like that volatilizes during firing. In addition, when obtaining the crystal particle 12 from the obtained fired molded body, when the A / B is in the range of 1.0 or more and 1.1 or less, the fired molded body is put in the grain boundary part when put in water. This is preferable because the existing alkali-rich phase dissolves and the crystal particles may be easily separated into individual particle units. Furthermore, when the thickness of the molded sheet is extremely thin, such as 3 μm or less, or when the atmosphere inside the sheath during baking (vapor of alkali component or lead component, etc.) is thin, the alkaline component or lead from the molded sheet during firing Since composition change due to volatilization of components and the like may be large, a range where A / B is 1.1 or more and 1.3 or less is also preferable.

無機粒子の調製工程では、無機粒子の原料を粉砕混合し、混合した粉体を仮焼し、得られた無機粒子を更に粉砕することが好ましい。無機粒子の原料としては、目的の成分の酸化物、水酸化物、炭酸塩、硫酸塩、硝酸塩及び酒石酸塩などを用いることができるが、主として酸化物、炭酸塩を用いることが好ましい。また、無機粒子の粉砕では、成形体の厚さに応じた粒径とすることが好ましく、無機粒子のメディアン径(D50)を成形体の厚さの1%以上60%以下とすることが好ましい。メディアン径が成形体厚さの1%以上であれば、粉砕処理が容易であるし、60%以下であれば成形体内の粒子がより均質に分布するため成形体の厚さを調整しやすい。また、結晶粒子12の大きさをより大きくしようとすると、より無機粒子のメディアン径(D50)を小さくすることが粒成長を促す点からみて好ましい。この粒径は、レーザ回折/散乱式粒度分布測定装置を用いて分散媒(有機溶剤や水など)に分散させて測定した値を用いるものとする。無機粒子の粉砕は、湿式粉砕することが好ましく、例えばボールミルやビーズミル、トロンメル、アトライターなどを用いてもよい。   In the step of preparing the inorganic particles, it is preferable to pulverize and mix the raw materials of the inorganic particles, calcine the mixed powder, and further pulverize the obtained inorganic particles. As the raw material of the inorganic particles, oxides, hydroxides, carbonates, sulfates, nitrates, and tartrates of the target component can be used, but it is preferable to mainly use oxides and carbonates. In the pulverization of the inorganic particles, the particle size is preferably set according to the thickness of the molded body, and the median diameter (D50) of the inorganic particles is preferably 1% to 60% of the thickness of the molded body. . If the median diameter is 1% or more of the thickness of the molded body, the pulverization process is easy. If the median diameter is 60% or less, the particles in the molded body are more uniformly distributed, so that the thickness of the molded body can be easily adjusted. In order to increase the size of the crystal particles 12, it is preferable from the viewpoint of promoting grain growth to reduce the median diameter (D50) of the inorganic particles. As this particle diameter, a value measured by dispersing in a dispersion medium (such as an organic solvent or water) using a laser diffraction / scattering particle size distribution measuring apparatus is used. The inorganic particles are preferably pulverized by wet pulverization. For example, a ball mill, a bead mill, a trommel, or an attritor may be used.

(2)成形体の成形工程
無機粒子を成形体の厚さが15μm以下の自立したシート状の成形体に成形する。ここで、「自立した成形体」とは、それ単体でシート状の成形体の形状を保つことができるものや、それ単体ではシート状の成形体の形状を保つことができないものであってもなんらかの基板に貼り付けたり成膜したりして、焼成前、又は焼成後に、この基板から剥離したものをも含む。成形体の成形方法としては、例えば、無機粒子を含むスラリーを用いたドクターブレード法や、無機粒子を含む坏土を用いた押出成形法などによって行うことができる。ドクターブレード法を用いる場合、可撓性を有する板(例えばPETフィルムなどの有機ポリマー板など)にスラリーを塗布し、塗布したスラリーを乾燥固化して成形体とし、この成形体と板とを剥がすことにより板状多結晶粒子の焼成前の成形体を作製してもよい。成形前にスラリーや坏土を調製するときには、無機粒子を適当な分散媒に分散させ、バインダーや可塑剤などを適宜加えてもよい。また、スラリーは、粘度が500〜700cPとなるように調製するのが好ましく、減圧化で脱泡するのが好ましい。成形体の厚さとしては、15μm以下とするが、10μm以下に形成することがより好ましく、5μm以下に形成することが更に好ましく、2μm以下とすることが最も好ましい。15μm以下では高い結晶粒子12の配向度を得ることができ、10μm以下であればより一層高い結晶粒子12の配向度を得ることができる。また、成形体の厚さは、0.1μm以上とするのが好ましい。厚さが0.1μm以上であれば、自立したシート状の成形体を作成しやすい。結晶粒子12の大きさを比較的大きくするには、成形体の厚さを5〜10μm程度とするのが好ましい。このシート状の成形体の厚さは、略そのまま板状多結晶粒子10の厚さとなり、ひいては結晶粒子12の粒径にも関係するから、板状多結晶粒子10の用途に合わせて、適宜設定するものとする。なお、その他の成形方法としては、エアロゾルデポジション法などの、粒子の高速吹き付け法や、スパッタ、CVD、PVDなどの気相法などにより、樹脂、ガラス、セラミックス及び金属などの基板へ膜付けし、基板から剥離することで板状多結晶粒子の焼成前の成形体を作製してもよい。この場合、焼成前の成形体の密度を高くすることができるため、低温での粒成長、構成元素の揮発防止、得られる板状多結晶粒子が高い密度である、などの利点がある。
(2) Molding step of the molded body The inorganic particles are molded into a self-supporting sheet-shaped molded body having a thickness of 15 μm or less. Here, the “self-supported molded body” is a sheet that can maintain the shape of the sheet-shaped molded body by itself or a sheet that cannot maintain the shape of the sheet-shaped molded body by itself. Also included are those that are attached to any substrate or formed into a film and then peeled off from this substrate before or after firing. As a method for forming the formed body, for example, a doctor blade method using a slurry containing inorganic particles, an extrusion method using a clay containing inorganic particles, or the like can be used. When using the doctor blade method, a slurry is applied to a flexible plate (for example, an organic polymer plate such as a PET film), and the applied slurry is dried and solidified to form a molded body, and the molded body and the board are peeled off. Thus, a molded body before firing the plate-like polycrystalline particles may be produced. When preparing a slurry or clay before molding, inorganic particles may be dispersed in a suitable dispersion medium, and a binder, a plasticizer, or the like may be added as appropriate. Moreover, it is preferable to prepare the slurry so that the viscosity is 500 to 700 cP, and it is preferable to defoam by reducing the pressure. The thickness of the molded body is set to 15 μm or less, more preferably 10 μm or less, further preferably 5 μm or less, and most preferably 2 μm or less. If it is 15 μm or less, a high degree of orientation of crystal grains 12 can be obtained, and if it is 10 μm or less, a higher degree of orientation of crystal grains 12 can be obtained. Moreover, it is preferable that the thickness of a molded object shall be 0.1 micrometer or more. If thickness is 0.1 micrometer or more, it will be easy to produce the self-supporting sheet-like molded object. In order to make the size of the crystal particles 12 relatively large, it is preferable that the thickness of the molded body is about 5 to 10 μm. The thickness of the sheet-like molded body is approximately the thickness of the plate-like polycrystalline particle 10 as it is, and as a result, is also related to the particle size of the crystal particle 12, so that it can be appropriately selected according to the use of the plate-like polycrystalline particle 10. Shall be set. Other molding methods include film deposition onto substrates such as resin, glass, ceramics, and metals by high-speed spraying of particles such as aerosol deposition, and vapor phase methods such as sputtering, CVD, and PVD. The molded body before firing the plate-like polycrystalline particles may be produced by peeling from the substrate. In this case, since the density of the molded body before firing can be increased, there are advantages such as grain growth at low temperature, prevention of volatilization of constituent elements, and high density of the obtained plate-like polycrystalline particles.

(3)成形体の焼成工程
成形工程で得られた成形体をこの成形体と実質的に反応しない不活性層(例えば、焼成済みのセラミック板やPt板、カーボン板、黒鉛板、モリブデン板、タングステン板など)に隣接させた状態で焼成するか、又は、この成形体のままの状態で焼成する。例えば、アルミナ、ジルコニア、スピネル、カーボン、黒鉛、モリブデン、タングステン、白金など、成形体の焼成温度では不活性な層の上に成形体を配置して焼成するものとしてもよい。あるいは、成形体と不活性シートとを重ねた状態でロール状に巻いて焼成してもよい。あるいは、不活性層の上にシート状に成形体を形成し、焼成後にこの不活性層から剥離させるものとしてもよい。あるいは、不活性層に成形体を成膜し、焼成後に不活性層を除去するものとしてもよい。例えば、不活性層に黒鉛を用いる場合などでは、非酸化性雰囲気(例えば窒素中)で焼成し、不活性層の存在下で所望の焼成成形体を得たあと、その温度以下の酸化雰囲気(例えば大気中)で再び熱処理し、黒鉛を燃焼させることで除去するものとしてもよい。ここで、成形体に含まれる無機粒子が等方的且つ多面体形状の結晶粒子に成長するものであるときでも、状況によっては特定の結晶面を成長させることが可能であると考えられる。ここでは、成形体の厚さが15μm以下と成形体の厚さ方向への粒成長が限られており、成形体の面の方向に粒成長がより促されるため、特定の結晶面が成形体の面内に成長することにより、アスペクト比が大きく配向度の高いものとなる。こうして、成形体の厚さ方向には略1個だけ結晶粒子12が存在するようになるのである。
(3) Firing step of molded body An inactive layer (for example, a fired ceramic plate or Pt plate, a carbon plate, a graphite plate, a molybdenum plate, a non-reactive layer which does not substantially react with the molded body in the molding step) It fires in the state which adjoined the tungsten plate etc.), or it fires in the state as this molded object. For example, the molded body may be disposed and fired on a layer that is inactive at the firing temperature of the molded body, such as alumina, zirconia, spinel, carbon, graphite, molybdenum, tungsten, and platinum. Alternatively, the molded body and the inert sheet may be wound in a roll shape and fired. Or it is good also as what forms a molded object in a sheet form on an inactive layer, and makes it peel from this inactive layer after baking. Alternatively, a molded body may be formed on the inert layer, and the inert layer may be removed after firing. For example, in the case of using graphite for the inert layer, after firing in a non-oxidizing atmosphere (for example, in nitrogen) to obtain a desired fired molded body in the presence of the inert layer, an oxidizing atmosphere below that temperature ( For example, the heat treatment may be performed again in the atmosphere and the graphite may be burned to be removed. Here, even when the inorganic particles contained in the compact grow into isotropic and polyhedral crystal grains, it is considered that a specific crystal plane can be grown depending on the situation. Here, the grain growth in the thickness direction of the molded body is limited to a thickness of 15 μm or less and the grain growth is further promoted in the direction of the surface of the molded body. By growing in the plane, the aspect ratio is large and the degree of orientation is high. Thus, approximately one crystal particle 12 is present in the thickness direction of the compact.

また、成形体の焼成工程において、この成形体に含まれる特定成分(例えばアルカリなど)の揮発を抑制する揮発抑制状態で成形体を焼成することが好ましい。こうすれば、成形体からの特定の元素が揮発してしまうのを抑制することにより、焼成後の板状多結晶粒子の組成がずれてしまうのを抑制することができる。例えば、揮発抑制状態として成形体とは別の無機粒子を共存させた状態でこの成形体を焼成してもよい。こうすれば、共存した無機粒子から特定成分を揮発させることにより、比較的容易に成形体から特定成分が揮発してしまうのを抑制することができる。このとき、「別の無機粒子」は、粉末状であってもよいし成形体状であってもよい。あるいは、揮発抑制状態として蓋付きの鞘などに入れ密閉状態でこの成形体を焼成するものとしてもよい。このとき、鞘内部の空間はできる限り小さくすることが好ましい。ここで、鞘内部の雰囲気を濃くしすぎる、例えば鞘内部に共存させる別の無機粒子の量を多くしすぎると、成形体の焼結及び粒成長が活発化したりして、成形体のうねりを生じたり、粒成長が粒子表面積を小さくする方向、即ち厚肉化し、結晶粒子のアスペクト比が小さくなることがある。このため、鞘内部の雰囲気が最適な状態となるように、鞘内部の容積や、成形体の量、共存させる無機粒子の量などを適切な状態に経験的に設定することが重要である。なお、無機粒子を共存させて焼成する際には、成形体と同一組成の無機粒子を共存させることが好ましいが、成形体を構成する無機粒子よりも特定成分が揮発しやすい粒子を共存させておくことにより、焼成成形体へ特定成分を補充することもできる。また、焼成工程の中で、最適なタイミングで最適な雰囲気を提供することがより重要であり、例えば、第1の雰囲気に制御した鞘内において第1の焼成温度で焼成し、室温に戻したあと、第2の雰囲気に制御した鞘内において第1の焼成温度よりも高い第2の焼成温度で焼成してもよい。また、焼成雰囲気は、大気中としてもよいが、構成元素の揮発抑制、不活性層との反応性などの点で、酸素雰囲気や、窒素などの中性雰囲気、水素や炭化水素の共存下などの還元雰囲気、真空中などとしてもよい。また、面内の粒成長を促進する観点から、ホットプレスなど加重焼成してもよい。   Moreover, it is preferable to bake a molded object in the volatilization suppression state which suppresses volatilization of the specific components (for example, alkali etc.) contained in this molded object in the baking process of a molded object. If it carries out like this, it can suppress that the composition of the plate-like polycrystal particle | grains after baking shift | deviates by suppressing that a specific element from a molded object volatilizes. For example, this molded body may be fired in a state where inorganic particles different from the molded body coexist as a volatilization-suppressed state. If it carries out like this, it can suppress that a specific component volatilizes from a molded object comparatively easily by volatilizing a specific component from the coexisting inorganic particle. At this time, “another inorganic particle” may be in the form of a powder or a molded body. Alternatively, the compact may be fired in a sealed state in a sheath with a lid as a volatilization-suppressed state. At this time, it is preferable to make the space inside the sheath as small as possible. Here, if the atmosphere inside the sheath is too thick, for example, if the amount of other inorganic particles coexisting inside the sheath is too large, sintering and grain growth of the molded body are activated, and the undulation of the molded body is increased. In some cases, grain growth may reduce the particle surface area, that is, increase the thickness, and the aspect ratio of the crystal grains may be reduced. For this reason, it is important to empirically set the volume inside the sheath, the amount of the molded body, the amount of inorganic particles to coexist, etc. to an appropriate state so that the atmosphere inside the sheath is in an optimal state. In addition, when firing with inorganic particles coexisting, it is preferable to coexist inorganic particles having the same composition as the molded body, but coexist with particles that easily volatilize a specific component than the inorganic particles constituting the molded body. The specific component can also be supplemented to the fired molded body. In the firing process, it is more important to provide an optimum atmosphere at an optimum timing. For example, firing is performed at the first firing temperature in a sheath controlled to the first atmosphere, and the temperature is returned to room temperature. Then, firing may be performed at a second firing temperature higher than the first firing temperature in the sheath controlled to the second atmosphere. The firing atmosphere may be in the air, but in terms of suppressing volatilization of constituent elements, reactivity with the inert layer, etc., in an oxygen atmosphere, a neutral atmosphere such as nitrogen, in the coexistence of hydrogen or hydrocarbons, etc. The reducing atmosphere may be in a vacuum. Further, from the viewpoint of promoting in-plane grain growth, weighted firing such as hot pressing may be performed.

この焼成工程を図を用いて説明する。図2は、焼成器20の説明図であり、図2(a)が側面図、図2(b)が(a)のA−A断面図である。この焼成器20は、図示しない焼成炉で成形体30を焼成するときに用いられるものであり、未焼成の成形体30を載置する焼成済みのセラミック板であるセッター22と、成形体30と同一の無機粒子により形成され成形体30よりも厚さの大きい未焼成の共存用未焼成成形体24と、共存用未焼成成形体24上に配置され成形体30の蓋となる焼成済みのセラミック板である角板26とによって構成されている。図2に示すように、成形体30の四方を共存用未焼成成形体24により囲み込むことにより成形体30から特定成分(例えばアルカリなど)が揮発して組成が変化してしまうのを防止するのである。ここでは、セッター22は、平板状であるものとしたが、成形体30の載置面の表面を粗くしたセッターや、成形体30の載置面に貫通孔を複数設けたハニカム状のセッター、ディンプル加工されたセッターなど成形体30との接触面積が小さくなるようにし、セッターと成形体30とが溶着してしまうのを防止するものとしてもよい。また、セッター22の載置面に成形体30の焼成温度で安定なアルミナ粉やジルコニア粉などを敷きその上に成形体30を載置して焼成するものとしてもよい。ここで、未焼成成形体を共存させる代わりに、鞘内部に粉末状態で共存させる場合には、鞘内部でのセッターの置き方やサイズ、段積みの方法、粉末の置く位置などを調整することにより、鞘内部の雰囲気を均一に調整することができ、成形体を複数枚焼成する場合に、各成形体が均一な結晶粒子構造となるようにすることができる。   This firing process will be described with reference to the drawings. 2A and 2B are explanatory views of the firing device 20, in which FIG. 2A is a side view and FIG. 2B is a cross-sectional view taken along line AA in FIG. The firing device 20 is used when firing the molded body 30 in a firing furnace (not shown). The setter 22 is a fired ceramic plate on which the unfired molded body 30 is placed, and the molded body 30. An unfired co-fired green body 24 formed of the same inorganic particles and having a thickness greater than that of the green body 30, and a fired ceramic disposed on the co-existing green body 24 and serving as a lid for the green body 30 It is comprised by the square plate 26 which is a board. As shown in FIG. 2, by enclosing the four sides of the molded body 30 with a coexisting green molded body 24, a specific component (for example, alkali or the like) is volatilized from the molded body 30 to prevent the composition from changing. It is. Here, the setter 22 is assumed to have a flat plate shape, but a setter having a rough surface on the mounting surface of the molded body 30 or a honeycomb-shaped setter having a plurality of through holes on the mounting surface of the molded body 30; A contact area with the molded body 30 such as a dimple processed setter may be reduced to prevent the setter and the molded body 30 from being welded. Further, alumina powder or zirconia powder that is stable at the firing temperature of the molded body 30 may be placed on the mounting surface of the setter 22, and the molded body 30 may be placed and fired thereon. Here, when coexisting in a powder state inside the sheath instead of coexisting the green body, adjust the setting method and size of the setter inside the sheath, the stacking method, the position where the powder is placed, etc. Thus, the atmosphere inside the sheath can be adjusted uniformly, and when a plurality of compacts are fired, each compact can have a uniform crystal particle structure.

また、焼成条件について、成形体30は、焼成により平衡形の結晶が得られる焼成温度、例えばバルクを焼成することにより緻密化、粒成長する焼成温度に比べて1割以上高い温度で焼成することが好ましい。1割以上高い温度では、15μm以下の成形体30の粒成長を十分進めることができる。なお、成形体の材料が分解しない程度に高い温度で焼成することが好ましい。特に、成形体30の厚さがより薄くなると、粒成長がしにくくなるため、焼成温度をより高くする傾向とすることが好ましい。また、結晶粒子12の大きさをより大きくしようとすると、より高い焼成温度で焼成することが好ましい。例えば、無機粒子として、NaNbO3のAサイトにLi,Kなどを添加し、BサイトにTaを添加したもの((LiXNaYZ)NbMTaN3)の焼成工程では、成形体の焼成温度を900℃以上1250℃以下とすることが好ましい。焼成温度が900℃以上では、粒子の結晶の成長が促されるため好ましく、1250℃以下では、アルカリ成分などの揮発を少なく抑えることができ、材料が分解してしまうのを抑制することができる。このように焼成することにより、成形体30に含まれる無機粒子が、異方性の結晶粒子に成長するのである。 As for the firing conditions, the compact 30 is fired at a firing temperature at which an equilibrium crystal is obtained by firing, for example, at a temperature higher by 10% or more than the firing temperature for densification and grain growth by firing the bulk. Is preferred. At a temperature higher by 10% or more, the grain growth of the molded body 30 of 15 μm or less can be sufficiently advanced. In addition, it is preferable to bake at a high temperature so as not to decompose the material of the molded body. In particular, when the thickness of the molded body 30 becomes thinner, it becomes difficult for the grains to grow. Therefore, it is preferable to make the firing temperature higher. Further, if the size of the crystal particles 12 is to be increased, it is preferable to fire at a higher firing temperature. For example, as inorganic particles, in the firing process of LiN, K, etc. added to the A site of NaNbO 3 and Ta added to the B site ((Li X Na Y K Z ) Nb M Ta N O 3 ) The body firing temperature is preferably 900 ° C. or higher and 1250 ° C. or lower. When the firing temperature is 900 ° C. or higher, the growth of particle crystals is promoted, and when the firing temperature is 1250 ° C. or lower, volatilization of alkali components and the like can be suppressed to a low level and the material can be prevented from being decomposed. By firing in this way, the inorganic particles contained in the molded body 30 grow into anisotropic crystal particles.

(4)焼成成形体のメッシュ粉砕工程
次に、得られた焼成成形体を解砕、分級する。ここでは、目的とする粒子サイズに合わせた開口部を有するメッシュ(ふるい)を用いるものとし、1.0mm以下のメッシュを用いることが好ましい。図3は、メッシュ粉砕工程の一例の説明図である。このメッシュ粉砕工程では、例えば、開口径が45μm、25μm、20μmなどのメッシュを用いることができる。成形体30を焼成した焼成成形体32は比較的解砕しやすいため、メッシュ34上に載置したあと、例えばへら状などの押圧部材36などにより軽く焼成成形体32を押圧しながらメッシュ34を篩うことによりメッシュ粉砕工程を行うことができる。こうすれば、焼成成形体32の解砕と、解砕した板状多結晶粒子10(図1参照)の分級とを同時並行で行うことができる。また、より大きな粒径及びより大きなアスペクト比の板状多結晶粒子10を得ようとすれば、メッシュの開口部を大きくすればよいし、より小さな粒径及びより小さなアスペクト比の板状多結晶粒子10を得ようとすれば、メッシュの開口部を小さくすればよいため、メッシュの開口部の大きさを変えるという簡単な処理で板状多結晶粒子10の特性を変化させることができる。このようにして、図1に示した板状多結晶粒子10を得ることができる。
(4) Mesh pulverization step of fired molded body Next, the obtained fired molded body is crushed and classified. Here, it is assumed that a mesh having an opening that matches the target particle size is used, and a mesh of 1.0 mm or less is preferably used. FIG. 3 is an explanatory diagram of an example of the mesh crushing process. In this mesh pulverization step, for example, a mesh having an opening diameter of 45 μm, 25 μm, 20 μm, or the like can be used. Since the fired molded body 32 obtained by firing the molded body 30 is relatively easy to disintegrate, after placing the mesh 34 on the mesh 34, the mesh 34 is pressed while lightly pressing the fired molded body 32 with a pressing member 36 such as a spatula. The mesh grinding process can be performed by sieving. If it carries out like this, crushing of the baking molded object 32 and classification of the crushed plate-like polycrystalline particle 10 (refer FIG. 1) can be performed simultaneously in parallel. In order to obtain plate-like polycrystalline particles 10 having a larger particle size and a larger aspect ratio, the mesh openings may be enlarged, and a plate-like polycrystalline having a smaller particle size and a smaller aspect ratio. If the particles 10 are to be obtained, the mesh openings need only be made small, so that the characteristics of the plate-like polycrystalline particles 10 can be changed by a simple process of changing the size of the mesh openings. In this way, the plate-like polycrystalline particles 10 shown in FIG. 1 can be obtained.

得られた板状多結晶粒子10は、結晶配向セラミックスの原料としてもよい。続いて、板状多結晶粒子10を原料とする結晶配向セラミックスの製造方法について説明する。この結晶配向セラミックスは、例えば厚み方向が15μmを超えるような任意の形状とすることができる。即ち、板状多結晶粒子10は、結晶配向セラミックスの中間生成物として作製されるものとしてもよい。図4は、結晶配向セラミックスの製造方法の一例を表す説明図であり、図4(a)が配向後焼成前の図、図4(b)が焼成して得られた結晶配向セラミックス50の図である。結晶配向セラミックスは、板状多結晶粒子10と、その他の原料粉体(例えば配向していない無機粒子など)と、適宜バインダーや可塑剤などを混合する混合工程を経て、板状多結晶粒子10が一定方向を向くような配向成形(2次配向)を行うことにより所定形状の2次成形体40(図4(a))に成形する2次成形工程を行うものとしてもよい。配向成形は、上述したドクターブレード法や押出成型法などにより行うことができる。そして、板状多結晶粒子10が配向している方向に他の原料粉体も配向させるようこの2次成形体を焼成する2次焼成工程を行い結晶配向セラミックス50を得るのである(図4(b))。この2次焼成工程での焼成温度は、上述した所定焼成条件における成長形の結晶が得られる焼成温度としてもよいし、この温度よりも1割以上高い温度としてもよい。このように、板状多結晶粒子10を一方向へ配向させた後に焼成すると、その他の原料粉体がこの配向した板状多結晶粒子10の結晶方位に倣って粒成長したり、配向した板状多結晶粒子10が、その他の原料粉体を取り込みながら粒成長したりするため、一方向へ配向した配向結晶52を多数含む結晶配向セラミックス50を得ることができる。なお、上述した成形体30の焼成時に揮発抑制状態で焼成しない場合であっても、成形体30の焼成時に揮発した成分を混合工程や2次成形工程時に添加することにより、結晶配向セラミックス50を目的とする組成比とすることができる。   The obtained plate-like polycrystalline particles 10 may be used as a raw material for crystal-oriented ceramics. Then, the manufacturing method of the crystal orientation ceramics which use the plate-like polycrystalline particle 10 as a raw material is demonstrated. This crystallographically-oriented ceramic can have an arbitrary shape whose thickness direction exceeds 15 μm, for example. That is, the plate-like polycrystalline particles 10 may be produced as an intermediate product of crystal-oriented ceramics. FIG. 4 is an explanatory diagram showing an example of a method for producing a crystallographically-oriented ceramic, in which FIG. 4A is a diagram before orientation and before firing, and FIG. 4B is a diagram of a crystal-oriented ceramic 50 obtained by firing. It is. The crystal-oriented ceramic is subjected to a mixing step in which the plate-like polycrystalline particles 10, other raw material powders (for example, non-oriented inorganic particles) and the like, and a binder or a plasticizer are mixed as appropriate. It is also possible to perform a secondary molding step of molding the secondary molded body 40 (FIG. 4A) having a predetermined shape by performing orientation molding (secondary orientation) such that is oriented in a certain direction. Orientation molding can be performed by the above-described doctor blade method, extrusion molding method, or the like. Then, a secondary firing step is performed to fire this secondary compact so that other raw material powders are also oriented in the direction in which the plate-like polycrystalline particles 10 are oriented, thereby obtaining the crystal oriented ceramics 50 (FIG. 4 ( b)). The firing temperature in the secondary firing step may be a firing temperature at which the growth-type crystals are obtained under the predetermined firing conditions described above, or may be a temperature higher by 10% or more than this temperature. Thus, when the plate-like polycrystalline particles 10 are oriented in one direction and then fired, the other raw material powders grow according to the crystal orientation of the oriented plate-like polycrystalline particles 10 or are oriented plates. Since the polycrystalline particles 10 grow while taking in other raw material powders, it is possible to obtain a crystal-oriented ceramic 50 including a large number of oriented crystals 52 oriented in one direction. Even if the above-described molded body 30 is not fired in a volatilization-suppressed state when the molded body 30 is fired, the crystal-oriented ceramic 50 can be obtained by adding the components volatilized during the firing of the molded body 30 during the mixing process or the secondary molding process. The desired composition ratio can be obtained.

以上詳述した本実施形態の板状多結晶粒子10によれば、無機粒子を厚さ15μm以下の自立したシート状の成形体に成形しこれを焼成し、所定サイズの開口部を通過させることにより焼成後の成形体を解砕及び分級すればよいため、より簡単な処理でアスペクト比及び結晶の配向度を高めることができる。また、板状多結晶粒子10は、粒界部14で結晶粒子12同士が結合された構造であり、この粒界部14で解砕しやすいため、粒径やアスペクト比などを容易に調整することができる。このため、単結晶の粒子を用いて結晶配向セラミックスを作製するものに比して、結晶配向セラミックス50の配向度や配向結晶52のサイズなどの調整も容易な処理で行いやすい。更に、配向性を高めるために何らかの成分を添加する必要がないから、組成がより均質な板状多結晶粒子を得ることができる。このため、結晶配向セラミックス50の作製に板状多結晶粒子10を用いると、均質な組成で且つ配向性の高い結晶配向セラミックス50を得ることができる。   According to the plate-like polycrystalline particle 10 of the present embodiment described in detail above, the inorganic particles are formed into a self-supporting sheet-like molded body having a thickness of 15 μm or less, fired, and passed through an opening of a predetermined size. Thus, since the fired compact may be crushed and classified, the aspect ratio and the degree of crystal orientation can be increased with a simpler treatment. Further, the plate-like polycrystalline particle 10 has a structure in which the crystal grains 12 are bonded to each other at the grain boundary portion 14, and is easily crushed at the grain boundary portion 14. Therefore, the grain size, the aspect ratio, and the like are easily adjusted. be able to. For this reason, as compared with the case of producing crystal-oriented ceramics using single crystal particles, the degree of orientation of the crystal-oriented ceramics 50 and the size of the oriented crystals 52 can be easily adjusted. Furthermore, since it is not necessary to add any component to enhance the orientation, plate-like polycrystalline particles having a more uniform composition can be obtained. For this reason, when the plate-like polycrystalline particles 10 are used for producing the crystal oriented ceramics 50, the crystal oriented ceramics 50 having a homogeneous composition and high orientation can be obtained.

なお、本発明は上述した実施形態に何ら限定されることはなく、本発明の技術的範囲に属する限り種々の態様で実施し得ることはいうまでもない。   It should be noted that the present invention is not limited to the above-described embodiment, and it goes without saying that the present invention can be implemented in various modes as long as it belongs to the technical scope of the present invention.

例えば、上述した実施形態では、板状多結晶粒子10を結晶配向セラミックス50の原料として用いるものとしたが、これ以外の用途(例えばフィラーなど)に利用するものとしてもよい。本発明の板状多結晶粒子10は、誘電体材料、焦電体材料、圧電体材料、強誘電体材料、磁性材料、イオン伝導材料、電子伝導性材料、熱伝導材料、熱電材料、超伝導材料、耐摩耗性材料等の機能や特性が結晶方位依存性を有する物質よりなる多結晶材料へ用いることができる。具体的には、加速度センサ、焦電センサ、超音波センサ、電界センサ、温度センサ、ガスセンサ、ノッキングセンサ、ヨーレートセンサ、エアバックセンサ、圧電ジャイロセンサ等の各種センサ、圧電トランス等のエネルギー変換素子、圧電アクチュエータ、超音波モータ、レゾネータ等の低損失アクチュエータ又は低損失レゾネータ、キャパシタ、バイモルフ圧電素子、振動ピックアップ、圧電マイクロホン、圧電点火素子、ソナー、圧電ブザー、圧電スピーカ、発振子、フィルタ、誘電素子、マイクロ波誘電素子、熱電変換素子、焦電素子、磁気抵抗素子、磁性素子、超伝導素子、抵抗素子、電子伝導素子、イオン伝導素子、PTC素子、NTC素子等に応用すれば、高い性能を有する各種素子を得ることができる。このとき、結晶粒子12のアスペクト比や板状多結晶粒子10のアスペクト比は、用途に合わせた値を適宜設定するものとする。なお、板状多結晶粒子10のアスペクト比や粒子サイズは、メッシュ粉砕工程での開口径の大きさを設定するだけで容易に変更することができる。   For example, in the above-described embodiment, the plate-like polycrystalline particles 10 are used as a raw material for the crystallographically oriented ceramic 50, but may be used for other purposes (for example, fillers). The plate-like polycrystalline particle 10 of the present invention is composed of a dielectric material, pyroelectric material, piezoelectric material, ferroelectric material, magnetic material, ion conducting material, electron conducting material, heat conducting material, thermoelectric material, superconducting material. It can be used for a polycrystalline material made of a material whose function and characteristics such as materials and wear-resistant materials have crystal orientation dependency. Specifically, various sensors such as acceleration sensors, pyroelectric sensors, ultrasonic sensors, electric field sensors, temperature sensors, gas sensors, knocking sensors, yaw rate sensors, airbag sensors, piezoelectric gyro sensors, energy conversion elements such as piezoelectric transformers, Low-loss actuators or low-loss resonators such as piezoelectric actuators, ultrasonic motors, and resonators, capacitors, bimorph piezoelectric elements, vibration pickups, piezoelectric microphones, piezoelectric ignition elements, sonar, piezoelectric buzzers, piezoelectric speakers, oscillators, filters, dielectric elements, High performance when applied to microwave dielectric elements, thermoelectric conversion elements, pyroelectric elements, magnetoresistive elements, magnetic elements, superconducting elements, resistance elements, electron conducting elements, ion conducting elements, PTC elements, NTC elements, etc. Various elements can be obtained. At this time, the aspect ratio of the crystal particles 12 and the aspect ratio of the plate-like polycrystalline particles 10 are set appropriately according to the application. The aspect ratio and the particle size of the plate-like polycrystalline particles 10 can be easily changed simply by setting the size of the opening diameter in the mesh crushing process.

また、上述した実施形態では、板状多結晶粒子10は特定の結晶面11がシート面上に現れて揃っているものとしたが(図1参照)、結晶粒子12が粒界部で二次元的に結合したものであればよく、結晶面11がシート面上に現れていないものとしてもよい。   Further, in the above-described embodiment, the plate-like polycrystalline particles 10 are arranged such that the specific crystal face 11 appears on the sheet surface (see FIG. 1), but the crystal grains 12 are two-dimensional at the grain boundary part. The crystal plane 11 may not be shown on the sheet surface as long as it is bonded.

以下には、板状多結晶粒子10を具体的に製造した例を、実験例として説明する。   Below, the example which manufactured the plate-like polycrystalline particle 10 concretely is demonstrated as an experiment example.

[実験例1]
(無機粒子の合成工程)
Li0.07(Na0.50.50.93Nb0.9Ta0.13の組成比となるように、各粉末(Li2CO3、Na2CO3、K2CO3、Nb25、Ta25)を秤量した。ポリポットに、秤量物と、ジルコニアボールと、分散媒としてエタノールを入れ、ボールミルで16h湿式混合、粉砕を行った。得られたスラリーをエバポレータ及び乾燥機によって乾燥した後、850℃,5hの条件化で仮焼成した。この仮焼粉末と、ジルコニアボールと、分散媒としてエタノールを入れ、ボールミルで5h湿式粉砕し、エバポレータ及び乾燥機によって乾燥して、Li0.07(Na0.50.50.93Nb0.9Ta0.13の無機粒子粉体を得た。この粉体をHORIBA製レーザ回折/散乱式粒度分布測定装置LA−750を用い、水を分散媒として平均粒径を測定したところ、メディアン径(D50)は、0.6μmであった。
(自立したシート状の成形体の成形工程)
分散媒としてのトルエン、イソプロパノールを等量混合したものに、上記の無機粒子粉体と、バインダーとしてポリビニルブチラール(BM−2、積水化学製)、可塑剤(DOP、黒金化成製)と、分散剤(SP−O30、花王製)とを混合し、スラリー状の成形原料を作製した。各原料の使用量は、無機粒子100重量部に対して、分散媒100重量部、バインダー10重量部、可塑剤4重量部及び分散剤2重量部とした。次に、得られたスラリーを、減圧下で撹拌して脱泡し、粘度500〜700cPとなるように調製した。スラリーの粘度は、ブルックフィールド社製LVT型粘度計で測定した。得られたスラリーをドクターブレード法によってPETフィルムの上にシート状に成形した。乾燥後の厚さを5μmとした。
(成形体の焼成工程)
PETフィルムからはがしたシート状の成形体を、カッターで50mm角に切り出し、ジルコニアからなるセッター(寸法70mm角、高さ5mm)の中央に載置した。このセッターに、シート状の成形体と同じ成形原料からなる未焼成のシート成形体(寸法5mm×40mm、厚さ100μm)をシート状の成形体の四辺の外側に載置してこれを囲い、その上に更にジルコニアの角板(寸法70mm角、高さ5mm)を載置した。こうして、シート状の成形体の空間をできるだけ小さくすると共に、同じ成形原料を共存させる焼成条件とした。そして、600℃、2h脱脂後、1100℃で5h焼成を行った。焼成後、セッターに溶着していない部分を取り出した。
(焼成成形体のメッシュ粉砕工程)
得られた焼成後の成形体を300メッシュ(開口径45μm)のふるいに載せ、軽く焼成成形体をへらで押し付けながら解砕・分級した。得られた粒子を実験例1の板状多結晶粒子とした。
[Experiment 1]
(Inorganic particle synthesis process)
Each powder (Li 2 CO 3 , Na 2 CO 3 , K 2 CO 3 , Nb 2 O 5 , Ta 2 O 5 so as to have a composition ratio of Li 0.07 (Na 0.5 K 0.5 ) 0.93 Nb 0.9 Ta 0.1 O 3 ) Was weighed. A weighed product, zirconia balls, and ethanol as a dispersion medium were placed in a polypot, and wet mixing and pulverization were performed for 16 hours with a ball mill. The obtained slurry was dried with an evaporator and a dryer, and then pre-fired under conditions of 850 ° C. and 5 hours. This calcined powder, zirconia balls, ethanol as a dispersion medium, wet pulverized with a ball mill for 5 hours, dried with an evaporator and a dryer, and Li 0.07 (Na 0.5 K 0.5 ) 0.93 Nb 0.9 Ta 0.1 O 3 inorganic Particle powder was obtained. When the average particle diameter of this powder was measured using a laser diffraction / scattering particle size distribution analyzer LA-750 manufactured by HORIBA using water as a dispersion medium, the median diameter (D50) was 0.6 μm.
(Molding process of self-supporting sheet-like molded product)
Into a mixture of equal amounts of toluene and isopropanol as a dispersion medium, the above inorganic particle powder, polyvinyl butyral (BM-2, manufactured by Sekisui Chemical) as a binder, a plasticizer (DOP, manufactured by Kurokin Kasei), and dispersion An agent (SP-O30, manufactured by Kao) was mixed to prepare a slurry-like forming raw material. The amount of each raw material used was 100 parts by weight of the dispersion medium, 10 parts by weight of the binder, 4 parts by weight of the plasticizer, and 2 parts by weight of the dispersant with respect to 100 parts by weight of the inorganic particles. Next, the obtained slurry was stirred and defoamed under reduced pressure to prepare a viscosity of 500 to 700 cP. The viscosity of the slurry was measured with an LVT viscometer manufactured by Brookfield. The obtained slurry was formed into a sheet on a PET film by a doctor blade method. The thickness after drying was 5 μm.
(Baking process of molded body)
A sheet-like molded body peeled off from the PET film was cut into a 50 mm square with a cutter and placed on the center of a setter (dimension 70 mm square, height 5 mm) made of zirconia. In this setter, an unsintered sheet molded body (dimensions 5 mm × 40 mm, thickness 100 μm) made of the same molding raw material as the sheet-shaped molded body is placed outside the four sides of the sheet-shaped molded body, and enclosed. A zirconia square plate (size 70 mm square, height 5 mm) was further placed thereon. Thus, the space for the sheet-like molded body was made as small as possible, and the firing conditions were set such that the same molding raw material coexisted. Then, after degreasing at 600 ° C. for 2 hours, baking was performed at 1100 ° C. for 5 hours. After firing, the part not welded to the setter was taken out.
(Mesh crushing process of fired molded product)
The obtained fired compact was placed on a 300-mesh (opening diameter 45 μm) sieve and crushed and classified while lightly pressing the fired compact with a spatula. The obtained particles were used as the plate-like polycrystalline particles of Experimental Example 1.

[実験例2,3]
メッシュ粉砕工程において、ふるいをそれぞれ500メッシュ(開口径25μm),635メッシュ(開口径20μm)とした以外は上述した実験例1と同様の工程を行い、得られた板状多結晶粒子をそれぞれ実験例2,3とした。
[Experimental Examples 2 and 3]
In the mesh crushing step, the same process as in Experimental Example 1 was performed except that the sieves were 500 mesh (opening diameter 25 μm) and 635 mesh (opening diameter 20 μm), respectively, and the obtained plate-like polycrystalline particles were tested. Examples 2 and 3 were used.

[実験例4〜7]
成形工程において、シート状の成形体の厚さを2μm,10μm,15μm,20μmとした以外は上述した実験例1と同様の工程を行い、得られた板状多結晶粒子10をそれぞれ実験例4〜7とした。
[Experimental Examples 4 to 7]
In the forming step, the same steps as in Experimental Example 1 described above were performed except that the thickness of the sheet-like molded body was 2 μm, 10 μm, 15 μm, and 20 μm. It was set to ~ 7.

[実験例8〜12]
合成工程において、無機粒子の組成をLi0.07(Na0.50.50.93NbO3,Li0.07(Na0.50.50.97NbO3.02 ,Li0.07(Na0.50.51.03NbO3.05,Li0.1(Na0.50.51.1NbO3.1,Li0.07(Na0.50.50.91NbO2.99の組成比、即ち、一般式ABO3においてA/B=1.00,1.04,1.10,1.20,0.98となるように無機粒子粉体を調製した以外は上述した実験例2と同様の工程を行い、得られた板状多結晶粒子をそれぞれ実験例8〜12とした。なお、これらの実験例の平均粒径を上記と同様に測定したところ、メディアン径(D50)が0.6μmであった。
[Experimental Examples 8 to 12]
In the synthesis step, the composition of the inorganic particles is Li 0.07 (Na 0.5 K 0.5 ) 0.93 NbO 3 , Li 0.07 (Na 0.5 K 0.5 ) 0.97 NbO 3.02 , Li 0.07 (Na 0.5 K 0.5 ) 1.03 NbO 3.05 , Li 0.1 (Na 0.5 K 0.5 ) 1.1 NbO 3.1 , Li 0.07 (Na 0.5 K 0.5 ) 0.91 NbO 2.99 , that is, A / B = 1.00, 1.04, 1.10, 1.20, 0 in the general formula ABO 3 The same procedure as in Experimental Example 2 was performed except that the inorganic particle powder was prepared so as to be .98, and the obtained plate-like polycrystalline particles were designated as Experimental Examples 8 to 12, respectively. In addition, when the average particle diameter of these experimental examples was measured in the same manner as described above, the median diameter (D50) was 0.6 μm.

[実験例13]
(Bi0.5Na0.350.1Ag0.05)TiO3の組成比となるように各粉末(Bi23、Na2CO3、K2CO3、Ag2O、TiO2)を秤量し実験例1と同様に湿式混合、粉砕、乾燥を行ったあと、900℃、2hの条件で仮焼し、この得られた仮焼粉末を実験例1と同様に粉砕、乾燥して(Bi0.5Na0.350.1Ag0.05)TiO3の無機粒子粉体を得た。この粉体を、成形工程において成形体の厚さを5μmとし、焼成工程において600℃、2hの脱脂及び焼成温度を1250℃,3hとした以外は上述した実験例2と同様の工程を行い、得られた板状多結晶粒子を実験例13とした。なお、この実験例の平均粒径を上記と同様に測定したところ、メディアン径(D50)が0.6μmであった。
[Experimental Example 13]
Experimental Example 1 in which each powder (Bi 2 O 3 , Na 2 CO 3 , K 2 CO 3 , Ag 2 O, TiO 2 ) was weighed so that the composition ratio of (Bi 0.5 Na 0.35 K 0.1 Ag 0.05 ) TiO 3 was obtained. After wet mixing, pulverization and drying in the same manner as in Example 1, the mixture was calcined at 900 ° C. for 2 hours, and the obtained calcined powder was pulverized and dried in the same manner as in Experimental Example 1 (Bi 0.5 Na 0.35 K). 0.1 Ag 0.05 ) TiO 3 inorganic particle powder was obtained. This powder was subjected to the same process as in Experimental Example 2 except that the thickness of the molded body was 5 μm in the molding process, and the degreasing and firing temperature was 600 ° C. for 2 hours and the firing temperature was 1250 ° C. for 3 hours in the firing process. The obtained plate-like polycrystalline particles were regarded as Experimental Example 13. In addition, when the average particle diameter of this experimental example was measured in the same manner as described above, the median diameter (D50) was 0.6 μm.

[実験例14]
合成工程において、0.2Pb(Mg0.33Nb0.67)O3−0.35PbTiO3−0.45PbZrO3に1重量%のNiOを添加した組成比となる合成粉末へ、ZnO−B23−SiO2系ガラス粉末(旭硝子(AGG)製ASF1891)を1重量%添加し、ポリポットにこの秤量物とジルコニアボールと分散媒としてイオン交換水とを入れ、ボールミルで16h、湿式混合を行った。得られたスラリーを乾燥機で乾燥したあと、800℃、2hの条件下で仮焼した。この仮焼粉末と、ジルコニアボールと分散媒としてイオン交換水とを入れ、ボールミルで5h湿式粉砕し、乾燥機によって乾燥し、無機粒子粉体を得た。この粉体を、成形工程において、シート厚さを1μmとして成形した。得られたシートを、アルミナの鞘内に配置したジルコニア角板に載置した。この鞘内には、焼成雰囲気を調整する粉体として、0.2Pb(Mg0.33Nb0.67)O3−0.35PbTiO3−0.45PbZrO3の組成からなる無機粒子粉体を少量共存させ、焼成工程において、600℃、2hの脱脂及び1100℃、5hの焼成条件とした以外は実験例1と同様の工程を行い、得られた板状多結晶粒子を実験例14とした。なお、この実験例の平均粒径を上記と同様に測定したところ、メディアン径(D50)が0.6μmであった。
[Experimental Example 14]
In the synthesis step, ZnO—B 2 O 3 —SiO into a synthetic powder having a composition ratio of 0.2 Pb (Mg 0.33 Nb 0.67 ) O 3 −0.35 PbTiO 3 −0.45 PbZrO 3 with 1 wt% NiO added. 2 % glass powder (ASF1891 manufactured by Asahi Glass (AGG)) was added in an amount of 1% by weight, and this weighed product, zirconia balls, and ion-exchanged water as a dispersion medium were placed in a polypot, and wet-mixed for 16 hours with a ball mill. The obtained slurry was dried with a dryer and calcined at 800 ° C. for 2 hours. This calcined powder, zirconia balls, and ion-exchanged water as a dispersion medium were added, wet-ground by a ball mill for 5 hours, and dried by a drier to obtain inorganic particle powder. This powder was molded with a sheet thickness of 1 μm in the molding step. The obtained sheet was placed on a zirconia square plate arranged in an alumina sheath. Within this sheath, as a powder for adjusting the firing atmosphere, 0.2Pb (Mg 0.33 Nb 0.67) O 3 -0.35PbTiO 3 coexist small amount of inorganic particles powder having a composition of -0.45PbZrO 3, firing In the step, except that the degreasing conditions were 600 ° C., 2 h, and the firing conditions were 1100 ° C., 5 h, the same steps as in Experimental Example 1 were performed, and the obtained plate-like polycrystalline particles were taken as Experimental Example 14. In addition, when the average particle diameter of this experimental example was measured in the same manner as described above, the median diameter (D50) was 0.6 μm.

[実験例15]
合成工程において、0.2Pb(Mg0.33Nb0.67)O3−0.35PbTiO3−0.45PbZrO3にとなる組成の無機粒子粉体を用い、NiO及びガラス粉末を添加せず、成形工程において、シート厚さを2μmとして成形した以外は実験例14と同様の工程を行い、得られた板状多結晶粒子を実験例14とした。なお、この実験例の平均粒径を上記と同様に測定したところ、メディアン径(D50)が0.6μmであった。
[Experimental Example 15]
In the synthesis step, inorganic particle powder having a composition of 0.2Pb (Mg 0.33 Nb 0.67 ) O 3 -0.35PbTiO 3 -0.45PbZrO 3 was used, NiO and glass powder were not added, and in the molding step, The same procedure as in Experimental Example 14 was performed except that the sheet thickness was 2 μm, and the obtained plate-like polycrystalline particles were designated as Experimental Example 14. In addition, when the average particle diameter of this experimental example was measured in the same manner as described above, the median diameter (D50) was 0.6 μm.

[実験例16]
実験例14の0.2Pb(Mg0.33Nb0.67)O3−0.35PbTiO3−0.45PbZrO3にのA/Bが1.1となるようにした以外は実験例14と同様の工程を行い、得られた板状多結晶粒子を実験例16とした。
[Experimental Example 16]
The same process as in Experimental Example 14 was performed except that the A / B ratio of Experimental Example 14 to 0.2Pb (Mg 0.33 Nb 0.67 ) O 3 −0.35 PbTiO 3 −0.45 PbZrO 3 was 1.1. The obtained plate-like polycrystalline particles were regarded as Experimental Example 16.

[電子顕微鏡撮影]
上記実験例1〜14について、走査型電子顕微鏡(日本電子製JSM−6390)を用いてSEM写真を撮影した。まず、板状多結晶粒子をさじを用いて導電性テープ上にランダムに配置した状態でSEM観察を行い、その中で、観察方向に対してシート面が平行になっているもの、つまり垂直に立った状態の粉末を選び、結晶粒子12の厚さZを求めた。次に、エタノール2gに板状多結晶粒子を0.1gを加えたものを、超音波分散機(超音波洗浄機)で30分間分散させ、これをガラス基板に2000rpmでスピンコートし、板状多結晶粒子ができるだけ重ならないように、且つ結晶面と基板面とが平行となる状態に配置してSEM観察を行った。その中で、結晶粒子が20〜40個程度含まれる視野において、板状多結晶粒子の結晶面を観察し、結晶粒子12の結晶面11の最長長さXを求め、結晶面11の最長長さXを結晶粒子12の粒径と仮定しこの粒径を結晶粒子12の厚さZで除算して各結晶粒子12のアスペクト比を算出し、これを平均した値を板状多結晶粒子10に含まれる結晶粒子12のアスペクト比とした。また、同様に、SEM写真から板状多結晶粒子10の厚さWを求め、板状多結晶粒子10が5〜30個程度含まれる視野において、板状多結晶粒子10の結晶面を観察し、板状多結晶粒子10の最長長さYを求め、最長長さYを板状多結晶粒子10の粒径と仮定しこの粒径を板状多結晶粒子10の厚さWで除算して各板状多結晶粒子10のアスペクト比を算出し、これを平均した値を板状多結晶粒子10のアスペクト比とした。
[Electron micrograph]
About the said Experimental Examples 1-14, the SEM photograph was image | photographed using the scanning electron microscope (JEOL JSM-6390). First, SEM observation is performed in a state where plate-like polycrystalline particles are randomly arranged on a conductive tape using a spoon, in which the sheet surface is parallel to the observation direction, that is, vertically The standing powder was selected and the thickness Z of the crystal particles 12 was determined. Next, a solution obtained by adding 0.1 g of plate-like polycrystalline particles to 2 g of ethanol was dispersed for 30 minutes with an ultrasonic disperser (ultrasonic cleaner), and this was spin-coated on a glass substrate at 2000 rpm to obtain a plate-like shape. SEM observation was performed by arranging the crystal grains so as not to overlap as much as possible and in a state where the crystal plane and the substrate plane were parallel. Among them, in a visual field including about 20 to 40 crystal grains, the crystal plane of the plate-like polycrystalline particles is observed, the longest length X of the crystal plane 11 of the crystal grains 12 is obtained, and the longest length of the crystal plane 11 is obtained. The thickness X is assumed to be the particle size of the crystal particle 12, and the particle size is divided by the thickness Z of the crystal particle 12 to calculate the aspect ratio of each crystal particle 12, and the average value is calculated as the plate-like polycrystalline particle 10 The aspect ratio of the crystal grains 12 contained in Similarly, the thickness W of the plate-like polycrystalline particles 10 is obtained from the SEM photograph, and the crystal plane of the plate-like polycrystalline particles 10 is observed in a field of view containing about 5 to 30 plate-like polycrystalline particles 10. Then, the longest length Y of the plate-like polycrystalline particles 10 is obtained, the longest length Y is assumed to be the particle size of the plate-like polycrystalline particles 10, and this particle size is divided by the thickness W of the plate-like polycrystalline particles 10. The aspect ratio of each plate-like polycrystalline particle 10 was calculated, and the average value was calculated as the aspect ratio of the plate-like polycrystalline particle 10.

[配向性]
上記実験例1〜14について、XRD回折装置(リガク社製RAD−IB)を用い、板状多結晶粒子10の表面に対してX線を照射したときのXRD回折パターンを測定し、ロットゲーリング法によって擬立方(100)面の配向度を、擬立方(100),(110),(111)のピークを使用して上述の式(1)を用いて計算した。XRD回折測定は、エタノール2gに板状多結晶粒子を0.1gを加えたものを、超音波分散機(超音波洗浄機)で30分間分散させ、これを25mm×50mmのガラス基板に2000rpmでスピンコートし、板状多結晶粒子ができるだけ重ならないように、且つ結晶面とガラス基板面とが平行となる状態に配置して行った。
[Orientation]
About the said Experimental Examples 1-14, the XRD diffraction pattern when irradiating the X-ray with respect to the surface of the plate-like polycrystalline particle 10 was measured using the XRD diffractometer (RAD-IB by Rigaku Corporation), and the Lotgering method The degree of orientation of the pseudocubic (100) plane was calculated using the above formula (1) using the peaks of the pseudocubic (100), (110), and (111). In XRD diffraction measurement, 0.1 g of plate-like polycrystalline particles added to 2 g of ethanol was dispersed for 30 minutes with an ultrasonic disperser (ultrasonic cleaner), and this was dispersed on a 25 mm × 50 mm glass substrate at 2000 rpm. The coating was performed by spin coating so that the plate-like polycrystalline particles were not overlapped as much as possible and the crystal plane and the glass substrate surface were parallel.

このようにして得られた実験例1〜16の評価結果を表1及び図5〜8に示す。表1には、サンプル名、無機材料、焼成温度、板状多結晶粒子10の厚さ、メッシュ開口径、結晶粒子12のアスペクト比、結晶粒子12の大きさの範囲、板状多結晶粒子10のアスペクト比、板状多結晶粒子10の大きさの範囲、板状多結晶粒子10の配向度を示した。図5は、実験例2のX線回折パターンであり、図6〜8は、実験例1〜3のSEM写真である。なお、このSEM写真は、板状多結晶粒子をランダムにガラス基板上へ配置したものを示した。本実施例の結果によると、図5に示すように、(100)面に帰属するピークが大きいことから、本発明の板状多結晶粒子10は、(100)面をシート面に持った複数の結晶粒子から構成されていることがわかる。図6〜8に示すように、板状多結晶粒子10は、特定の結晶面を有する結晶粒子を複数含み、厚さ方向で結晶粒子が1個である部分が広範囲を占め、この複数の結晶粒子12が特定の結晶面を揃えた状態で粒界部で結合されていることが観察された。このため、板状多結晶粒子は、結晶粒子同士が結合した粒界部で比較的簡単に解砕することができることがわかった。即ち、実験例1〜3によれば、メッシュ開口径を変化させることにより板状多結晶粒子のアスペクト比や大きさを容易に変化させられることがわかった。また、表1に示すように、板状多結晶粒子10の厚さやA/B値を変化させることにより、配向度及び結晶粒子12のアスペクト比を変化させることができることが明らかとなった。また、実験例2,8〜12,14,16によれば、A/Bが1.0以上1.2以下の範囲がより好ましいことがわかった。表1に示すように、実験例1,4〜7の結果より、板状多結晶粒子10の厚さが15μm以下では配向度が向上することがわかった。なお、実験例7及び12では、実質的に厚さ方向に1個の結晶粒子とはならなかった。   The evaluation results of Experimental Examples 1 to 16 thus obtained are shown in Table 1 and FIGS. Table 1 shows sample name, inorganic material, firing temperature, thickness of plate-like polycrystalline particle 10, mesh opening diameter, aspect ratio of crystal particle 12, range of size of crystal particle 12, plate-like polycrystalline particle 10 The aspect ratio, the size range of the plate-like polycrystalline particles 10, and the degree of orientation of the plate-like polycrystalline particles 10 were shown. FIG. 5 is an X-ray diffraction pattern of Experimental Example 2, and FIGS. 6 to 8 are SEM photographs of Experimental Examples 1-3. In addition, this SEM photograph showed what arrange | positioned the plate-like polycrystalline particle on the glass substrate at random. According to the result of this example, as shown in FIG. 5, since the peak attributed to the (100) plane is large, the plate-like polycrystalline particle 10 of the present invention has a plurality of (100) planes on the sheet surface. It can be seen that it is composed of crystal grains. As shown in FIGS. 6 to 8, the plate-like polycrystalline particle 10 includes a plurality of crystal particles having a specific crystal face, and a portion having one crystal particle in the thickness direction occupies a wide range, and the plurality of crystals It was observed that the particles 12 were bonded at the grain boundary portion with a specific crystal plane aligned. For this reason, it was found that the plate-like polycrystalline particles can be crushed relatively easily at the grain boundary where the crystal particles are bonded to each other. That is, according to Experimental Examples 1 to 3, it was found that the aspect ratio and size of the plate-like polycrystalline particles can be easily changed by changing the mesh opening diameter. Further, as shown in Table 1, it was found that the degree of orientation and the aspect ratio of the crystal particles 12 can be changed by changing the thickness and A / B value of the plate-like polycrystalline particles 10. In addition, according to Experimental Examples 2, 8 to 12, 14, and 16, it was found that A / B is more preferably in the range of 1.0 to 1.2. As shown in Table 1, from the results of Experimental Examples 1 and 4 to 7, it was found that the degree of orientation was improved when the thickness of the plate-like polycrystalline particles 10 was 15 μm or less. In Experimental Examples 7 and 12, one crystal particle was not substantially formed in the thickness direction.

[結晶配向セラミックスの作製]
分散媒としてのトルエン、イソプロパノールを等量混合したものに、焼成後の結晶配向セラミックスの組成がLi0.03Na0.4750.475Nb0.82Ta0.183となるように実験例1の仮焼後の無機粒子粉体(配向していない原料粉体)と、実験例1の板状多結晶粒子10と、バインダーとしてポリビニルブチラール(BM−2、積水化学製)と、可塑剤(DOP、黒金化成製)と、分散剤(SP−O30、花王製)とを混合し、スラリー状の成形原料を作製した。各原料の使用量は、無機材料100重量部に対して、板状多結晶粒子30重量部、分散媒100重量部、バインダー10重量部、可塑剤4重量部及び分散剤2重量部とした。次に、得られたスラリーを、減圧下で撹拌して脱泡し、粘度2500〜3000cPとなるように調製した。スラリーの粘度は、ブルックフィールド社製LVT型粘度計で測定した。得られたスラリーをドクターブレード法によって、板状多結晶粒子10が一方向に配向し、且つ乾燥後の厚さが100μmとなるように平板状に成形した。この平板を室温で乾燥したのち、600℃、2h脱脂後、1100℃で5h焼成を行い上記無機材料粉体の粒成長を行い、結晶配向セラミックス50を得た。
[Production of crystal-oriented ceramics]
Inorganic particles after calcination of Experimental Example 1 so that the composition of the crystal-oriented ceramic after firing is equal to Li 0.03 Na 0.475 K 0.475 Nb 0.82 Ta 0.18 O 3 in a mixture of equal amounts of toluene and isopropanol as a dispersion medium Powder (unoriented raw material powder), plate-like polycrystalline particles 10 of Experimental Example 1, polyvinyl butyral (BM-2, manufactured by Sekisui Chemical) as a binder, and plasticizer (DOP, manufactured by Kurokin Kasei) And a dispersant (SP-O30, manufactured by Kao Corporation) were mixed to prepare a slurry-like molding raw material. The amount of each raw material used was 30 parts by weight of plate-like polycrystalline particles, 100 parts by weight of a dispersion medium, 10 parts by weight of a binder, 4 parts by weight of a plasticizer, and 2 parts by weight of a dispersant with respect to 100 parts by weight of an inorganic material. Next, the obtained slurry was stirred and defoamed under reduced pressure to prepare a viscosity of 2500 to 3000 cP. The viscosity of the slurry was measured with an LVT viscometer manufactured by Brookfield. The obtained slurry was formed into a flat plate shape by a doctor blade method so that the plate-like polycrystalline particles 10 were oriented in one direction and the thickness after drying was 100 μm. The flat plate was dried at room temperature, degreased at 600 ° C. for 2 hours, and then fired at 1100 ° C. for 5 hours to grow grains of the inorganic material powder.

本発明は、結晶が配向したセラミックスの製造分野に利用可能である。   The present invention can be used in the field of manufacturing ceramics with oriented crystals.

板状多結晶粒子10の一例を表す説明図である。2 is an explanatory diagram illustrating an example of plate-like polycrystalline particles 10. FIG. 焼成器20の説明図であり、図2(a)が側面図、図2(b)が(a)のA−A断面図である。It is explanatory drawing of the baking machine 20, FIG. 2 (a) is a side view, FIG.2 (b) is AA sectional drawing of (a). メッシュ粉砕工程の一例の説明図である。It is explanatory drawing of an example of a mesh grinding | pulverization process. 結晶配向セラミックス50の製造方法の一例を表す説明図である。It is explanatory drawing showing an example of the manufacturing method of the crystal orientation ceramics. 実験例4のX線回折パターンである。7 is an X-ray diffraction pattern of Experimental Example 4. 実験例1のSEM写真である。3 is a SEM photograph of Experimental Example 1. 実験例2のSEM写真である。4 is a SEM photograph of Experimental Example 2. 実験例3のSEM写真である。4 is a SEM photograph of Experimental Example 3.

符号の説明Explanation of symbols

10 板状多結晶粒子、11 結晶面、12 結晶粒子、14 粒界部、20 焼成器、22 セッター、24 共存用未焼成成形体、26 角板、30 成形体、32 焼成成形体、34 メッシュ、36 押圧部材、40 2次成形体、50 結晶配向セラミックス、52 配向結晶。   DESCRIPTION OF SYMBOLS 10 Plate-like polycrystal particle | grains, 11 crystal face, 12 crystal grain | grains, 14 grain boundary part, 20 baking machine, 22 setter, 24 unsintered molded object for coexistence, 26 square plate, 30 molded object, 32 baked molded object, 34 mesh , 36 pressing member, 40 secondary compact, 50 crystal oriented ceramics, 52 oriented crystal.

Claims (25)

結晶粒子を複数含み、
実質的に厚さ方向の該結晶粒子が1個であり該複数の結晶粒子が特定の結晶面を揃えた状態で粒界部で結合されている、
板状多結晶粒子。
Including a plurality of crystal grains,
There is substantially one crystal grain in the thickness direction, and the plurality of crystal grains are bonded at the grain boundary portion in a state where specific crystal faces are aligned.
Plate-like polycrystalline particles.
前記結晶粒子は、等方的且つ多面体形状の結晶粒子に成長する無機粒子により構成され、特定の結晶面を有している、請求項1に記載の板状多結晶粒子。   The plate-like polycrystalline particle according to claim 1, wherein the crystalline particle is composed of inorganic particles that grow into isotropic and polyhedral crystalline particles and has a specific crystal face. 前記板状多結晶粒子のアスペクト比が2以上である、請求項1又は2に記載の板状多結晶粒子。   The plate-like polycrystalline particle according to claim 1 or 2, wherein the plate-like polycrystalline particle has an aspect ratio of 2 or more. 前記板状多結晶粒子の配向度がロットゲーリング法で25%以上である、請求項1〜3のいずれか1項に記載の板状多結晶粒子。   The plate-like polycrystalline particle according to any one of claims 1 to 3, wherein the degree of orientation of the plate-like polycrystalline particle is 25% or more by the Lotgering method. 前記結晶粒子は、板状多結晶粒子の面方向の該結晶粒子の長さが該結晶粒子の厚さ方向の長さ以上である、請求項1〜4のいずれか1項に記載の板状多結晶粒子。   The plate shape according to any one of claims 1 to 4, wherein the crystal particle has a length of the crystal particle in a plane direction of the plate-like polycrystalline particle that is equal to or longer than a length in a thickness direction of the crystal particle. Polycrystalline particles. 前記結晶粒子の厚さが0.1μm以上15μm以下である、請求項1〜5のいずれか1項に記載の板状多結晶粒子。   The plate-like polycrystalline particle according to any one of claims 1 to 5, wherein a thickness of the crystal particle is 0.1 µm or more and 15 µm or less. 前記結晶粒子は、異方的な結晶粒子に成長する無機粒子により構成されている、請求項1〜6のいずれか1項に記載の板状多結晶粒子。   The plate-like polycrystalline particle according to any one of claims 1 to 6, wherein the crystal particle is composed of inorganic particles that grow into anisotropic crystal particles. 前記結晶粒子は、一般式ABO3で表される酸化物を主成分とし、AサイトがLi,Na,K,Bi及びAgから選ばれる1種以上を含み、BサイトがNb,Ta及びTiから選ばれる1種以上を含む粒子である、請求項1〜7のいずれか1項に記載の板状多結晶粒子。 The crystal grains are mainly composed of an oxide represented by the general formula ABO 3 , the A site includes one or more selected from Li, Na, K, Bi and Ag, and the B site is composed of Nb, Ta and Ti. The plate-like polycrystalline particle according to any one of claims 1 to 7, which is a particle containing one or more kinds selected. 前記結晶粒子は、一般式ABO3で表される酸化物を主成分とし、AサイトがPbを含み、BサイトがMg,Zn,Nb,Ni,Ti及びZrから選ばれる1種以上を含む粒子である、請求項1〜7のいずれか1項に記載の板状多結晶粒子。 The crystal grains are mainly composed of an oxide represented by the general formula ABO 3 , the A site contains Pb, and the B site contains one or more selected from Mg, Zn, Nb, Ni, Ti and Zr. The plate-like polycrystalline particles according to any one of claims 1 to 7, wherein 前記結晶粒子は、前記AサイトとBサイトの比である焼成前のA/Bが1.0以上1.3以下である、請求項8又は9に記載の板状多結晶粒子。   The plate-like polycrystalline particles according to claim 8 or 9, wherein the crystal particles have an A / B ratio before firing, which is a ratio of the A site to the B site, of 1.0 or more and 1.3 or less. 前記結晶粒子は、ペロブスカイト構造を有する酸化物により構成されている、請求項1〜10のいずれか1項に記載の板状多結晶粒子。   The plate-like polycrystalline particle according to any one of claims 1 to 10, wherein the crystal particle is composed of an oxide having a perovskite structure. 結晶粒子を複数含む板状多結晶粒子の製造方法であって、
無機粒子を厚さが15μm以下の自立したシート状の成形体に成形する成形工程と、
前記成形体を該成形体と実質的に反応しない不活性な層の上に配置し焼成する焼成工程と、
所定サイズの開口部を通過させることにより前記焼成後の成形体を解砕及び分級する粉砕工程と、
を含む板状多結晶粒子の製造方法。
A method for producing plate-like polycrystalline particles containing a plurality of crystal particles,
A molding step of molding the inorganic particles into a self-supporting sheet-like molded body having a thickness of 15 μm or less;
A firing step of firing placed on an inert layer that does not react with the green body in the molded product substantially,
A pulverizing step of pulverizing and classifying the fired compact by passing through an opening of a predetermined size;
A method for producing plate-like polycrystalline particles comprising
前記成形工程では、所定焼成条件において等方的且つ多面体形状の結晶粒子に成長する無機粒子を用いる、請求項12に記載の板状多結晶粒子の製造方法。   13. The method for producing plate-like polycrystalline particles according to claim 12, wherein the forming step uses inorganic particles that grow into isotropic and polyhedral crystal grains under predetermined firing conditions. 前記成形工程では、所定焼成条件において異方的な結晶粒子に成長する無機粒子を用いる、請求項12に記載の板状多結晶粒子の製造方法。   13. The method for producing plate-like polycrystalline particles according to claim 12, wherein the forming step uses inorganic particles that grow into anisotropic crystal particles under predetermined firing conditions. 前記成形工程では、一般式ABO3で表される酸化物を主成分とし、AサイトがLi,Na,K,Bi及びAgから選ばれる1種以上を含み、BサイトがNb,Ta及びTiから選ばれる1種以上を含む酸化物となる無機粒子を用いる、請求項12〜14のいずれか1項に記載の板状多結晶粒子の製造方法。 In the molding step, the oxide represented by the general formula ABO 3 is a main component, the A site includes one or more selected from Li, Na, K, Bi and Ag, and the B site is composed of Nb, Ta and Ti. The manufacturing method of the plate-shaped polycrystalline particle of any one of Claims 12-14 using the inorganic particle used as the oxide containing 1 or more types chosen. 前記成形工程では、一般式ABO3で表される酸化物のAサイトがLi,Na及びKから選ばれる1種以上を含み、BサイトがNb及びTaから選ばれる1種以上を含む酸化物となる無機粒子を用い、
前記焼成工程では、前記成形体の焼成温度を900℃以上1250℃以下とする、
請求項15に記載の板状多結晶粒子の製造方法。
In the molding step, the oxide A site represented by the general formula ABO 3 contains one or more selected from Li, Na and K, and the B site contains one or more selected from Nb and Ta; Using inorganic particles
In the firing step, the firing temperature of the molded body is 900 ° C. or more and 1250 ° C. or less.
The method for producing plate-like polycrystalline particles according to claim 15.
前記成形工程では、一般式ABO3で表される酸化物を主成分とし、AサイトがPbを含み、BサイトがMg,Zn,Nb,Ni,Ti及びZrから選ばれる1種以上を含む酸化物となる無機粒子を用いる、請求項12〜14のいずれか1項に記載の板状多結晶粒子の製造方法。 In the molding step, an oxide containing the oxide represented by the general formula ABO 3 as a main component, the A site containing Pb, and the B site containing one or more selected from Mg, Zn, Nb, Ni, Ti and Zr. The manufacturing method of the plate-like polycrystalline particle of any one of Claims 12-14 using the inorganic particle used as a thing. 前記成形工程では、前記AサイトとBサイトの比であるA/Bが1.0以上1.3以下である酸化物の無機粒子を用いる、請求項15〜17のいずれか1項に記載の板状多結晶粒子の製造方法。   The said shaping | molding process uses the inorganic particle of the oxide whose A / B which is ratio of the said A site and B site is 1.0 or more and 1.3 or less, It is any one of Claims 15-17 A method for producing plate-like polycrystalline particles. 前記成形工程では、ペロブスカイト構造となる無機粒子を用いる、請求項12〜18のいずれか1項に記載の板状多結晶粒子の製造方法。   The method for producing plate-like polycrystalline particles according to any one of claims 12 to 18, wherein inorganic particles having a perovskite structure are used in the molding step. 前記成形工程では、メディアン径が前記成形体の厚さの1%以上60%以下である前記無機粒子を用いて前記成形体を成形する、請求項12〜19のいずれか1項に記載の板状多結晶粒子の製造方法。   The plate according to any one of claims 12 to 19, wherein, in the molding step, the molded body is molded using the inorganic particles having a median diameter of 1% to 60% of the thickness of the molded body. For producing granular polycrystalline particles. 前記焼成工程では、前記成形体に含まれる特定成分の揮発を抑制する揮発抑制状態で前記成形体を焼成する、請求項12〜20のいずれか1項に記載の板状多結晶粒子の製造方法。   The method for producing plate-like polycrystalline particles according to any one of claims 12 to 20, wherein, in the firing step, the shaped body is fired in a volatilization-suppressed state that suppresses volatilization of a specific component contained in the shaped body. . 前記焼成工程では、前記揮発抑制状態として前記成形体とは別の前記無機粒子を共存させた状態で該成形体を焼成する、請求項21に記載の板状多結晶粒子の製造方法。   The method for producing plate-like polycrystalline particles according to claim 21, wherein in the firing step, the compact is fired in a state where the inorganic particles different from the compact are coexisting as the volatilization-suppressed state. 前記粉砕工程では、前記所定サイズとして1.0mm以下の開口部を通過させることにより前記焼成後の成形体の解砕及び分級を行う、請求項12〜22のいずれか1項に記載の板状多結晶粒子の製造方法。   The plate shape according to any one of claims 12 to 22, wherein in the pulverization step, the fired formed body is crushed and classified by passing an opening having a predetermined size of 1.0 mm or less. A method for producing polycrystalline particles. 前記粉砕工程では、押圧部材で前記焼成後の成形体を押圧することにより前記所定サイズの開口を有するメッシュを通過させ該焼成後の成形体を解砕及び分級する、請求項12〜23のいずれか1項に記載の板状多結晶粒子の製造方法。   24. The pulverizing step, wherein the fired molded body is pressed by a pressing member to pass through the mesh having the opening of the predetermined size, and the fired molded body is crushed and classified. A method for producing plate-like polycrystalline particles according to claim 1. 請求項1〜11のいずれか1項に記載の板状多結晶粒子と、原料粉体とを混合する混合工程と、
前記混合した粉体のうち前記板状多結晶粒子を所定方向に配向させ所定の2次成形体に成形する第2成形工程と、
前記板状多結晶粒子が配向している方向に前記原料粉体を配向させるよう前記2次成形体を焼成する第2焼成工程と、
を含む結晶配向セラミックスの製造方法。
A mixing step of mixing the plate-like polycrystalline particles according to any one of claims 1 to 11 and a raw material powder;
A second forming step of orienting the plate-like polycrystalline particles in a predetermined direction in the mixed powder to form a predetermined secondary compact;
A second firing step of firing the secondary molded body so as to orient the raw material powder in a direction in which the plate-like polycrystalline particles are oriented;
The manufacturing method of the crystal orientation ceramics containing this.
JP2007283185A 2007-02-26 2007-10-31 Plate-like polycrystalline particles, method for producing plate-like polycrystalline particles, method for producing crystal-oriented ceramics Expired - Fee Related JP5307379B2 (en)

Priority Applications (9)

Application Number Priority Date Filing Date Title
JP2007283185A JP5307379B2 (en) 2007-02-26 2007-10-31 Plate-like polycrystalline particles, method for producing plate-like polycrystalline particles, method for producing crystal-oriented ceramics
EP09012266A EP2138472B1 (en) 2007-02-26 2008-01-18 Method for producing plate-like polycrystalline particles, and method for producing crystallographically-oriented ceramic
EP08250248A EP1975137B1 (en) 2007-02-26 2008-01-18 Ceramic sheet and method for producing crystallographically-oriented ceramic
EP08250249A EP1972604B1 (en) 2007-02-26 2008-01-18 Plate-like polycrystalline particle, method for producing plate-like polycrystalline particles, and method for producing crystallographically-oriented ceramic
EP11162966A EP2351720A3 (en) 2007-02-26 2008-01-18 Ceramic sheet, method for producing the same, and method for producing crystallographically-oriented ceramic
US12/017,567 US8158255B2 (en) 2007-02-26 2008-01-22 Plate-like polycrystalline particle, method for producing plate-like polycrystalline particles, and method for producing crystallographically-oriented ceramic
EP08711646A EP2128111B1 (en) 2007-02-26 2008-02-20 Crystal aligned ceramic
PCT/JP2008/052840 WO2008105290A1 (en) 2007-02-26 2008-02-20 Crystal aligned ceramic
EP08250650A EP1972606A1 (en) 2007-02-26 2008-02-26 Crystallographically-oriented ceramic

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2007045340 2007-02-26
JP2007045340 2007-02-26
JP2007185036 2007-07-13
JP2007185036 2007-07-13
JP2007283185A JP5307379B2 (en) 2007-02-26 2007-10-31 Plate-like polycrystalline particles, method for producing plate-like polycrystalline particles, method for producing crystal-oriented ceramics

Publications (2)

Publication Number Publication Date
JP2009040672A JP2009040672A (en) 2009-02-26
JP5307379B2 true JP5307379B2 (en) 2013-10-02

Family

ID=40441822

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007283185A Expired - Fee Related JP5307379B2 (en) 2007-02-26 2007-10-31 Plate-like polycrystalline particles, method for producing plate-like polycrystalline particles, method for producing crystal-oriented ceramics

Country Status (1)

Country Link
JP (1) JP5307379B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010018510A (en) * 2007-12-27 2010-01-28 Ngk Insulators Ltd Crystal-oriented ceramic
JP5615591B2 (en) 2009-07-16 2014-10-29 日本碍子株式会社 Method for producing crystal particles and method for producing crystal-oriented ceramics
JP5588771B2 (en) * 2010-07-16 2014-09-10 Fdk株式会社 Piezoelectric material and method for manufacturing piezoelectric material
JP5700201B2 (en) * 2010-11-04 2015-04-15 セイコーエプソン株式会社 Liquid ejecting head, liquid ejecting apparatus, piezoelectric element, and piezoelectric ceramic
JP6016333B2 (en) 2011-05-27 2016-10-26 キヤノン株式会社 Sodium niobate powder, method for producing sodium niobate powder, plate-like particles, method for producing plate-like particles, method for producing oriented ceramics
JP6260982B2 (en) * 2013-03-11 2018-01-17 国立研究開発法人産業技術総合研究所 Particle-oriented ceramics
JP2015205805A (en) * 2014-04-11 2015-11-19 日本特殊陶業株式会社 Leadless piezoelectric ceramic composition, piezoelectric element using the same and manufacturing method of leadless piezoelectric ceramic composition
WO2021065672A1 (en) * 2019-09-30 2021-04-08 京セラ株式会社 Lid for electronic device, package, electronic device, and electronic module
KR102259528B1 (en) * 2020-11-13 2021-06-02 한국재료연구원 Method for manufacturing crystal-oriented piezoelectric ceramics, method for improving piezoelectric properties of crystal-oriented piezoelectric ceramics, and piezoelectric ceramics with improved piezoelectric characteristics

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4710227A (en) * 1986-04-28 1987-12-01 The Dow Chemical Company Dispersion process for ceramic green body
JP3975518B2 (en) * 1997-08-21 2007-09-12 株式会社豊田中央研究所 Piezoelectric ceramics
JP4135389B2 (en) * 2001-04-23 2008-08-20 株式会社豊田中央研究所 Method for producing crystal-oriented ceramics, anisotropic shaped powder and method for producing the same
US7477004B2 (en) * 2004-09-29 2009-01-13 Ngk Insulators, Ltd. Piezoelectric/electrostrictive porcelain composition, piezoelectric/electrostrictive article, and piezoelectric/electrostrictive film type element
JP4782413B2 (en) * 2004-12-24 2011-09-28 日本碍子株式会社 Piezoelectric / electrostrictive body, piezoelectric / electrostrictive laminate, and piezoelectric / electrostrictive film type actuator
JP4782412B2 (en) * 2004-12-24 2011-09-28 日本碍子株式会社 Piezoelectric / electrostrictive body, piezoelectric / electrostrictive laminate, and piezoelectric / electrostrictive film type actuator
JP2010018510A (en) * 2007-12-27 2010-01-28 Ngk Insulators Ltd Crystal-oriented ceramic
JP5208696B2 (en) * 2008-03-21 2013-06-12 日本碍子株式会社 Plate-like polycrystalline particles

Also Published As

Publication number Publication date
JP2009040672A (en) 2009-02-26

Similar Documents

Publication Publication Date Title
US8158255B2 (en) Plate-like polycrystalline particle, method for producing plate-like polycrystalline particles, and method for producing crystallographically-oriented ceramic
EP2138472B1 (en) Method for producing plate-like polycrystalline particles, and method for producing crystallographically-oriented ceramic
JP5307379B2 (en) Plate-like polycrystalline particles, method for producing plate-like polycrystalline particles, method for producing crystal-oriented ceramics
US20080248277A1 (en) Ceramic sheet, method for producing the same, and method for producing crystallographically-oriented ceramic
JP5208696B2 (en) Plate-like polycrystalline particles
US8212455B2 (en) Piezoelectric/electrostrictive film element and method manufacturing the same
JP5281269B2 (en) Ceramic sheet and method for producing crystallographically oriented ceramics
US7799158B2 (en) Method for producing crystallographically-oriented ceramic
EP1972606A1 (en) Crystallographically-oriented ceramic
JP5491085B2 (en) Manufacturing method of ceramic sheet
CN107180911B (en) Piezoelectric element and method for manufacturing the same
US8211328B2 (en) Crystallographically-oriented ceramic
JP5615591B2 (en) Method for producing crystal particles and method for producing crystal-oriented ceramics
JP5475272B2 (en) Piezoelectric / electrostrictive membrane element
JP2010103301A (en) Method of manufacturing piezoelectric element, and piezoelectric element
JP2002193663A (en) Sintered body of crystal-oriented perovskite compound, its manufacturing method, compact of ceramic powder used for the compound and plate-like crystal-oriented perovskite compound
JP5937774B1 (en) Piezoelectric ceramic and manufacturing method thereof, and electronic component
JP2010018510A (en) Crystal-oriented ceramic
JP5770344B2 (en) Method for manufacturing piezoelectric / electrostrictive membrane element
JP5011066B2 (en) Method for producing crystal-oriented ceramics
JP2010222185A (en) Anisotropic-shape powder and method for manufacturing of crystal-oriented ceramic
JP2009196844A (en) Manufacturing method of crystal particle
Kim et al. (NaxK0. 98-xLi0. 02)(Nb0. 8Ta0. 2) O3 Lead-Free Piezoelectric Ceramics
Huang et al. Lead zirconate titanate thin films by aerosol plasma deposition: Microstructure analysis

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100818

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130212

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130402

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130507

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130530

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130625

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130627

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5307379

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees