JPS6131631B2 - - Google Patents

Info

Publication number
JPS6131631B2
JPS6131631B2 JP10379677A JP10379677A JPS6131631B2 JP S6131631 B2 JPS6131631 B2 JP S6131631B2 JP 10379677 A JP10379677 A JP 10379677A JP 10379677 A JP10379677 A JP 10379677A JP S6131631 B2 JPS6131631 B2 JP S6131631B2
Authority
JP
Japan
Prior art keywords
region
integrated circuit
semiconductor integrated
resistance
conductivity type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP10379677A
Other languages
Japanese (ja)
Other versions
JPS5437592A (en
Inventor
Takashi Narukawa
Shinichi Kikuchi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP10379677A priority Critical patent/JPS5437592A/en
Publication of JPS5437592A publication Critical patent/JPS5437592A/en
Publication of JPS6131631B2 publication Critical patent/JPS6131631B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/0203Particular design considerations for integrated circuits
    • H01L27/0248Particular design considerations for integrated circuits for electrical or thermal protection, e.g. electrostatic discharge [ESD] protection

Description

【発明の詳細な説明】 本発明は外部から加わる高電圧雑音に対しても
破壊されることのない半導体集積回路の構造に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a structure of a semiconductor integrated circuit that is not destroyed even by high voltage noise applied from the outside.

自動車用制御システム等に使用される半導体集
積回路素子は、各シリンダーでの火花放電により
発生する電気雑音、各種電装品を制御するリレー
群から発生する電気雑音等のパルス状異常入力に
対しても破壊されることのない高度な信頼性が要
求されて来ている。
Semiconductor integrated circuit devices used in automotive control systems, etc. are resistant to pulse-like abnormal inputs such as electrical noise generated by spark discharge in each cylinder and electrical noise generated from relays that control various electrical components. There is a growing demand for high reliability that cannot be destroyed.

従来の半導体集積回路に於いては、接地ライン
に対して各電極端子に印加されるパルス状異常入
力に対する破壊防止対策の一つとして、入力端子
とトランジスタのベースとの間に挿入される電流
制限抵抗等の回路中に必然的に挿入される抵抗素
子自体で回路中を流れる過度電流を制限してい
た。
In conventional semiconductor integrated circuits, current limiting is inserted between the input terminal and the base of the transistor as one of the measures to prevent damage due to abnormal pulse-like input applied to each electrode terminal with respect to the ground line. Resistance elements such as resistors, which are inevitably inserted into the circuit, limit the transient current flowing through the circuit.

しかしながら、この方法では破壊強度上不十分
な場合が多い。
However, this method is often insufficient in terms of breaking strength.

本発明は、これらパルス状異常入力電圧が各種
抵抗素子をその集積回路内部で金属配線を介して
直接接続している端子電極へ、接地ラインに対し
て印加された場合に於ける破壊を防止し、もつて
半導体集積回路素子の信頼性向上を目的としてい
る。
The present invention prevents damage when these pulse-like abnormal input voltages are applied to the ground line to terminal electrodes that directly connect various resistance elements through metal wiring inside the integrated circuit. The aim is to improve the reliability of semiconductor integrated circuit devices.

本発明によれば、一導電型の半導体基板を有
し、この半導体基板には他の導電型領域を含む回
路素子が他の導電型の絶縁分離領域で規定される
領域に組み込されており、入力信号は半導体基板
上の絶縁膜上に形成された入力電極端子を介して
回路素子に印加される半導体集積回路装置に於い
て、入力信号が印加される回路素子と絶縁分離領
域との間に溝部を備えた半導体集積回路装置を得
る。
According to the present invention, a semiconductor substrate of one conductivity type is provided, and a circuit element including a region of another conductivity type is incorporated in the semiconductor substrate in a region defined by an insulating isolation region of the other conductivity type. In a semiconductor integrated circuit device, an input signal is applied to a circuit element via an input electrode terminal formed on an insulating film on a semiconductor substrate. A semiconductor integrated circuit device having a groove portion is obtained.

次に図面を用いて本発明をより詳細に説明す
る。
Next, the present invention will be explained in more detail using the drawings.

〓〓〓〓
第1図は従来の半導体集積回路によれば半導体
エピタキシヤル層6の絶縁分離領域7で囲まれる
領域に抵抗素子2が拡散形成されている。入力信
号はボンデイングパツド1から、金属配線4を通
して直接、抵抗素子2の電極部2′に接続され、
その後能動或いは受動素子により電気的処理が施
される。このような半導体集積回路に於いて、パ
ルス状の異常入力が所定の入力信号とともにボン
デイングパツド1に接地端子に対して印加された
時には抵抗素子2の入力側電極部分2′から絶縁
分離領域7へかけての電流パスによる破壊が生
じ、この領域の破壊強度で半導体集積回路の信頼
度が決定される程である。この時抵抗自身は電流
制限の役割を殆んど行わず、抵抗自体の破壊防止
効果は、際立つたものではなかつた。
〓〓〓〓
In FIG. 1, according to a conventional semiconductor integrated circuit, a resistor element 2 is formed by diffusion in a region surrounded by an insulating isolation region 7 of a semiconductor epitaxial layer 6. As shown in FIG. The input signal is directly connected from the bonding pad 1 to the electrode portion 2' of the resistive element 2 through the metal wiring 4.
Electrical processing is then performed by active or passive elements. In such a semiconductor integrated circuit, when a pulse-like abnormal input is applied to the ground terminal of the bonding pad 1 along with a predetermined input signal, the input side electrode portion 2' of the resistive element 2 is connected to the insulation isolation region 7. Destruction occurs due to the current path to the semiconductor integrated circuit, and the reliability of the semiconductor integrated circuit is determined by the strength of destruction in this region. At this time, the resistor itself hardly played a role in limiting the current, and its destruction prevention effect was not outstanding.

この異常パルス波による入力側抵抗電極2′と
絶縁分離領域7間の破壊は、エピタキシヤル層6
とその上に形成される二酸化シリコン等の絶縁物
層との界面でのイオン吸着、界面近傍の高濃度結
晶転移、絶縁層を形成する不純物の界面近傍に於
ける高濃度分布等により、エピタキシヤル層と絶
縁物層との界面或いはその界面近傍のエピタキシ
ヤル層で生ずる電流パスにより、過大電流が過渡
的にその領域に集中して流れる結果、同領域の温
度を融点以上に上昇させ非可逆的破壊が起つてい
る。この非可逆的破壊で回路はその動作機能を失
うことになる。電流パスによる温度上昇はジユー
ル熱によるものであるから、この領域で消費され
る電力は印加された入力電圧の2乗に比例し、そ
の領域の抵抗値に逆比例する。その領域の抵抗値
は、比抵抗ρと長さlに比例し、その断面積に逆
比例する。ここでは、比抵抗ρはエピタキシヤル
層の比抵抗で、距離1は第1図のXに相当する。
この事から距離Xを増大させれば良いがこのため
には基板面積が大きくなり、集積度を低下するこ
ととなる。
Destruction between the input side resistance electrode 2' and the insulation isolation region 7 due to this abnormal pulse wave causes the epitaxial layer 6
Epitaxial Due to the current path that occurs in the interface between the layer and the insulating layer or in the epitaxial layer near the interface, an excessive current flows transiently and concentrates in that area, causing the temperature of the area to rise above the melting point and irreversibly. Destruction is happening. This irreversible destruction causes the circuit to lose its operational function. Since the temperature increase due to the current path is due to Joule heat, the power consumed in this region is proportional to the square of the applied input voltage and inversely proportional to the resistance value in that region. The resistance value of that region is proportional to the specific resistance ρ and the length l, and inversely proportional to its cross-sectional area. Here, the resistivity ρ is the resistivity of the epitaxial layer, and the distance 1 corresponds to X in FIG.
From this, it would be better to increase the distance X, but this would increase the substrate area and reduce the degree of integration.

次に本発明の実施例である第2図a,bによる
と、例えばP型シリコンである半導体基板10上
に反対導電型(N型)のシリコンエピタキシヤル
層16を有し、このエピタキシヤル層16は例え
ばP型の絶縁分離領域17で区画されている。エ
ピタキシヤル層16に区画内には抵抗2等の各種
回路素子が形成され、それらの表面には二酸化シ
リコン等の絶縁膜15が被着されている。絶縁膜
15の所定部には電極取出し用開孔を有するとと
もに、その上には電極パツド11を含む金属配線
14が被着形成されている。本実施例によればさ
らに、第1図の距離Xを実効的に増大せしめるた
めに抵抗素子の電極部12′と絶縁分離領域17
との間のエピタキシヤル層16の界面近傍を一部
取り除いてここに溝13を形成している。この溝
13の断面形状はU字形が形成しやすいがこの他
に半円筒形、矩形、V字形等の形状でも良いのは
当然である。
Next, according to FIGS. 2a and 2b, which are embodiments of the present invention, a silicon epitaxial layer 16 of the opposite conductivity type (N type) is provided on a semiconductor substrate 10 made of, for example, P type silicon. 16 is partitioned by, for example, a P-type insulating isolation region 17. Various circuit elements such as a resistor 2 are formed within the divisions of the epitaxial layer 16, and an insulating film 15 made of silicon dioxide or the like is deposited on their surfaces. A predetermined portion of the insulating film 15 has an opening for taking out an electrode, and a metal wiring 14 including an electrode pad 11 is formed thereon. According to this embodiment, in order to effectively increase the distance X shown in FIG.
A groove 13 is formed by removing a portion of the epitaxial layer 16 near the interface between the two. The cross-sectional shape of the groove 13 is easily formed in a U-shape, but it goes without saying that other shapes such as a semi-cylindrical shape, a rectangle, a V-shape, etc. may also be used.

この溝を形成することにより、抵抗素子12の
電極部12′と絶縁分離領域17との間の距離を
実効的に長くできるとともに、この領域に存在す
る結晶転移等をも断ち切ることが出来、回路破壊
に至る電流パスの形成を防げ、より一層の破壊防
止が可能となる。
By forming this groove, the distance between the electrode portion 12' of the resistive element 12 and the insulation isolation region 17 can be effectively lengthened, and crystal dislocations existing in this region can also be cut off, thereby making it possible to cut off any crystal dislocations existing in this region. It is possible to prevent the formation of current paths that could lead to destruction, making it possible to further prevent destruction.

尚、かかる構造は回路素子がMOS型のもので
あつても、バイポーラ型のものであつても同様に
半導体集積回路全般に適用可能なことは当然であ
る。
It goes without saying that this structure can be applied to all semiconductor integrated circuits, whether the circuit elements are MOS type or bipolar type.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の半導体集積回路素子の平面図、
第2図a及びbは、本発明の一実施例である半導
体集積回路素子平面図及びaのX−Xにおける断
面図である。 1,11……ボンデイングパツド、2,12…
…抵抗素子、2′12′……抵抗素子の電極部分、
13……溝、4,14……配線用金属、5,15
……絶縁膜、6,16……エピタキシヤル層、
7,17……絶縁分離領域。 〓〓〓〓
Figure 1 is a plan view of a conventional semiconductor integrated circuit element.
FIGS. 2a and 2b are a plan view of a semiconductor integrated circuit element according to an embodiment of the present invention, and a sectional view taken along line XX in a. 1, 11... bonding pad, 2, 12...
...resistance element, 2'12'...electrode part of resistance element,
13... Groove, 4, 14... Wiring metal, 5, 15
...Insulating film, 6,16...Epitaxial layer,
7, 17...Insulating isolation region. 〓〓〓〓

Claims (1)

【特許請求の範囲】[Claims] 1 一導電型の半導体層と、この半導体層を複数
の島領域に分離するための絶縁分離領域と、一つ
の島領域に形成された逆導電型の抵抗領域とを含
み、前記抵抗領域の一端部は前記半導体層上に絶
縁膜を介して形成された電極パツドに配線導体層
により接続されている半導体集積回路装置におい
て、前記抵抗領域の前記一端部と前記絶縁分離領
域との間の前記一つの島領域内に前記抵抗領域の
前記一端部に沿つて前記配線導体層と重なること
がないように溝が形成されていることを特徴とす
る半導体集積回路装置。
1 includes a semiconductor layer of one conductivity type, an insulating isolation region for separating the semiconductor layer into a plurality of island regions, and a resistance region of the opposite conductivity type formed in one island region, and one end of the resistance region. In a semiconductor integrated circuit device that is connected to an electrode pad formed on the semiconductor layer via an insulating film through a wiring conductor layer, the portion is located between the one end portion of the resistive region and the insulating isolation region. 1. A semiconductor integrated circuit device, characterized in that a groove is formed in one island region along the one end portion of the resistance region so as not to overlap with the wiring conductor layer.
JP10379677A 1977-08-29 1977-08-29 Semiconductor integrated-circuit device Granted JPS5437592A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10379677A JPS5437592A (en) 1977-08-29 1977-08-29 Semiconductor integrated-circuit device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10379677A JPS5437592A (en) 1977-08-29 1977-08-29 Semiconductor integrated-circuit device

Publications (2)

Publication Number Publication Date
JPS5437592A JPS5437592A (en) 1979-03-20
JPS6131631B2 true JPS6131631B2 (en) 1986-07-21

Family

ID=14363350

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10379677A Granted JPS5437592A (en) 1977-08-29 1977-08-29 Semiconductor integrated-circuit device

Country Status (1)

Country Link
JP (1) JPS5437592A (en)

Also Published As

Publication number Publication date
JPS5437592A (en) 1979-03-20

Similar Documents

Publication Publication Date Title
JP3217336B2 (en) Semiconductor device
KR100307060B1 (en) Circuitry and method of forming the same
JPH08274267A (en) Semiconductor device
JP2722453B2 (en) Semiconductor device
JP3621949B2 (en) Transistor device incorporating a voltage protection arrangement
JPS6131631B2 (en)
JP3390040B2 (en) Integrated circuit
US5113230A (en) Semiconductor device having a conductive layer for preventing insulation layer destruction
JP2854900B2 (en) Semiconductor device
JPS61237472A (en) Semiconductor input protective device
KR100190352B1 (en) Monolithic vertical-type semiconductor power device with a protection against parasitic currents
JPH025478A (en) Semiconductor device
JP2776569B2 (en) Semiconductor device
JPS62165362A (en) Semiconductor integrated circuit device
JPH069208B2 (en) Semiconductor device
JPS62172739A (en) Semiconductor integrated circuit
JPH0329361A (en) Semiconductor device
JPS63239972A (en) Input protective circuit of semiconductor device
JP3594725B2 (en) Semiconductor device protection circuit
JPS59154056A (en) Semiconductor device
JPS587870A (en) Semiconductor integrated circuit device
JP5371164B2 (en) Bidirectional two-terminal thyristor
JPS61128556A (en) Diode for protecting breakdown by surge
JPS6174360A (en) Semiconductor integrated circuit device
JPH01235266A (en) Semiconductor integrated circuit device