JPS6130752B2 - - Google Patents

Info

Publication number
JPS6130752B2
JPS6130752B2 JP53106368A JP10636878A JPS6130752B2 JP S6130752 B2 JPS6130752 B2 JP S6130752B2 JP 53106368 A JP53106368 A JP 53106368A JP 10636878 A JP10636878 A JP 10636878A JP S6130752 B2 JPS6130752 B2 JP S6130752B2
Authority
JP
Japan
Prior art keywords
type region
iil
type
transistor
conductivity type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53106368A
Other languages
Japanese (ja)
Other versions
JPS5533072A (en
Inventor
Hiroshi Saikai
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP10636878A priority Critical patent/JPS5533072A/en
Publication of JPS5533072A publication Critical patent/JPS5533072A/en
Publication of JPS6130752B2 publication Critical patent/JPS6130752B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/0203Particular design considerations for integrated circuits
    • H01L27/0214Particular design considerations for integrated circuits for internal polarisation, e.g. I2L
    • H01L27/0229Particular design considerations for integrated circuits for internal polarisation, e.g. I2L of bipolar structures
    • H01L27/0233Integrated injection logic structures [I2L]
    • H01L27/0244I2L structures integrated in combination with analog structures

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Bipolar Transistors (AREA)
  • Bipolar Integrated Circuits (AREA)
  • Logic Circuits (AREA)

Description

【発明の詳細な説明】 この発明は半導体装置に関し、特にIIL
(Integrated Injection Logic)と称せられる注入
形論理素子を構成する半導体装置の改良に関する
ものである。
[Detailed Description of the Invention] The present invention relates to a semiconductor device, and particularly to an IIL.
The present invention relates to an improvement of a semiconductor device that constitutes an injection type logic element called (Integrated Injection Logic).

最近、IILによるバイポーラLSIの製品が次々
に発表されている。IILは高密度、低消費電力な
どの優れた特徴を有しており、今後更に発展が期
待される注入形論理素子である。
Recently, bipolar LSI products by IIL have been announced one after another. IIL has excellent features such as high density and low power consumption, and is an injection type logic element that is expected to be further developed in the future.

第1図ね通常のIILの基本インバータ構造を示
す断面図である。
FIG. 1 is a sectional view showing the basic inverter structure of a normal IIL.

図において、1はn+形基板、2はこのn+形基
板1の一主面上にエピタキシヤル成長されたn形
半導体層、3はこのn形半導体層2内に選択的に
形成された第1のP形領域、4はこの第1のP形
領域3から所定間隔を置いて上記n形半導体層2
内に選択的に形成された第2のP形領域、5およ
び6は互いに離間して上記第2のP形領域4内に
選択的に形成された第1のn+形領域および第2
のn+形領域、7は電源端子、8は入力端子、9
は第1の出力端子、10は第2の出力端子であ
り、n形半導体層2をエミツタ、第2のP形領域
4をベース、第1および第2のn+形領域5,6
をコレクタとしてエミツタ接地で動作する逆方向
の縦形npnトランジスタ11と、第1のP形領域
3をエミツタ、n形半導体層2をベース、第2の
P形領域4をコレクタとしてベース接地で動作
し、npnトランジスタ11にそのベース電流を定
電流で供給するための横形pnpトランジスタ12
とが構成されている。
In the figure, 1 is an n + type substrate, 2 is an n type semiconductor layer epitaxially grown on one main surface of this n + type substrate 1, and 3 is an n type semiconductor layer selectively formed within this n type semiconductor layer 2. A first P-type region 4 is located at a predetermined distance from the first P-type region 3 in the n-type semiconductor layer 2.
A second P-type region, 5 and 6, selectively formed within said second P-type region 4 and a first n + -type region selectively formed within said second P-type region 4 are separated from each other.
n + type area, 7 is the power terminal, 8 is the input terminal, 9
is a first output terminal, 10 is a second output terminal, the n-type semiconductor layer 2 is an emitter, the second P-type region 4 is a base, and the first and second n + type regions 5, 6
A reverse vertical npn transistor 11 operates with the emitter as the collector and the emitter is grounded, the first P-type region 3 is the emitter, the n-type semiconductor layer 2 is the base, and the second P-type region 4 is the collector and the base is grounded. , a horizontal pnp transistor 12 for supplying a constant base current to the npn transistor 11.
is made up of.

図に示すように、npnトランジスタ11のベー
スおよびエミツタは、それぞれpnpトランジスタ
12のコレクタおよびベースと同一の領域を共有
するように構成されており、構造的に複合化、簡
略化されている。
As shown in the figure, the base and emitter of the npn transistor 11 are configured to share the same regions as the collector and base of the pnp transistor 12, respectively, and are structurally complex and simplified.

なおpnpトランジスタ12のエミツタ3は、別
名インジエクタと呼ばれる。これは、前述の如く
pnpトランジスタ12がnpnトランジスタ11の
ベース電流の定電流源の役割をしているからであ
る。
Note that the emitter 3 of the pnp transistor 12 is also called an injector. This is as mentioned above
This is because the pnp transistor 12 serves as a constant current source for the base current of the npn transistor 11.

このような構成のIILと従来のバイポーラICと
の基本的な相違点は次の通りである。
The basic differences between an IIL having such a configuration and a conventional bipolar IC are as follows.

(イ) 素子間を分離する必要がない。(a) There is no need to separate elements.

(ロ) npnトランジスタ11のエミツタとコレクタ
が従来のICと比べて逆になつている。
(b) The emitter and collector of the npn transistor 11 are reversed compared to conventional ICs.

(ハ) エミツタがn+形基板1で共通になつてい
る。
(c) The emitter is common to the n + type substrate 1.

(ニ) pnpトランジスタ12が電流供給源になつて
いるので、抵抗が不要である。
(d) Since the pnp transistor 12 serves as a current supply source, no resistor is required.

(ホ) IILと従来のバイポーラICを同一基板上に組
込むことができる。
(e) IIL and conventional bipolar IC can be integrated on the same board.

第1図の構成のIILの等価回路を第2図に示
す。IILで構成されたシステムが安定に動作する
ためには、この基本回路の動作条件であるnpnト
ランジスタ11の出力電流吸収能力が、次段に接
続されるIILを十分カツトオフの状態にもちこめ
るだけの電流を吸収しうることである。これは、
インジエクタ3から見た場合の複合電流増幅率α
H・βu(pnpトランジスタ12の注入率αH
npnトランジスタ11の電流増幅率βuの積)が
最小2以上必要であり、この値が大きいほど安定
に動作することになり、次段に同様の基本回路が
多数接続できるようになる。
FIG. 2 shows an equivalent circuit of the IIL having the configuration shown in FIG. In order for a system configured with IIL to operate stably, the output current absorption capacity of the npn transistor 11, which is an operating condition for this basic circuit, must be sufficient to bring the IIL connected to the next stage into a cut-off state. It is capable of absorbing current. this is,
Composite current amplification factor α when viewed from injector 3
H・βu (injection rate α H of pnp transistor 12 and
The product of the current amplification factor βu of the npn transistor 11) needs to be at least 2 or more, and the larger this value is, the more stable the operation will be, and the more similar basic circuits can be connected to the next stage.

しかし、従来のIILは、逆方向縦形npnトラン
ジスタ11のエミツタ2の不純物濃度が1014cm-3
程度と低いため注入効率が悪く、かつベース4の
不純物濃度勾配がコレクタ5,6側に高くなつて
いるため、ベース4内部に逆電界が生じ、逆ドリ
フト作用でキヤリアの走行時間が長くなつて、逆
方向縦形npnトランジスタ11の電流増幅率βu
が著しく低下する欠点を有していた。次に、IIL
をシステムに組込む場合に問題となるのはその動
作周波数であるが、低電流動作領域では、接合に
形成される空乏層容量に蓄積される電荷の充放電
時間で規定されるので、インジエクタ3からの注
入電流に比例して動作スピードは上る。しかし、
ある電流以上になると、従来のIILでは、逆方向
縦形npnトランジスタ11のβuが低いため、
IILは低い固有の動作周波数に達する欠点を有し
ていた。
However, in the conventional IIL, the impurity concentration of the emitter 2 of the reverse vertical NPN transistor 11 is 10 14 cm -3
Since the impurity concentration gradient in the base 4 is high toward the collectors 5 and 6, a reverse electric field is generated inside the base 4, and the travel time of the carrier becomes longer due to the reverse drift effect. , current amplification factor βu of the reverse vertical npn transistor 11
It had the disadvantage that the value was significantly reduced. Then IIL
The problem when incorporating the injector into a system is its operating frequency, but in the low current operating region, it is determined by the charging and discharging time of the charge accumulated in the depletion layer capacitance formed at the junction. The operating speed increases in proportion to the injected current. but,
When the current exceeds a certain level, in the conventional IIL, βu of the reverse vertical npn transistor 11 is low;
IIL had the disadvantage of reaching a low inherent operating frequency.

この発明は上記のような従来のIILの欠点を除
去するためになされたもので、逆方向縦形トラン
ジスタの電流増幅率βuをあげるため、ドライバ
用として働く横形トランジスタを付加してダーリ
ントン接続し、この横形トランジスタの電流増幅
率βdと、縦形トランジスタの電流増幅率βuの
積βd・βuを用いて、IILの複合電流増幅率α
H・βd・βuを大幅に大きくして、従来よりも
低消費電力でかつ高速度なIILを提供することを
目的としている。
This invention was made to eliminate the above-mentioned drawbacks of the conventional IIL. In order to increase the current amplification factor βu of the reverse direction vertical transistor, a horizontal transistor serving as a driver is added and connected to the Darlington. Using the product βd・βu of the current amplification factor βd of the horizontal transistor and the current amplification factor βu of the vertical transistor, the composite current amplification factor α of IIL is calculated.
The purpose is to significantly increase H , βd, and βu to provide IIL with lower power consumption and higher speed than conventional ones.

以下、図面を参照してこの発明によるIILの一
実施例をその製造方法とともに説明する。
Hereinafter, an embodiment of the IIL according to the present invention will be described along with a manufacturing method thereof with reference to the drawings.

先ず、第3図に示すように、不純物濃度が約5
×1018cm-3である結晶軸方向〈111〉のn+形基板
1上に、n形半導体層2をエピタキシヤル成長さ
せる。このn形半導体層2の不純物濃度は3.5×
1014cm-3であり、厚さは27.2μであつた。
First, as shown in Figure 3, the impurity concentration is about 5
An n-type semiconductor layer 2 is epitaxially grown on an n + -type substrate 1 with a crystal axis direction <111> of x10 18 cm -3 . The impurity concentration of this n-type semiconductor layer 2 is 3.5×
10 14 cm -3 and the thickness was 27.2 μ.

次に4図に示すように、同時の選択拡散によつ
て、n形半導体層2内に硼素を不純物表面濃度
1018cm-3程度で導入し、互いに離間する第1、第
2および第3のP形領域3、4よび13を形成す
る。
Next, as shown in Figure 4, boron is introduced into the n-type semiconductor layer 2 at an impurity surface concentration by simultaneous selective diffusion.
10 18 cm -3 to form first, second and third P-type regions 3, 4 and 13 spaced apart from each other.

次に第5図に示すように、同時の選択拡散によ
つて、第2および第3のP形領域4および13内
に燐を不純物表面濃度1021cm-3程度で導入し、そ
れぞれ第1および第2のn+形領域5,6並びに
第3および第4のn+形領域14,15を形成す
る。
Next, as shown in FIG. 5, phosphorus is introduced into the second and third P-type regions 4 and 13 at an impurity surface concentration of about 10 21 cm -3 by simultaneous selective diffusion. Then, second n + -type regions 5 and 6 and third and fourth n + -type regions 14 and 15 are formed.

このようにして、n形半導体層2をエミツタ、
第2のP形領域4をベース、第1および第2の
n+形領域をコレクタとする逆方向の縦形npnトラ
ンジスタ11と、第1のP形領域3をエミツタ、
n形半導体層2をベース、第3のP形領域13を
コレクタとする横形pnpトランジスタ12と、第
3のn+形領域14をコレクタ、第3のP形領域
13をベース、第4のn+形領域15をエミツタ
とする横形nPnトランジスタ16とが構成され
る。
In this way, the n-type semiconductor layer 2 is formed into an emitter,
The second P-type region 4 is the base, the first and second
A reverse vertical npn transistor 11 with the n + type region as the collector, and the first P type region 3 as the emitter,
A lateral pnp transistor 12 having an n-type semiconductor layer 2 as a base and a third P-type region 13 as a collector, a third n + -type region 14 as a collector, a third P-type region 13 as a base, and a fourth n A lateral nPn transistor 16 having the + -type region 15 as an emitter is configured.

次に第6図に示すように、第1、第2および第
3のP形領域3,4,13並びに第1、第2、第
3および第4のn+形領域5,6,14,15に
例えばアルミニウム電極を設け、第1のP形領域
3および第3のP形領域13に設けられた電極を
それぞれ電源端子7および入力端子8とすると共
に、第1のn+形領域5と第3のn+形領域14に
設けられた電極を共通接続して第1の出力端子9
とし、また第2のn+形領域6と第3のn+形領域
14に設けられた電極を共通接続して第2の出力
端子10とし、更に第2のP形領域4と第4の
n+形領域15に設けられた電極を共通接続す
る。
Next, as shown in FIG . 15 is provided with an aluminum electrode, for example, and the electrodes provided in the first P-type region 3 and the third P-type region 13 are used as the power supply terminal 7 and the input terminal 8 , respectively. The electrodes provided in the third n + type region 14 are connected in common to form the first output terminal 9.
In addition, the electrodes provided in the second n + type region 6 and the third n + type region 14 are commonly connected to form the second output terminal 10, and the second P type region 4 and the fourth
The electrodes provided in the n + type region 15 are commonly connected.

このような接続によつて、横形npnトランジス
タ16をドライバ段、縦形npnトランジスタ11
を出力段としたダーリントン接続が達成され、上
記第6図のIILの等価回路は第7図のようにな
る。
With such a connection, the horizontal npn transistor 16 is connected to the driver stage, and the vertical npn transistor 11 is connected to the driver stage.
A Darlington connection is achieved with the IIL in the output stage, and the equivalent circuit of the IIL shown in FIG. 6 becomes as shown in FIG.

このような構成のIILによれば、横形npnトラ
ンジスタ16の電流増幅率をβd(>>1)とす
れば、第1図に示す従来のIILにおける縦形npn
トランジスタ11だけの電流増幅率βuよりもβ
d倍された1桁以上も高い電流増幅率βd・βu
が、余分な製造工程をを追加することなく容易に
得られるので、IILの著しい低消費電力化および
高速化が図れる。
According to the IIL having such a configuration, if the current amplification factor of the horizontal npn transistor 16 is βd (>>1), then the vertical npn in the conventional IIL shown in FIG.
β is higher than the current amplification factor βu of transistor 11 alone.
Current amplification factor βd/βu that is more than one order of magnitude higher by d times
can be easily obtained without adding any extra manufacturing steps, making it possible to significantly reduce power consumption and speed up IIL.

なお、上記実施例では、横形pnpトランジスタ
をインジエクタ、横形npnトランジスタをドライ
バ段、逆方向の縦形npnトランジスタを出力段と
したIILについて説明したが、横形npnトランジ
スタをインジエクタ、横形pnpトランジスタをド
ライバ段、逆方向のpnpトランジスタを出力段と
したIILであつてもよく、上記実施例と同様の効
果を奏する。
In the above embodiment, an IIL was described in which a horizontal pnp transistor is used as an injector, a horizontal npn transistor is used as a driver stage, and a vertical npn transistor in the opposite direction is used as an output stage. It may be an IIL in which a reverse direction pnp transistor is used as an output stage, and the same effect as in the above embodiment can be achieved.

以上述べたようにこの発明によれば、逆方向縦
形トランジスタのβuを大きく改善することがで
きるので、極めて低消費電力で高速度のIILを実
現することができる。
As described above, according to the present invention, it is possible to greatly improve βu of the reverse direction vertical transistor, so it is possible to realize high speed IIL with extremely low power consumption.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来のIILの基本インバータ構造を示
す断面図、第2図はその等価回路図、第3図乃至
第6図はこの発明の一実施例をその製造方法と共
に示す主要工程における断面図、第7図はこの発
明の一実施例の等価回路図である。 図において、1はn+形基板、2はn形半導体
層、3は第1のP形領域、4は第2のP形領域、
5は第1のn+形領域、6は第2のn+形領域、1
1は逆方向の縦形npnトランジスタ、12は横形
pnpトランジスタ、13は第3のP形領域、14
は第3のn+形領域、15は第4のn+形領域、1
6は横形npnトランジスタである。なお、図中同
一符号は同一または相当部分を示す。
Fig. 1 is a sectional view showing the basic inverter structure of a conventional IIL, Fig. 2 is its equivalent circuit diagram, and Figs. 3 to 6 are sectional views showing main steps of an embodiment of the present invention together with its manufacturing method. , FIG. 7 is an equivalent circuit diagram of an embodiment of the present invention. In the figure, 1 is an n + type substrate, 2 is an n-type semiconductor layer, 3 is a first P-type region, 4 is a second P-type region,
5 is the first n + type area, 6 is the second n + type area, 1
1 is a reverse vertical npn transistor, 12 is a horizontal type
pnp transistor, 13 third P-type region, 14
is the third n + type area, 15 is the fourth n + type area, 1
6 is a horizontal npn transistor. Note that the same reference numerals in the figures indicate the same or corresponding parts.

Claims (1)

【特許請求の範囲】[Claims] 1 第1導電形の半導体層の表面に相互に分離し
て形成された第1、第2および第3の第2導電形
領域と、第2の第2導電形領域の表面に相互に分
離して形成された第1および第2の第1導電形領
域と、第3の第2導電形領域の表面に相互に分離
して形成された第3および第4の第1導電形領域
とを備え、第1の第2導電形領域をエミツタ、半
導体層をベース、第2の第2導電形領域をコレク
タとして横形の第1トランジスタを形成し、第1
および第2の第1導電形領域をエミツタおよびコ
レクタ、第2の第2導電形領域をベースとして横
形の第2トランジスタを形成し、半導体層をエミ
ツタ、第3の第2導電形領域をベース、第3およ
び第4の第1導電形領域をコレクタとして縦形の
第3トランジスタを形成するとともに、第2トラ
ンジスタと第3トランジスタとをダーリントン接
続してなる半導体装置。
1 first, second and third second conductivity type regions formed separately from each other on the surface of the first conductivity type semiconductor layer; and a second conductivity type region separated from each other on the surface of the second second conductivity type region. and third and fourth first conductivity type regions formed separately from each other on the surface of the third second conductivity type region. , a horizontal first transistor is formed with the first second conductivity type region as an emitter, the semiconductor layer as a base, and the second second conductivity type region as a collector;
and forming a horizontal second transistor with the second first conductivity type region as an emitter and collector, the second second conductivity type region as a base, the semiconductor layer as an emitter, and a third second conductivity type region as a base; A semiconductor device in which a vertical third transistor is formed using the third and fourth first conductivity type regions as collectors, and the second transistor and the third transistor are connected in a Darlington connection.
JP10636878A 1978-08-30 1978-08-30 Semiconductor device Granted JPS5533072A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10636878A JPS5533072A (en) 1978-08-30 1978-08-30 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10636878A JPS5533072A (en) 1978-08-30 1978-08-30 Semiconductor device

Publications (2)

Publication Number Publication Date
JPS5533072A JPS5533072A (en) 1980-03-08
JPS6130752B2 true JPS6130752B2 (en) 1986-07-15

Family

ID=14431772

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10636878A Granted JPS5533072A (en) 1978-08-30 1978-08-30 Semiconductor device

Country Status (1)

Country Link
JP (1) JPS5533072A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4984024A (en) * 1988-05-11 1991-01-08 Ricoh Company, Ltd. Image transfer unit for image recording apparatus

Also Published As

Publication number Publication date
JPS5533072A (en) 1980-03-08

Similar Documents

Publication Publication Date Title
US3922565A (en) Monolithically integrable digital basic circuit
US3955210A (en) Elimination of SCR structure
JPH04245478A (en) Photosemiconductor device
US4210925A (en) I2 L Integrated circuit and process of fabrication
US3978515A (en) Integrated injection logic using oxide isolation
GB1533156A (en) Semiconductor integrated circuits
JPS6130752B2 (en)
JPS62229967A (en) Equivalent npn structure with breadown voltage higher than specific breakdown voltage of npn transistor
GB1252803A (en)
US4470061A (en) Integrated injection logic
US4979011A (en) SCR structure for fast turn-on switching
JPS587066B2 (en) semiconductor equipment
US5155572A (en) Vertical isolated-collector PNP transistor structure
US5016079A (en) Integrated injection logic gate with heavily doped diffusion
CA1097408A (en) Inverter in an integrated injection logic structure
EP0126879B1 (en) Integrated circuit arrangement
JPS5910068B2 (en) bipolar logic circuit
JPH02196463A (en) Photodetector with built-in circuit
JPS6022504B2 (en) Manufacturing method of semiconductor device
JP3083391B2 (en) Semiconductor integrated circuit
US4119998A (en) Integrated injection logic with both grid and internal double-diffused injectors
JPS6025904B2 (en) Manufacturing method of semiconductor device
JPS6123658B2 (en)
JPS63288055A (en) Semiconductor device
JPS59181058A (en) Semiconductor device