JPH02196463A - Photodetector with built-in circuit - Google Patents

Photodetector with built-in circuit

Info

Publication number
JPH02196463A
JPH02196463A JP1015546A JP1554689A JPH02196463A JP H02196463 A JPH02196463 A JP H02196463A JP 1015546 A JP1015546 A JP 1015546A JP 1554689 A JP1554689 A JP 1554689A JP H02196463 A JPH02196463 A JP H02196463A
Authority
JP
Japan
Prior art keywords
layer
photodetector
epitaxial layer
circuit
conductivity type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1015546A
Other languages
Japanese (ja)
Inventor
Tetsuya Yamanaka
山中 哲也
Masaru Kubo
勝 久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP1015546A priority Critical patent/JPH02196463A/en
Publication of JPH02196463A publication Critical patent/JPH02196463A/en
Pending legal-status Critical Current

Links

Landscapes

  • Solid State Image Pick-Up Elements (AREA)
  • Light Receiving Elements (AREA)

Abstract

PURPOSE:To obtain a photodetector built in circuit having sensitivity and speed which are superior than those of conventional photodetectors by causing a photodetector to be equipped with upper and lower epitaxial layers and a circuit element part to be equipped with the upper and lower epitaxial layers; besides, a buried layer to be provided between the upper and lower epitaxial layers. CONSTITUTION:This photodetector is composed of a photodetector part and a circuit element part which are surrounded with the second conductivity type buried layers 2 and 3 and diffusion layers 5, 6, and 10 that are formed on the surface of the first conductivity type semiconductor substrate 1. The photodetector part is equipped with the first conductivity type upper eqitaxial layer 9 and lower epitaxial layer 4 and the circuit element part is equipped with the first conductivity type upper epitaxial layer 20 and lower epitaxial layer 4; besides, the first conductivity buried layer 8 is provided between the above epitaxial layers 20 and 4. Such a configuration makes the effective thickness of the epitaxial layer of the photodetector part thick and improves the sensitivity of the photodetector. Further, the circuit element part allows the upper epitaxial layer to have a thickness and a concentration which optimize an operation of its circuit element part and then, speeding up of its element is achieved.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、受光素子とその出力信号を処理する回路素子
とを備えた回路内蔵受光素子に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a light receiving element with a built-in circuit, which includes a light receiving element and a circuit element for processing an output signal thereof.

(従来の技術〕 回路内蔵受光素子は、−船釣にバイポーラICと同等の
工程で炸裂されている。すなわち、第2図のように、例
えばP型半導体基板14の表面に、素子の直列抵抗を減
少させるためのN型埋込拡散層15,16t−1受光素
子と回路素子の予定領域にそれぞれ形成し次後、その表
面にN型エピタキシャル層18′t−形成し、その後素
子分離層17゜17・・・全形成し、さらにP+型拡散
層19を設けて受光素子を形成し、ペース13(a)、
エミッタ13(b)、コレクタコンタクト13(c)i
設けて回路素子を形成している。従って、受光素子とし
て、例えば、ホトダイオードを形成し、回路素子として
、例、tば、NPN トランジスタを形成した場合、画
素子のエピタキシャル層は同じ厚さであり、比抵抗も同
じである。
(Prior art) A photodetector with a built-in circuit is exploded in a process similar to that of a bipolar IC.That is, as shown in FIG. In order to reduce゜17...Full formation, further providing a P+ type diffusion layer 19 to form a light receiving element, paste 13(a),
Emitter 13(b), collector contact 13(c)i
are provided to form a circuit element. Therefore, when a photodiode, for example, is formed as a light-receiving element and an NPN transistor, for example, is formed as a circuit element, the epitaxial layers of the pixel elements have the same thickness and have the same specific resistance.

回路内蔵受光素子を高速にする九めには、受光素子のホ
トダイオードのエピタキシャル層の比抵抗を高くして容
量を下げる必要、があるが、そうすると回路素子のNP
Nトランジスタのコレクタ抵抗が増大し、コレクタ飽和
電圧の増大及び回路応答速度が遅くなるという問題があ
った。
The ninth way to increase the speed of a photodetector with a built-in circuit is to lower the capacitance by increasing the resistivity of the epitaxial layer of the photodiode in the photodiode, but this will reduce the NP of the circuit element.
There is a problem in that the collector resistance of the N transistor increases, the collector saturation voltage increases, and the circuit response speed decreases.

ま九、ホトダイオードの感度を上げるには、エピタキシ
ャル層を厚くする必要がある。しかし、単に厚くすると
、ホトダイオード部の応答速度の低下、ならびにNPN
)ランジスタのコレクタ抵抗増大によるコレクタ飽和電
圧の増大及び回路応答速度の低下という前記と同じ問題
に加えて、素子分離層の領域の増大によるチップサイズ
の増大という問題があった。この問題を解決するため、
例えば、特開昭63−122164には、第3因のよう
な構造が提案されている。これは前述の公開公報の第1
図に相当するものである。すなわち、高比抵抗のN型半
導体基板1の上に形成したN型エピタキシャル層22の
キャリア濃度Q、PINホトダイオードAの空乏層に適
した濃度とし、さらに、このN型エピタキシャル層22
をP型分離拡散層21.21で複数のπ層に区分して、
バイポーラ拳デバイスB全形成する部分には、さらに、
Nウェル層20’(j形成して、キャリア濃度をバイボ
ーシブバイスBに適した値まで上げている。同図におい
て%16はN 型埋込層、19はホトダイオードのアノ
ードであり、23はN+型埋込層である。
Ninth, to increase the sensitivity of a photodiode, it is necessary to increase the thickness of the epitaxial layer. However, simply increasing the thickness will reduce the response speed of the photodiode section and reduce the NPN
) In addition to the same problems as described above, such as an increase in collector saturation voltage and a decrease in circuit response speed due to an increase in the collector resistance of the transistor, there is also the problem of an increase in chip size due to an increase in the area of the element isolation layer. To solve this problem,
For example, Japanese Patent Application Laid-Open No. 63-122164 proposes a structure similar to the third factor. This is the first publication of the above-mentioned public notice.
This corresponds to the figure. That is, the carrier concentration Q of the N-type epitaxial layer 22 formed on the high resistivity N-type semiconductor substrate 1 is set to a concentration suitable for the depletion layer of the PIN photodiode A, and furthermore, the N-type epitaxial layer 22 is
is divided into a plurality of π layers by P-type separation diffusion layers 21 and 21,
The bipolar fist device B has a fully formed part that further includes:
An N-well layer 20' (j is formed to increase the carrier concentration to a value suitable for the bivorous device B. In the figure, %16 is an N-type buried layer, 19 is an anode of the photodiode, and 23 is an N+ type buried layer. This is a mold embedding layer.

13(a)はNPN)ランジスタのベース、13(b)
はエミッタ、13(c)はコレクタコンタクトである。
13(a) is the base of NPN) transistor, 13(b)
is an emitter, and 13(c) is a collector contact.

(発明が解決しようとする課題) 第3図のような構造においても、光入射時ホトダイオー
ドの基板からの拡散電流成分によるホトダイオード応答
速度の低下という問題は解決されていない。前記のよう
に、受光素子部に要求されるエピタキシャル層の条件と
、回路素子部に要求されるエピタキシャル層の条件とが
異なるため、高感度で高速の回路内家受光素子の実現は
困難であった。本発明はその実現を目的とするものであ
る。
(Problems to be Solved by the Invention) Even in the structure as shown in FIG. 3, the problem of a reduction in the response speed of the photodiode due to a diffusion current component from the substrate of the photodiode when light is incident is not solved. As mentioned above, the conditions for the epitaxial layer required for the photodetector section and the conditions for the epitaxial layer required for the circuit element section are different, making it difficult to realize a highly sensitive and high-speed in-circuit photodetector. Ta. The present invention aims to achieve this.

(課題を解決するための手段) 本発明においては、第1の導’tiitm<例えばN型
ンの半導体基板の表面の受光素子および回路素子の予定
領域の下部に、第2の導電型(例えばP型)の埋込層を
形成し、その表面に第1の導電型の下部エピタキシャル
層を成長させ、その表面の回路素子の予定領域に第1の
導電型の埋込層を形成し、その表面にさらに第1の導電
型の上部エピタキシャル層を形成し、上部エピタキシャ
ル層と下部エピタキシャル層との間に埋込層t−設けな
い部分に受光素千金形成させ、上部エピタキシャル層と
下部エピタキシャル層との間に埋込層の介在した部分に
回路素子全形成させ、それぞれの素子は第2の導電型の
層で分離させ次。
(Means for Solving the Problems) In the present invention, a second conductivity type (for example, A lower epitaxial layer of a first conductivity type is grown on the surface of the buried layer of P type), a buried layer of the first conductivity type is formed in a region of the surface where the circuit element is to be formed, and Further, an upper epitaxial layer of the first conductivity type is formed on the surface, and a light-receiving element is formed in a portion where the buried layer T- is not provided between the upper epitaxial layer and the lower epitaxial layer. All circuit elements are formed in the area with the buried layer between them, and each element is separated by a layer of the second conductivity type.

(作用) 本発明の構成により、受光素子部のエピタキシャル層の
実効厚さを厚くすることができ受光素子の感度を高くす
ることができる。また、回路素子部は上部エピタキシャ
ル層を回路素子の動作に最適な厚さ、濃度とすることに
より、回路素子の高速化が達成できる。さらに受光素子
部の第2の導電型の埋込層を受光素子の表面の第2の導
電型の部分(アノード)と同電位にすることにより、受
光素子部のエピタキシャル層を上下両方向がら空乏化さ
せることができ、基板からの拡散電流成分による応答速
度の低下を防止することができる。
(Function) According to the configuration of the present invention, the effective thickness of the epitaxial layer of the light receiving element portion can be increased, and the sensitivity of the light receiving element can be increased. Further, in the circuit element section, by making the upper epitaxial layer have the optimum thickness and concentration for the operation of the circuit element, the speed of the circuit element can be increased. Furthermore, by making the buried layer of the second conductivity type in the light receiving element part the same potential as the part (anode) of the second conductivity type on the surface of the light receiving element, the epitaxial layer in the light receiving element part is depleted in both the upper and lower directions. It is possible to prevent the response speed from decreasing due to the diffusion current component from the substrate.

(夾雄側) 本発明の一実施例を第1図(a)乃至(d)によって説
明する。これらは各工程の略断面図を示す。
(Kyuo side) An embodiment of the present invention will be described with reference to FIGS. 1(a) to (d). These show schematic cross-sectional views of each step.

第1図(a)に示すように、N型半導体基板1の表面の
受光素子予定領域と回路素子予定領域のそれぞれに、ホ
トリックラフイを行い不純物を拡散してP+型埋込層2
及び3t−形成する。
As shown in FIG. 1(a), photo-roughing is applied to each of the light-receiving element intended area and the circuit element intended area on the surface of the N-type semiconductor substrate 1, and impurities are diffused into the P+ type buried layer 2.
and 3t-form.

次に同図価)に示すように、表面に高比抵抗のN−型下
部エピタキシャル#4を成長させ、受光素子及び回路素
子の各予定領域の周囲に前記のP+型埋込層2及び3に
達するP+型拡散層5,5及び6.6を形成させる。こ
れらは各素子を分離させる。この工程で一度に表面から
P+型拡散層2及び3に達する必要はなく、後の工程で
繰返される熱処理により逐次内部へ拡散させることもで
きる、次に、受光素子予定領域の表面の一部及び回路素
子予定領域の表面の大部分に、N+型埋込層7及び8を
不純物拡散により形成する。前者は受光素子のカソード
の直列抵抗を低下させ、後者は回路素子のコレクタの直
列抵抗を低下させる。
Next, as shown in FIG. P+ type diffusion layers 5, 5 and 6.6 are formed. These separate each element. In this process, it is not necessary to reach the P+ type diffusion layers 2 and 3 from the surface at once, and it is possible to diffuse them into the interior one after another through repeated heat treatment in later steps. N+ type buried layers 7 and 8 are formed by impurity diffusion on most of the surface of the circuit element planned region. The former reduces the series resistance of the cathode of the light receiving element, and the latter reduces the series resistance of the collector of the circuit element.

その後、同図(c)に示すように、全面に高比抵抗のN
 型上部エピタキシャル層9を成長させた後、回路素子
予定領域は、回路素子に最適な比抵抗とするため、不純
物を添加して低濃度のN型拡散層20を形成し、次に各
素子分離用のP 型拡散層10.10・・・を下部のP
+型拡散層5,5及び6゜6に達するように形成し、受
光素子のカソード用のN+型型数散層11下部のN++
埋込層7に達するように形成する。
After that, as shown in the same figure (c), high resistivity N was applied to the entire surface.
After growing the upper epitaxial layer 9 of the mold, the region where the circuit elements are planned is doped with impurities to form a low concentration N-type diffusion layer 20 in order to have the optimum resistivity for the circuit elements, and then each element is separated. P-type diffusion layer 10.10...
+ type diffusion layers 5, 5 and 6°6 are formed to reach the N++ type diffused layer 11 below the N+ type diffused layer 11 for the cathode of the light receiving element.
It is formed so as to reach the buried layer 7.

次に第1図(d)に示すように、受光素子部には表面に
アノード用のP+型拡散層12i−形成し、回路素子部
にはP+型拡散層のベース層13(a)、N”型拡散層
のエミツタ層13(b)及びN+型層のコレクタコンタ
クト層13(c)’を形成することによって、本発明の
回路内蔵受光素子が完成する。
Next, as shown in FIG. 1(d), a P+ type diffusion layer 12i- for an anode is formed on the surface of the light receiving element part, and a base layer 13(a) of the P+ type diffusion layer, N By forming the emitter layer 13(b), which is a type diffusion layer, and the collector contact layer 13(c), which is an N+ type layer, the light receiving element with a built-in circuit of the present invention is completed.

(発明の効果) 本発明によれば、受光素子と回路素子のそれぞれに最適
の厚さ及び比抵抗のエピタキシャル層を用いることが可
能となり、しかも基板からの拡散電流を防止できるから
、従来より高感度かつ高速の回路内蔵受光素子金得るこ
とができる。
(Effects of the Invention) According to the present invention, it is possible to use an epitaxial layer with an optimal thickness and specific resistance for each of the light receiving element and the circuit element, and furthermore, it is possible to prevent diffusion current from the substrate. A sensitive and high-speed photodetector with a built-in circuit can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)〜(d)は、本発明の一実施例の各工程の
略断面図、第2図及び第3図は従来の例の略断面図であ
る。
FIGS. 1(a) to (d) are schematic cross-sectional views of each step of an embodiment of the present invention, and FIGS. 2 and 3 are schematic cross-sectional views of a conventional example.

Claims (1)

【特許請求の範囲】[Claims] 1、第1の導電型の半導体基板の表面に形成された第2
の導電型の埋込層と拡散層とによって包囲された受光素
子部と回路素子部とよりなり、受光素子部は第1の導電
型の上部エピタキシャル層と下部エピタキシャル層とを
有し、回路素子は第1の導電型の上部エピタキシャル層
と下部エピタキシャル層とを有し、それらの間に第1の
導電型の埋込層を設けたことを特徴とする回路内蔵受光
素子。
1. A second conductive type formed on the surface of a semiconductor substrate of a first conductivity type.
It consists of a light-receiving element part and a circuit element part surrounded by a buried layer and a diffusion layer of the first conductivity type, and the light-receiving element part has an upper epitaxial layer and a lower epitaxial layer of the first conductivity type. 1. A light-receiving element with a built-in circuit, comprising an upper epitaxial layer and a lower epitaxial layer of a first conductivity type, and a buried layer of a first conductivity type provided between them.
JP1015546A 1989-01-25 1989-01-25 Photodetector with built-in circuit Pending JPH02196463A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1015546A JPH02196463A (en) 1989-01-25 1989-01-25 Photodetector with built-in circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1015546A JPH02196463A (en) 1989-01-25 1989-01-25 Photodetector with built-in circuit

Publications (1)

Publication Number Publication Date
JPH02196463A true JPH02196463A (en) 1990-08-03

Family

ID=11891785

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1015546A Pending JPH02196463A (en) 1989-01-25 1989-01-25 Photodetector with built-in circuit

Country Status (1)

Country Link
JP (1) JPH02196463A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5408122A (en) * 1993-12-01 1995-04-18 Eastman Kodak Company Vertical structure to minimize settling times for solid state light detectors
US5410175A (en) * 1989-08-31 1995-04-25 Hamamatsu Photonics K.K. Monolithic IC having pin photodiode and an electrically active element accommodated on the same semi-conductor substrate
US5567974A (en) * 1993-12-21 1996-10-22 Sony Corporation Semiconductor device to absorb stray carriers
KR100459860B1 (en) * 2001-10-31 2004-12-03 샤프 가부시키가이샤 Light receiving element, light detector with built-in circuitry and optical pickup

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5410175A (en) * 1989-08-31 1995-04-25 Hamamatsu Photonics K.K. Monolithic IC having pin photodiode and an electrically active element accommodated on the same semi-conductor substrate
US5408122A (en) * 1993-12-01 1995-04-18 Eastman Kodak Company Vertical structure to minimize settling times for solid state light detectors
US5567974A (en) * 1993-12-21 1996-10-22 Sony Corporation Semiconductor device to absorb stray carriers
KR100459860B1 (en) * 2001-10-31 2004-12-03 샤프 가부시키가이샤 Light receiving element, light detector with built-in circuitry and optical pickup

Similar Documents

Publication Publication Date Title
JPH01205564A (en) Optical semiconductor device and its manufacture
JP2662062B2 (en) Photoelectric conversion device
US4920395A (en) High sensitivity photodiode
JPH06163867A (en) Color-selective integrated photodiode and apparatus provided with amplifier connected to its laterstage
JPH02196463A (en) Photodetector with built-in circuit
JPH0482268A (en) Semiconductor device
JP2568074B2 (en) Optical sensor integrated circuit
JPH02238664A (en) Photodetector with built-in circuit
JP2501556B2 (en) Optical sensor and manufacturing method thereof
JPS62131570A (en) Semiconductor light receiving device
JP4046995B2 (en) Optical semiconductor device
JPH04242980A (en) Light-receiving element
JP2603346B2 (en) Semiconductor device and photoelectric conversion device
JPH02260657A (en) Manufacture of circuit built-in photodetector
JPH0287683A (en) Photodiode
JPS5845830B2 (en) Integrated circuits and their manufacturing methods
JPS61120467A (en) Semiconductor device
JPH043473A (en) Photoelectric conversion device
JPH02275680A (en) Optical semiconductor integrated circuit device
JPH06291352A (en) Light receiving device and circuit-built-in light receiving device
JPS60123062A (en) Manufacture of semiconductor integrated circuit
JPS6036104B2 (en) Semiconductor integrated circuit device
JPH0541533A (en) Semiconductor device
JPH0240969A (en) Semiconductor integrated device
JPH04360584A (en) Optical semiconductor device