JPS63288055A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPS63288055A
JPS63288055A JP62123244A JP12324487A JPS63288055A JP S63288055 A JPS63288055 A JP S63288055A JP 62123244 A JP62123244 A JP 62123244A JP 12324487 A JP12324487 A JP 12324487A JP S63288055 A JPS63288055 A JP S63288055A
Authority
JP
Japan
Prior art keywords
buried
layer
buried layer
transistor
antimony
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62123244A
Other languages
Japanese (ja)
Inventor
Hitoshi Yamaguchi
仁 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rohm Co Ltd
Original Assignee
Rohm Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rohm Co Ltd filed Critical Rohm Co Ltd
Priority to JP62123244A priority Critical patent/JPS63288055A/en
Publication of JPS63288055A publication Critical patent/JPS63288055A/en
Pending legal-status Critical Current

Links

Landscapes

  • Bipolar Transistors (AREA)
  • Bipolar Integrated Circuits (AREA)

Abstract

PURPOSE:To improve the emitter grounding current amplification factor (hfe) and frequency characteristics of an I<2>L as a logic element without damaging the breakdown strength of a linear element by forming a first buried layer, to which antimony is diffused, and shaping a second buried layer, which is in contact with a base region in a composed multi-collector transistor and to which arsenic is diffused. CONSTITUTION:An epitaxial layer 30 is grown, and a base region 60, an emitter region 90 in an injector transistor and a base region 100 in a multi-collector transistor are formed simultaneously through the diffusion of boron. First and second buried layers 120, 130 are shaped respectively to both elements. The buried layers are shaped by introducing an N<+> type impurity into a substrate 10 through deposition or ion implantation before epitaxial growth, but antimony is used as the diffusion impurity of the first buried layer 120, and arsenic having a diffusion coefficient larger than antimony is employed as the diffusion impurity of the second buried layer 130. Difference is shaped among both buried layers in the quantities of swelling at the time of epitaxial growth, and the layer thickness of the second buried layer 130 is made thicker than that of the first buried layer 120.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、リニア素子としてのii1當の縦型トランジ
スタと、ロジック素子としての12L (Integr
ated Injection Logic)を同一半
導体基板上に形成した半導体装置に関する。
[Detailed Description of the Invention] <Industrial Application Field> The present invention relates to a vertical transistor of ii1 as a linear element and a 12L (Integr) transistor as a logic element.
The present invention relates to a semiconductor device in which two types of Injection Logic (Injection Logic) are formed on the same semiconductor substrate.

〈従来の技術〉 T2Lはバイポーラトランジスタと同一の製造工程で製
造でき、低消費電力で高速作動が可能であり高集積化に
通した構造を有することからデジタル信号部を12Lで
構成し、電力増幅部など高電圧駆動を必要とするアナロ
グ信号部を通常の縦型トランジスタで構成した半導体装
置が知られている。第2図は、このような半導体装置の
従来の構造を示すものである。
<Conventional technology> T2L can be manufactured in the same manufacturing process as bipolar transistors, can operate at high speed with low power consumption, and has a structure that allows for high integration. A semiconductor device is known in which an analog signal section that requires high-voltage driving, such as a semiconductor section, is constructed from ordinary vertical transistors. FIG. 2 shows the conventional structure of such a semiconductor device.

同図において共通のP型半導体基板1上に形成され、ア
イソレーションN2によって分離されたエピタキシャル
Fii3a、3b内にはそれぞれリニア素子としての通
常の縦型トランジスタ4及びロジック素子としての12
 L5が形成されている。
In the figure, epitaxial Fii3a and Fii3b formed on a common P-type semiconductor substrate 1 and separated by an isolation N2 include a normal vertical transistor 4 as a linear element and a logic element 12 as a logic element.
L5 is formed.

縦型トランジスタ4は、ベース領域6、エミッタ領域7
及びコレクタ領域となるエピタキシャルN3aとオーミ
ンクコンタクトを形成するために設けられたコレクタコ
ンタクト領域8とから構成されている。一方、l2L5
はラテラルpnpインジェクタトランジスタのエミッタ
領域9、逆方向動作をする縦型npnマルチコレクタト
ランジス夕のベース領域lO及びそのコレクタ領域11
.11から構成されている。そしてエピタキシャル層3
a、3bの底部にはそれぞれ同一の不純物、例えばsb
(アンチモン)あるいはAs(砒素)を拡散した埋込み
N12a 、12bが設けられている。
The vertical transistor 4 has a base region 6 and an emitter region 7.
It is composed of an epitaxial layer N3a serving as a collector region, and a collector contact region 8 provided for forming an ohmink contact. On the other hand, l2L5
are the emitter region 9 of the lateral pnp injector transistor, the base region lO of the vertical npn multi-collector transistor operating in the opposite direction, and its collector region 11.
.. It consists of 11. and epitaxial layer 3
The bottoms of a and 3b contain the same impurity, for example sb
Buried N12a and 12b in which antimony (antimony) or arsenic (arsenic) is diffused are provided.

〈考案が解決しようとする問題点〉 リニア素子としての通常の縦型トランジスタ4ではコレ
クタ領域であるエピタキシャルH3aの伝導度を低くす
るためエピタキシャル成長時の不純物濃度を低くし、埋
込み層12aを形成するために拡散する不純物に拡散係
数の小さいものを選ぶことで埋込み層厚を小さくしてベ
ース、コレクタ接合における空乏層の伸びを大きくとれ
るようにして高耐圧を得ている。従って、12L5の縦
型npnマルチコレクタトランジスタのエミッタ領域で
あるエピタキシャル層3bの伝導度はエピタキシャル層
3aのものと同じであるので、必然的に低くなり、マル
チコレクタトランジスタのエミッタ接地電流増幅率hf
eが低下するとともに周波数特性が悪化する。
<Problems to be solved by the invention> In a normal vertical transistor 4 as a linear element, in order to lower the conductivity of the epitaxial layer H3a which is the collector region, the impurity concentration during epitaxial growth is lowered and the buried layer 12a is formed. By selecting an impurity with a small diffusion coefficient as the impurity to be diffused into the semiconductor device, the thickness of the buried layer can be reduced and the depletion layer at the base/collector junction can be extended to a large extent, thereby achieving a high breakdown voltage. Therefore, since the conductivity of the epitaxial layer 3b, which is the emitter region of the vertical npn multi-collector transistor 12L5, is the same as that of the epitaxial layer 3a, it is necessarily low, and the common emitter current amplification factor hf of the multi-collector transistor is
As e decreases, the frequency characteristics deteriorate.

〈問題点を解決するための手段〉 リニア素子としての縦型トランジスタの下部にはアンチ
モンを拡散した第1の埋込み層を設けるとともに、ロジ
ック素子としての12Lに対してはこれを構成するマル
チコレクタトランジスタのベース領域に接する砒素を拡
散した第2の埋込み層を設けた。
<Means for solving the problem> A first buried layer in which antimony is diffused is provided below the vertical transistor as a linear element, and a multi-collector transistor constituting the 12L as a logic element is provided. A second buried layer in which arsenic was diffused was provided in contact with the base region of the substrate.

〈作用〉 アンチモン°は拡散係数が小さくエピタキシャル成長時
の湧き上がりが少ないので、第1の埋込み層は薄く形成
され、エピタキシャル層濃度を低く設定することで縦型
トランジスタの高耐圧が確保される。それに対しI2L
側の第2の埋込み眉はアンチモンと比べて拡散係数が大
きくエピタキシャル成長時の湧き上がりの多い砒素の拡
散により形成され、そのrr1厚が大きくマルチコレク
タトランジスタのベース領域に接しているためエピタキ
シャルrM’llr度に左右されずhfeが向上する。
<Function> Since antimony has a small diffusion coefficient and does not rise up much during epitaxial growth, the first buried layer is formed thinly, and by setting the epitaxial layer concentration low, a high breakdown voltage of the vertical transistor is ensured. On the other hand, I2L
The second buried eyebrow on the side is formed by the diffusion of arsenic, which has a larger diffusion coefficient than antimony and is more likely to spring up during epitaxial growth, and its rr1 thickness is large and it is in contact with the base region of the multi-collector transistor, so the epitaxial rM'llr hfe improves regardless of the temperature.

〈実施例〉 第1図は本発明の実施例を示す断面図である。<Example> FIG. 1 is a sectional view showing an embodiment of the present invention.

P型半導体基板10の上に成長されたN−形エピタキシ
ャル層30はP形アイソレージ四ン層20により30a
 、 30bに分離され、それぞれにリニア素子として
の縦型npnトランジスタ40及びロジック素子として
のl2L50が形成されている。npnトランジスタ4
0は、P形ベース領域60、N十形のエミッタ領域70
及びコレクタコンタクト領域80より構成され、一方1
2L50はラテラルpnpインジェクタトランジスタの
エミッタ領域90、逆方向マルチコレクタトランジスタ
のベース領域100及びコレクタ領域110で構成され
ている。これら各領域のうちベース領域60、インジェ
クタトランジスタのエミッタ領域90及びマルチコレク
タトランジスタのベース領域100はエピタキシャル層
30の成長後、ボロン拡散により同時に形成される。そ
して、画素子にはそれぞれ第1、第2の埋込み層120
 、130が設けられている。これら埋込み層はエピタ
キシャル成長時にN十形不純物をデポジットあるいはイ
オン注入によって基板10内に導入することによって形
成されるが、本発明では第1の埋込み層120の拡散不
純物としてアンチモンを用い、第2の埋込みrF113
0の拡散不純物として拡散係数がアンチモンより大きい
砒素を用いている。
The N-type epitaxial layer 30 grown on the P-type semiconductor substrate 10 is formed by the P-type isolation four layer 20.
, 30b, each of which has a vertical npn transistor 40 as a linear element and an l2L50 as a logic element. npn transistor 4
0 is a P-type base region 60, an N-type emitter region 70
and a collector contact region 80, while 1
2L50 consists of an emitter region 90 of a lateral pnp injector transistor, a base region 100 and a collector region 110 of a reverse multi-collector transistor. Of these regions, the base region 60, the emitter region 90 of the injector transistor, and the base region 100 of the multi-collector transistor are formed simultaneously by boron diffusion after the epitaxial layer 30 is grown. The pixel elements each have a first buried layer 120 and a second buried layer 120.
, 130 are provided. These buried layers are formed by introducing Nx-type impurities into the substrate 10 by depositing or ion implantation during epitaxial growth, but in the present invention, antimony is used as the diffusion impurity in the first buried layer 120, and the second buried layer 120 is filled with antimony. rF113
Arsenic, which has a larger diffusion coefficient than antimony, is used as the zero diffusion impurity.

従って、エピタキシャル成長時の湧り上がり量に両埋込
み層間で差が生じ、第2の埋込みFi 130の層厚は
第1の埋込みJii120のそれよりも厚くなっている
。なお、通常のバイポーラプロセスの中で用いられるも
のでアンチモンより、拡散係数の大きいN十形不純物と
してはP (リン)が知られているが、これはエピタキ
シャル成長中にガス化してエピタキシャル層全体に入り
込み、屓の濃度を設定値と異ならせるオートドープが生
じるので埋込み雇用不純物としては好ましくない。
Therefore, there is a difference in the amount of upwelling during epitaxial growth between the two buried layers, and the layer thickness of the second buried Fi 130 is thicker than that of the first buried Jii 120. Phosphorus (P) is known as an N-type impurity that is used in normal bipolar processes and has a higher diffusion coefficient than antimony, but it gasifies during epitaxial growth and penetrates into the entire epitaxial layer. This is not preferable as a buried impurity because it causes autodoping that makes the concentration of the filtrate different from the set value.

〈発明の効果〉 リニア素子と12Lを同一半導体基板上に形成した半導
体装置においてリニア素子の耐圧を損なうことなくロジ
ック素子としての121、のhfe及び周波数特性を向
上させることができる。
<Effects of the Invention> In a semiconductor device in which a linear element and 12L are formed on the same semiconductor substrate, the hfe and frequency characteristics of 121 as a logic element can be improved without impairing the breakdown voltage of the linear element.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例を示す断面図、第2図は従来例
を示す断面図である。 20・・・アイソレーション’R530a 、 30b
  ・・・エピタキシャル層、40・・・縦型トランジ
スタ、50・・・I2L、100  ・・・マルチコレ
クタトランジスタのベース領域、120  ・・・第1
の埋込み層、130  ・・・第2の埋込み石。
FIG. 1 is a sectional view showing an embodiment of the present invention, and FIG. 2 is a sectional view showing a conventional example. 20...Isolation'R530a, 30b
...Epitaxial layer, 40...Vertical transistor, 50...I2L, 100...Base region of multi-collector transistor, 120...First
Embedded layer, 130...Second embedded stone.

Claims (1)

【特許請求の範囲】[Claims] (1)アイソレーション層で分離されたエピタキシャル
層の一方に縦型トランジスタを形成し、他方にI^2L
を形成した半導体装置において、縦型トランジスタの下
部にアンチモンを拡散した第1の埋込み層を設けるとと
もに、I^2Lを構成するマルチコレクタトランジスタ
のベース領域に接する砒素を拡散した第2の埋込み層を
設けたことを特徴とする半導体装置。
(1) A vertical transistor is formed on one side of the epitaxial layer separated by an isolation layer, and an I^2L transistor is formed on the other side.
In the semiconductor device formed with the above structure, a first buried layer in which antimony is diffused is provided below the vertical transistor, and a second buried layer in which arsenic is diffused is provided in contact with the base region of the multi-collector transistor constituting I^2L. A semiconductor device characterized in that:
JP62123244A 1987-05-20 1987-05-20 Semiconductor device Pending JPS63288055A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62123244A JPS63288055A (en) 1987-05-20 1987-05-20 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62123244A JPS63288055A (en) 1987-05-20 1987-05-20 Semiconductor device

Publications (1)

Publication Number Publication Date
JPS63288055A true JPS63288055A (en) 1988-11-25

Family

ID=14855773

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62123244A Pending JPS63288055A (en) 1987-05-20 1987-05-20 Semiconductor device

Country Status (1)

Country Link
JP (1) JPS63288055A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02251171A (en) * 1989-03-24 1990-10-08 Nec Yamagata Ltd Semiconductor device
US7064416B2 (en) * 2001-11-16 2006-06-20 International Business Machines Corporation Semiconductor device and method having multiple subcollectors formed on a common wafer

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02251171A (en) * 1989-03-24 1990-10-08 Nec Yamagata Ltd Semiconductor device
US7064416B2 (en) * 2001-11-16 2006-06-20 International Business Machines Corporation Semiconductor device and method having multiple subcollectors formed on a common wafer
US7303968B2 (en) 2001-11-16 2007-12-04 International Business Machines Corporation Semiconductor device and method having multiple subcollectors formed on a common wafer

Similar Documents

Publication Publication Date Title
US4038680A (en) Semiconductor integrated circuit device
US4826780A (en) Method of making bipolar transistors
US4087900A (en) Fabrication of semiconductor integrated circuit structure including injection logic configuration compatible with complementary bipolar transistors utilizing simultaneous formation of device regions
US6093613A (en) Method for making high gain lateral PNP and NPN bipolar transistor compatible with CMOS for making BICMOS circuits
JPH05121678A (en) Monolithic semiconductor device and its preparation
JPH06151723A (en) Bipolar transistor structure of monolithic semiconductor element and manufacture of said monolithic semiconductor element
US4210925A (en) I2 L Integrated circuit and process of fabrication
US3969748A (en) Integrated multiple transistors with different current gains
US3595713A (en) Method of manufacturing a semiconductor device comprising complementary transistors
US4255209A (en) Process of fabricating an improved I2 L integrated circuit utilizing diffusion and epitaxial deposition
US3657612A (en) Inverse transistor with high current gain
KR940008566B1 (en) Manufacturing method of semiconductor device
US4260430A (en) Method of manufacturing a semiconductor device
US5065214A (en) Integrated circuit with complementary junction-isolated bipolar transistors
US3969747A (en) Complementary bipolar transistors with IIL type common base drivers
US3993512A (en) Method of manufacturing an integrated circuit utilizing outdiffusion and multiple layer epitaxy
US4132573A (en) Method of manufacturing a monolithic integrated circuit utilizing epitaxial deposition and simultaneous outdiffusion
JPS63288055A (en) Semiconductor device
US4599635A (en) Semiconductor integrated circuit device and method of producing same
JPH0582986B2 (en)
US3562032A (en) Method of manufacturing an integrated semiconductor device
KR920010434B1 (en) Semiconductor device having a bipolar transistor and iil
US4459606A (en) Integrated injection logic semiconductor devices
JPS6133261B2 (en)
US5016079A (en) Integrated injection logic gate with heavily doped diffusion