JPS6130168B2 - - Google Patents

Info

Publication number
JPS6130168B2
JPS6130168B2 JP10875278A JP10875278A JPS6130168B2 JP S6130168 B2 JPS6130168 B2 JP S6130168B2 JP 10875278 A JP10875278 A JP 10875278A JP 10875278 A JP10875278 A JP 10875278A JP S6130168 B2 JPS6130168 B2 JP S6130168B2
Authority
JP
Japan
Prior art keywords
oxygen concentration
zone
combustion
air
flow rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP10875278A
Other languages
Japanese (ja)
Other versions
JPS5535837A (en
Inventor
Kenya Fukushima
Takaaki Nishimura
Shinsuke Masuda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP10875278A priority Critical patent/JPS5535837A/en
Publication of JPS5535837A publication Critical patent/JPS5535837A/en
Publication of JPS6130168B2 publication Critical patent/JPS6130168B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N5/00Systems for controlling combustion
    • F23N5/003Systems for controlling combustion using detectors sensitive to combustion gas properties
    • F23N5/006Systems for controlling combustion using detectors sensitive to combustion gas properties the detector being sensitive to oxygen

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Regulation And Control Of Combustion (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は加熱炉の燃焼制御方法に関し、詳しく
は多帯式加熱炉の酸素濃度制御による燃焼制御方
法に関するものである。 一般に加熱炉において燃焼排ガス中の酸素濃度
を制御する目的は、 (1) 燃料の不完全燃焼を避ける(黒煙を発生させ
ない)、 (2) 必要最小限の空気を与えて燃焼させることに
より、燃料原単位の低下及びNOXの発生を抑え
る、 等にある。つまり燃焼状態を最適にすることにあ
る。 一般的に上記目的(1),(2)を達成するため酸素濃
度を制御する場合の具体的な酸素濃度の目標値
は、0.5〜1.5%の酸素濃度である。酸素濃度が0.5
〜1.5%を超えた燃焼状態では、NOXの発生が増
加し、公害上問題であり熱効率(燃料原単位)も
悪くなる。一方、酸素濃度が0.5〜1.5%以下の燃
焼状態では、黒煙が発生し、公害上問題であると
共に熱効率(燃料原単位)も悪くなる。従つて多
帯式加熱炉の酸素濃度制御においても、各帯の排
ガス中の酸素濃度が上記目標値になる様に各帯の
燃焼制御系に於ける空気過剰係数を決定しなけれ
ばならない。これが出来なければ上記制御目的
(1),(2)は達成し得ない。 従来の多帯式加熱炉の酸素濃度制御法は、多帯
式加熱炉の炉尻部で燃焼排ガスをサンプリング
し、酸素濃度を分析し、所望の酸素濃度になるよ
うに酸素濃度調節計から各燃焼帯の空燃比設定器
に、各燃焼帯の所定の配分比を定める設定器を介
してカスケードに空燃比を与え、各燃焼帯の空気
流量設定信号に修正動作をかけて空気流量を制御
するものであつた。 しかしながらこの様な従来の酸素濃度制御法
は、多帯式加熱炉の各帯の燃焼排ガスが混合した
結果の混合燃焼排ガス中の酸素濃度を目標値に制
御するものであるから、各帯の燃焼制御系で作ら
れた燃焼排ガス中の酸素濃度が目標値になつてい
るとは限らないので、酸素濃度制御の目的が完全
には達成され得ないという問題がある。そこで、
多帯式加熱炉の各燃焼帯毎に燃焼排ガス中の酸素
濃度を測定する酸素濃度計を設置して、その酸素
濃度が目標値になる様に燃焼制御系の空気過剰係
数を決定すれば良いと考えられるが、各燃焼帯に
設置された酸素濃度計が計測する排ガスはその帯
の燃焼制御系で発生した燃焼排ガスだけでなく、
炉内の排ガス流の上流にある燃焼帯の排ガスが混
合したものであり、各燃焼帯に設置された酸素濃
度計の測定値は、各燃焼帯の燃焼制御系のみが作
り出した燃焼排ガスのみの酸素濃度ではない。こ
のような他の燃焼帯の影響を受ける酸素濃度測定
値にもとずいて酸素濃度制御を各燃焼帯で独立し
て行なつても、制御目的を達成することはできな
い。 そこで本発明では多帯式加熱炉の各燃焼帯にお
ける燃焼状態を最適にするため、各燃焼帯毎に酸
素濃度計を設置するが、各燃焼帯の酸素濃度を一
定の目標値に保つべく各燃焼帯の排ガスがどのよ
うに相互干渉しあつて酸素濃度計に伝播してくる
かを把握して各燃焼帯の燃焼制御系の空気過剰係
数を決定する。 即ち本発明の制御方法の要旨は、複数個の燃焼
帯を有する加熱炉の各燃焼帯へ供給される燃料流
量及び空気流量を所望の炉温に従つて制御する多
帯式加熱炉の燃焼制御方法において:各燃焼帯の
空気過剰係数変化量を入力とし各燃焼帯の排ガス
中の酸素濃度変化量を出力する下記の状態記述及
び各燃焼帯の目標酸素濃度を予じめ定めておき;
所定周期で各燃焼帯の、排ガス中の酸素濃度、燃
料流量および空気流量を測定し;これらの測定値
にもとづき該状態記述式の中の伝達行列をカルマ
ンフイルターを適用して同定し;各燃焼帯の目標
酸素濃度及び該状態記述式より各燃焼帯の空気過
剰係数変化量を求めて;求めた空気過剰係数変化
量より、各燃焼帯へ供給する燃料流量と空気流量
の空燃比を定める;ことを特徴とする、多帯式加
熱炉の酸素濃度による燃焼制御方法; y(k)=B(k)u(k)+ω(k), y(k):酸素濃度変化量, B(k):伝達行列(各燃焼帯の排ガス中の
酸素濃度相互干渉係数行列), u(k):空気過剰係数変化量, ω(k):白色ガウス性雑音,および、 k:時刻、 にある。 以下本発明の多帯式加熱炉の酸素濃度制御によ
る燃焼制御方法を3帯式加熱炉を例にとり説明す
る。 第1図に3帯式加熱炉内における排ガスの相互
干渉状態を示す。第1図に於て、1は均熱帯、2
は上部加熱帯、3は下部加熱帯、4は加熱炉内の
スラブ5の装入側に設けられた煙道を示す。6,
7および8はそれぞれ上記均熱、上部加熱および
下部加熱帯1,2および3のバーナーの配置位置
を示す(以下バーナーと称す)。9,10および
11は上記各燃焼帯1,2および3の排ガスの出
口部に設けた酸素濃度計を示す。 スラブ5は矢印AR方向に加熱帯2,3から均
熱帯1へ向つて炉内を移動する。各燃焼帯の排ガ
スは、スラブ5の移動方向と逆方向に流れて煙道
4へ至る。 均熱帯1のバーナー6に於て、空気過剰係数μ
で燃料と空気を燃焼した結果生じる燃焼排ガス
は、均熱帯1および上、下部加熱帯2,3を通つ
て煙道4へ流れるから、この燃焼帯1の燃焼排ガ
スの酸素濃度は、均熱帯1の酸素濃度計9の測定
値O1にのみならず、上部、下部加熱帯2,3の
酸素濃度計10,11の測定値O2,O3にも影響
を与える。 又、上部加熱帯2のバーナー7に於て、空気過
剰係数μで燃料と空気を燃焼した結果生じる燃
焼排ガス中の酸素濃度は、該帯2の濃度計10の
測定値O2のみならず、下部加熱帯3の濃度計1
1の測定値O3にも影響を与える。更に又、下部
加熱帯3のバーナー8に於て、空気過剰係数μ
で燃料と空気を燃焼した結果生じる燃焼排ガス中
の酸素濃度は、該帯3及び上部加熱帯2の濃度計
11及び10の測定値O3及びO2に影響を与え
る。 今、均熱帯1のバーナー6には空気過剰係数μ
で、上部加熱帯2のバーナー7には空気過剰係
数μで、下部加熱帯3のバーナー8には空気過
剰係数μで燃料と空気を供給して燃焼させたと
し、この時の均熱帯1、加熱帯2および加熱帯3
の燃焼排ガス量をそれぞれF1,F2およびF3
し、更に上記各燃焼帯1,2および3の濃度計
9,10および11で測定した酸素濃度をそれぞ
れO1,O2およびO3とし、更に1つの燃焼帯iの
バーナーの(過剰空気率C=空気過剰係数−
1.0)が他の燃焼帯iの酸素濃度計の測定値に与
える影響係数(伝達係数)をgijとする。 1:均熱帯 但し、i,j= 2:上部加熱帯 である。 3:下部加熱帯 この場合、炉内に於ける排ガスの相互干渉の状
態、即ち、各燃焼帯の空気過剰係数を入力とし、
各燃焼帯の酸素濃度計の酸素濃度を出力とする状
態記述式は、次の様に記述できる。 但し μi:燃焼帯iのバーナーの空気過剰係
数 Fi:空気過剰係数μiで空気と燃料が燃
焼した時にできる排ガスの量 Oi:酸素濃度計で測定した酸素濃度 gij:燃焼帯iのバーナーの空気過剰率
(μi−1.0)が燃焼帯jの酸素濃度
計の測定値に与える影響係数(伝達
係数)
The present invention relates to a method for controlling combustion in a heating furnace, and more particularly to a method for controlling combustion in a multi-zone heating furnace by controlling oxygen concentration. Generally, the purpose of controlling the oxygen concentration in the combustion exhaust gas in a heating furnace is to (1) avoid incomplete combustion of the fuel (not generate black smoke), (2) provide the minimum amount of air necessary for combustion, and These include reducing fuel consumption and suppressing NOx emissions. In other words, the goal is to optimize combustion conditions. Generally, when controlling the oxygen concentration to achieve the above objectives (1) and (2), a specific target value of the oxygen concentration is an oxygen concentration of 0.5 to 1.5%. Oxygen concentration is 0.5
In a combustion state exceeding ~1.5%, the generation of NOx increases, which is a pollution problem, and thermal efficiency (fuel consumption rate) also deteriorates. On the other hand, in a combustion state where the oxygen concentration is 0.5 to 1.5% or less, black smoke is generated, which poses a pollution problem and also deteriorates thermal efficiency (fuel consumption rate). Therefore, in controlling the oxygen concentration of a multi-zone heating furnace, it is necessary to determine the excess air coefficient in the combustion control system for each zone so that the oxygen concentration in the exhaust gas in each zone reaches the above-mentioned target value. If this is not possible, the above control purpose
(1) and (2) cannot be achieved. The conventional method for controlling oxygen concentration in multi-zone heating furnaces is to sample the combustion exhaust gas at the bottom of the multi-zone heating furnace, analyze the oxygen concentration, and adjust the oxygen concentration from an oxygen concentration controller to the desired oxygen concentration. The air-fuel ratio is given to the combustion zone air-fuel ratio setting device in a cascade through the setting device that determines a predetermined distribution ratio for each combustion zone, and the air flow rate is controlled by correcting the air flow rate setting signal for each combustion zone. It was hot. However, such conventional oxygen concentration control methods control the oxygen concentration in the mixed combustion exhaust gas, which is the result of mixing combustion exhaust gases from each zone of a multi-zone heating furnace, to a target value. Since the oxygen concentration in the combustion exhaust gas produced by the control system does not always reach the target value, there is a problem in that the purpose of oxygen concentration control cannot be completely achieved. Therefore,
Install an oxygen concentration meter to measure the oxygen concentration in the flue gas in each combustion zone of a multi-zone heating furnace, and determine the excess air coefficient of the combustion control system so that the oxygen concentration reaches the target value. However, the exhaust gas measured by the oxygen concentration meter installed in each combustion zone includes not only the combustion exhaust gas generated by the combustion control system in that zone, but also the exhaust gas measured by the oxygen concentration meter installed in each combustion zone.
It is a mixture of exhaust gas from the combustion zone located upstream of the flue gas flow in the furnace, and the measured value of the oxygen concentration meter installed in each combustion zone is only the flue gas produced by the combustion control system of each combustion zone. It's not the oxygen concentration. Even if oxygen concentration control is performed independently in each combustion zone based on oxygen concentration measurement values that are affected by other combustion zones, the control objective cannot be achieved. Therefore, in the present invention, in order to optimize the combustion state in each combustion zone of a multi-zone heating furnace, an oxygen concentration meter is installed in each combustion zone. The excess air coefficient of the combustion control system for each combustion zone is determined by understanding how the exhaust gases in the combustion zone interact with each other and propagate to the oxygen concentration meter. That is, the gist of the control method of the present invention is to control the combustion of a multi-zone heating furnace in which the fuel flow rate and air flow rate supplied to each combustion zone of a heating furnace having a plurality of combustion zones is controlled according to a desired furnace temperature. In the method: The following state description and target oxygen concentration for each combustion zone are determined in advance, in which the amount of change in the air excess coefficient of each combustion zone is input and the amount of change in oxygen concentration in the exhaust gas of each combustion zone is output;
Measure the oxygen concentration in the exhaust gas, the fuel flow rate, and the air flow rate in each combustion zone at a predetermined period; Based on these measured values, identify the transfer matrix in the state description equation by applying a Kalman filter; Determine the amount of change in the air excess coefficient for each combustion zone from the target oxygen concentration of the zone and the state description equation; Determine the air-fuel ratio of the fuel flow rate and air flow rate to be supplied to each combustion zone from the determined amount of change in the air excess coefficient; Combustion control method using oxygen concentration in a multi-zone heating furnace, characterized by ): transfer matrix (oxygen concentration mutual interference coefficient matrix in exhaust gas in each combustion zone), u(k): amount of change in air excess coefficient, ω(k): white Gaussian noise, and k: time. The method for controlling combustion by controlling oxygen concentration in a multi-zone heating furnace according to the present invention will be explained below by taking a three-zone heating furnace as an example. FIG. 1 shows the state of mutual interference of exhaust gases in a three-zone heating furnace. In Figure 1, 1 is the soaking zone, 2
3 indicates an upper heating zone, 3 indicates a lower heating zone, and 4 indicates a flue provided on the charging side of the slab 5 in the heating furnace. 6,
7 and 8 indicate the positions of burners in the soaking, upper heating, and lower heating zones 1, 2, and 3, respectively (hereinafter referred to as burners). Reference numerals 9, 10, and 11 indicate oxygen concentration meters provided at the exhaust gas exits of the combustion zones 1, 2, and 3, respectively. The slab 5 moves in the furnace from the heating zones 2 and 3 toward the soaking zone 1 in the direction of arrow AR. The exhaust gas in each combustion zone flows in a direction opposite to the direction of movement of the slab 5 and reaches the flue 4. In burner 6 in soaking zone 1, excess air coefficient μ
The combustion exhaust gas resulting from the combustion of fuel and air in step 1 flows to the flue 4 through the soaking zone 1 and the upper and lower heating zones 2 and 3, so the oxygen concentration of the combustion exhaust gas in the combustion zone 1 is It affects not only the measured value O 1 of the oxygen concentration meter 9 of No. 1 but also the measured values O 2 and O 3 of the oxygen concentration meters 10 and 11 of the upper and lower heating zones 2 and 3 . Furthermore, in the burner 7 of the upper heating zone 2, the oxygen concentration in the combustion exhaust gas produced as a result of burning fuel and air with an air excess coefficient μ 2 is not only the value O 2 measured by the concentration meter 10 of the zone 2. , concentration meter 1 in lower heating zone 3
It also affects the measured value O 3 of 1. Furthermore, in the burner 8 of the lower heating zone 3, the air excess coefficient μ 3
The oxygen concentration in the flue gas resulting from the combustion of fuel and air in the heating zone affects the measured values O 3 and O 2 of the densitometers 11 and 10 in the zone 3 and the upper heating zone 2 . Now, burner 6 in soaking zone 1 has an excess air coefficient μ
1 , fuel and air are supplied to burner 7 in upper heating zone 2 with excess air coefficient μ 2 , and burner 8 in lower heating zone 3 with excess air coefficient μ 3 for combustion. Tropical zone 1, heated zone 2 and heated zone 3
Let the combustion exhaust gas amounts of the above combustion zones 1, 2, and 3 be respectively F 1 , F 2 , and F 3 , and the oxygen concentrations measured by the concentration meters 9, 10, and 11 in each combustion zone 1, 2, and 3 above as O 1 , O 2 , and O 3 , respectively. , and (excess air ratio C = excess air coefficient -
The influence coefficient (transfer coefficient) that 1.0) has on the measured value of the oxygen concentration meter in other combustion zone i is assumed to be g ij . 1: Soaking zone However, i, j = 2: Upper heating zone. 3: Lower heating zone In this case, input the state of mutual interference of exhaust gas in the furnace, that is, the excess air coefficient of each combustion zone,
The state description formula that outputs the oxygen concentration of the oxygen concentration meter in each combustion zone can be written as follows. However, μi: Air excess coefficient of the burner in combustion zone i Fi: Amount of exhaust gas produced when air and fuel are combusted with air excess coefficient μ i Oi: Oxygen concentration measured with an oxygen concentration meter g ij : Influence coefficient (transfer coefficient) of excess air ratio (μi-1.0) on the measurement value of oxygen concentration meter in combustion zone j

【表】 〓3:下部加熱帯
第(1)式は、炉内に於ける燃焼排ガスの相互干渉
の状態を、燃焼帯iの過剰空気率(μi−1)
と、燃焼帯iの排ガス量Fiと、伝達係数gijとの
積を燃焼帯jの酸素濃度計の設置されている炉の
断面を通過する全体の排ガス量で割つた値で、燃
焼帯iの過剰空気率が燃焼帯iの酸素濃度計の測
定値に影響を与えると仮定している状態記述式で
ある。 第(1)式中の排ガスの量Fiは、次の式により求
めることができる。 μi=Fai/CaFfi …(2) Fi=GowFfi+(Fai−CaFfi) …(3) 但し、Gow:単位燃料当りの理論排ガス量(水
蒸気を含む) Ca :単位燃料当りの理論空気量 Ffi:燃料流量 Fai:空気過剰係数μiのときの空気量 Fai=μiCaFfi μiCa=Fai/Ffi:空燃比 従つて第(1)式の伝達行列
[Table] 3: Lower heating zone Equation (1) expresses the state of mutual interference of combustion exhaust gas in the furnace by the excess air ratio (μi-1) of combustion zone i.
is the product of the exhaust gas amount Fi in combustion zone i and the transfer coefficient g ij divided by the total amount of exhaust gas passing through the cross section of the furnace where the oxygen concentration meter in combustion zone j is installed. This is a state description equation that assumes that the excess air ratio of i affects the measured value of the oxygen concentration meter in combustion zone i. The amount of exhaust gas Fi in equation (1) can be determined by the following equation. μi=Fai/CaFfi...(2) Fi=GowFfi+(Fai-CaFfi)...(3) However, Gow: Theoretical amount of exhaust gas per unit fuel (including water vapor) Ca: Theoretical amount of air per unit fuel Ffi: Fuel flow rate Fai: Air amount when excess air coefficient μi Fai=μiCaFfi μiCa=Fai/Ffi: Air-fuel ratio Therefore, the transfer matrix of equation (1)

【式】を決定できれば、目 標の酸素濃度にするための最適な空気過剰係数μ
iは、伝達行列Gを用いて決定することができ
る。即ち第(1)式を変形した次式で求めることがで
きる。 但し、μi:目標酸素濃度にするための空気過
剰係数 i:各帯酸素濃度目標値
If [formula] can be determined, the optimal excess air coefficient μ to achieve the target oxygen concentration
i can be determined using the transfer matrix G. That is, it can be obtained using the following equation, which is a modification of equation (1). However, μi: excess air coefficient to achieve the target oxygen concentration i: target oxygen concentration value for each zone

【表】 〓3:下部加熱帯
しかしながら、本発明者が実際の加熱炉に於け
る第(1)式の伝達行列を調査したところ、ある分散
をもつた白色ガウス性の雑音を含んでいることが
判明した。又酸素濃度計の測定値もある分散をも
つた白色ガウス性の雑音を含んでいることが判明
した。従つて第(1)式から伝達行列を直接求めるこ
とは不可能である。このような場合には、カルマ
ンフイルターが有効であることが知られている。 カルマンフイルターは、観測系と雑音の性質が
与えられている場合、プラントへの入力値と観測
値を知つて内部状態を推定する手法である。従つ
て、本発明では、上記プラントへの入力値を空気
過剰係数とし、観測値を排ガス中の酸素濃度と
し、内部状態を伝達行列とみなすことによりカル
マンフイルターを適用して伝達行列を同定する。 以下第(1)式の加熱炉内状態記述式の中の伝達行
列のカルマンフイルターによる同定方法について
述べる。 第(1)式は、酸素濃度計の測定値が雑音を含んで
いない場合に成立する状態記述式であり、実際の
酸素濃度計の測定値は、ある平均値をもつ白色ガ
ウス性の雑音を含んでいることがわかつているの
で、第(1)式の右辺に上記雑音を加え更にその雑音
の平均値を相殺させるため、排ガス量比がおおむ
ね一定の時は炉内排ガスの相互干渉の様子を下記
の如く差分形式で記述するとする。 但し、ΔOi:一定時間内の排ガス酸素濃度の
変化量 Δμi:一定時間内の空気過剰係数の変
化量 ωi:観測ノイズ Fi:各帯燃焼排ガス量
[Table] 〓3: Lower heating zone
However, when the present inventor investigated the transfer matrix of equation (1) in an actual heating furnace, it was found that it contained white Gaussian noise with a certain dispersion. It was also found that the measured values of the oxygen concentration meter contained white Gaussian noise with a certain dispersion. Therefore, it is impossible to directly obtain the transfer matrix from equation (1). It is known that the Kalman filter is effective in such cases. Kalman filter is a method for estimating the internal state of a plant by knowing the input values and observed values, given the characteristics of the observation system and noise. Therefore, in the present invention, the input value to the plant is the air excess coefficient, the observed value is the oxygen concentration in the exhaust gas, and the internal state is regarded as the transfer matrix, so that the transfer matrix is identified by applying a Kalman filter. Below, a method for identifying the transfer matrix in the equation (1) describing the state inside the heating furnace using a Kalman filter will be described. Equation (1) is a state description equation that holds true when the measured value of the oximeter does not include noise, and the actual measured value of the oximeter contains white Gaussian noise with a certain average value. Since it is known that the above noise is included on the right side of equation (1), and the average value of the noise is canceled out, when the exhaust gas amount ratio is approximately constant, the mutual interference of the exhaust gas in the furnace is calculated. Suppose that is written in the differential format as shown below. However, ΔOi: Amount of change in exhaust gas oxygen concentration within a certain time Δμi: Amount of change in excess air coefficient within a certain time ωi: Observation noise Fi: Amount of combustion exhaust gas in each zone

【式】:伝達行列[Formula]: Transfer matrix

【表】 〓3:下部加熱帯
上記観測ノイズωiは、白色ガウス性雑音でか
つ分散の大きさがわかつているからカルマンフイ
ルターによる伝達行列の同定が可能である。具体
的には、第(5)式を離散値系で記述し、第(5)式を第
(6)式に変形する。 y(k)=B(k)u(k)+ω(k) ……(6) 但し、 排ガス酸素濃度変化量: (観測値) 伝達行列: 空気過剰係数変化量: (入力値) 白色ガウス性ノイズ: (観測ノイズ) 但し′は転置行列を示す。 ここでカルマンフイルターを適用して第(6)式の
B(k)を同定するため、以下の様に変形する。 h′(k)=〔b11(k)OOb21(k)b22(k)b23
(k)b31(k)b32(k)b33(k)〕 ……(6e) とおいて第(6)式は y(k)=M(k)h(k)+ω(k) ……(7) となる。ここでhつまりGは雑音を含んでいるこ
とがわかつているのでh(k)とh(k+1)と
の関係はv(k)を白色ガウス性の付加雑音とし
て、 h(k+1)=Ψ(k)h(k)+v(k)
……(8) となる。 サンプリング周期(時刻kと時刻k+1との間
の時間)を充分長くとると第(8)式は定常状態を表
現する必要がある。定常状態を表わすためには遷
移行列Ψ(k)を単位行列にすれば良いから、 h(k+1)=h(k)+v(k) ……(9) となる。第(7)式第(9)式によりカルマンフイルタの
基本式を使用して第(6)式のB(k)の同定が可能
である。 第(6)式の伝達行列をB(k)を同定するために
は、観測値y(k)と入力値u(k)を知らなけ
ればならない。観測値(排ガス酸素濃度変化量)
y(k)は酸素濃度計の測定値から算出できる
し、入力値(空気過剰係数変化量)u(k)は空
気と燃料流量の測定値を用いて算出できる。 又、伝達行列B(k)から伝達行列G(k)を
決定するには排ガス量Fi(k)を知らなければ
ならない。 上記排ガス量Fi(k)は、空気流量及び燃料
流量の測定値、理論排ガス量、理論空気量および
空気過剰係数を用いて算出できる。具体的には、
排ガス酸素濃度は、Δt秒間隔でt1秒の間(t1
Δt)回取り込み、その平均値を採用する。 空気過剰係数としては、Δt秒間隔で空気流量
及び燃料流量の測定値を取り込み、そのつど理論
空気量を用いて第(2)式に従つて演算し、(t1/Δ
t)回繰り返してその平均値を採用する。排ガス
量は、Δt秒間隔で空気流量及び燃料流量の測定
値を取り込み、そのつど理論排ガス量および理論
空気量を用いて第(2)、(3)式に従つて演算すること
を(t1/Δt)回繰り返して、その平均値を採用
する。 以上に説明した本発明の酸素濃度制御に於ける
伝達行列G(k)の決定手順を要約すると次の通
りである。 (1) 各帯の酸素濃度、燃料流量および空気流量を
Δt秒間隔でt1秒の間(t1/Δt)回測定し、
測定のつど上記燃料と空気の測定値にもとずき
第(2)、(3)式に従つて空気過剰係数及び排ガス量
を計算し、上記酸素濃度、上記空気過剰係数お
よび排ガス量の平均値をOi(k),μi(k)
およびFi(k)として決定する。 (2) 各帯の酸素濃度Oi(k)及び空気過剰係数
μi(k)についてそれぞれ前回値Oi(k−
1)およびμi(k−1)との差を求めて第(6)
式を作成する。 (3) 第(7)、(9)式を作成し、カルマンフイルターに
よる伝達行列B(k)の同定を行なう。 (4) 伝達行列B(k)と排ガス量Fi(k)とを
用いて伝達行列G(k)を決定する。 即ち、以上の様に各帯の酸素濃度、燃料流量お
よび空気流量を測定し、これらの測定値にもとず
き第(1)式の状態記述式中の伝達行列Gをカルマン
フイルターを適用して同定し、決定する。 本発明では、上記伝達行列G(k)を用いて各
帯の酸素濃度が目標値になるように各帯の空気過
剰係数を定めるが、この手順は次の通りである。 (1) 各帯の酸素濃度の測定値と目標酸素濃度の偏
差を定める。 (2) 第(1)式に従つて上記伝達行列G(k)と、排
ガス量Fi(k)と、上記目標酸素濃度の偏差
とを用い、上記空気過剰係数μi(k)よりの
偏差を求める。 (3) 上記空気過剰係数μi(k)と上記偏差とよ
り、各帯の酸素濃度を目標値にする空気過剰係
数を決定する。 又、本発明は上記の如くして決定された空気過
剰係数にもとずいて、炉の燃焼制御系の空気過剰
係数を操作するものである。ところで本発明で伝
達行列B(k)を決定するために使用する第(9)式
は定常状態を表わす式であるため、炉の空気過剰
係数を操作後、炉が安定となるまで、t2秒間待ち
再び酸素濃度、空気流量および燃料流量を採取す
る。従つて本発明では(t1+t2)秒間隔で炉の空気
過剰係数を操作する。なお、t2秒は新しい空気過
剰係数で炉が安定しかつ酸素濃度計が新しい空気
過剰係数による排ガスを検出するに充分な時間で
ある。 第2図に、本発明の制御方法を実施する制御装
置を示す。これにおいて、1は均熱帯、2,3は
上、下部加熱帯であり、6,7,8は上記各帯
1,2,3のバーナー、9,10,11は各帯
1,2,3の酸素濃度計、12,13,14は各
帯1,2,3の熱電対である。15,16,17
は上記帯1,2,3の燃焼制御系であり、18は
電子計算機である。 19a,19b,19cは炉温調節計、20
a,20b,20cは炉温調節計19a,19
b,19cからの指令により燃料流量を調節する
ための燃料流量調節計、21a,21b,21c
は流量調節弁、22a,22b,22cはオリフ
イス、23a,23b,23cは配管、24a,
24b,24cは発振器、25a,25b,25
cは空燃比設定器、26a,26b,26cは空
燃比設定器25a,25b,25cからの指令に
より空気流量を調節するための空気流量調節計で
ある。 今計算機18に各帯1,2,3内の目標温度、
並びに、各帯1,2,3内の目標酸素濃度、理論
空気量および理論排ガス量が設定されると、炉温
調節計19a,19b,19cが熱電対12,1
3,14からの測定温度信号を受けて、入力偏差
が零になるように燃料流量調節計20a,20
b,20cに燃料流量設定値を与え、調節計20
a,20b,20cは、それぞれオリフイス22
a,22b,22cの差圧信号を電気信号に変換
する発信器24a,24b,24cを介して得た
燃料流量測定値が上記の設定値に一致するように
調節弁21a,21b,21cを調節する。 一方空気流量調節計26a,26b,26c
は、空燃比設定器25a,25b,25cからの
空気流量設定値に空気流量測定値が一致するよう
に調節弁22a,22b,22cの開閉を制御す
る。空燃比設定器25a,25b,25cからの
空気流量設定値は、燃料流量調節計19a,19
b,19cよりの燃料流量設定値と、計算機18
で計算され所定周期で設定される空燃比とで設定
されるようになつている。計算機18は、各燃焼
帯1,2,3の濃度計9,10,11から酸素濃
度を、又各帯1,2,3の燃焼制御系15,1
6,17の燃料流量及び空気流量測定値を取り込
むようになつている。また、計算機18は(t1
t2)秒間隔で各帯1,2,3の酸素濃度、燃料流
量および空気流量の測定値の取り込みを開始し、
Δt秒間隔でt1秒の間(t1/Δt)回取り込む。
上記酸素濃度の測定値については、その平均値を
Oi(k)として記憶し、一方燃料流量および空
気流量の測定値については取り込み毎に、理論空
気量と理論排ガス量を用いて、空気過剰係数と排
ガス量を演算記憶し、その平均値をμi(k),
Fi(k)として記憶する。 酸素濃度Oi(k)、空気過剰係数μi(k)お
よび排ガス量Fi(k)が決定されると計算機1
8は、上記各帯1,2,3の酸素濃度Oi(k)
および空気過剰係数μi(k)について、(t1
t2)秒前に決定され記憶されている前回値Oi(k
−1)およびμi(k−1)との差を求めて、前
記第(6)式を作成する。 次に計算機18は、前記第(7)、(9)式を作成し、
カルマンフイルターによる伝達行列B(k)の最
適値の同定を行なう。次に該伝達行列B(k)と
排ガス量Fi(k)とより第(6b)式に従つて伝
達行列G(k)を定める。そして次に各帯1,
2,3の酸素濃度目標値と、各帯1,2,3の上
記酸素濃度Oi(k)とから各帯1,2,3の酸
素濃度偏差を求め、第(1)式の状態記述式に従つて
上記伝達行列G(k)と各帯の排ガス量Fi
(k)と上記酸素濃度偏差より、各帯の酸素濃度
を目標値にする各帯の空気過剰係数μi(k)か
らの偏差を計算する。そして上記空気過剰係数μ
i(k)と上記偏差とを加算して目標酸素濃度に
する空気過剰係数の最適値を得る。該空気過剰係
数と理論空気量とから各帯の空燃比を計算する。 該空燃比を各帯の燃焼制御系15,16,17
の空燃比設定器25a,25b,25cに設定す
る。 空燃比を設定後t2秒間経過すると、計算機18
は、各帯の酸素濃度、燃料流量および空気流量の
測定値の取り込みを開始する。 従つて計算機18は(t1+t2)秒間隔で、目標酸
素濃度にする各帯の最適空気過剰係数を決定し、
各帯の空燃比を空燃比設定器25a,25b,2
5cに設定する。 以上に説明した本発明は、各燃焼帯の燃焼排ガ
スがどのように相互干渉しあつて各燃焼帯の酸素
濃度計に伝播してくるかを時々刻々把握して各燃
焼帯の酸素濃度を一定の目標値になるように各燃
焼帯の空気過剰係数を定めるものであるから、各
燃焼帯の燃焼状態を最適に保つことができる。
[Table] 〓3: Lower heating zone
Since the observation noise ωi is white Gaussian noise and the magnitude of variance is known, the transfer matrix can be identified using a Kalman filter. Specifically, equation (5) is written as a discrete value system, and equation (5) is written as
Transform into equation (6). y(k)=B(k)u(k)+ω(k)...(6) However, the amount of change in exhaust gas oxygen concentration: (observed value) Transfer matrix: Excess air coefficient change amount: (Input value) White Gaussian noise: (Observation noise) However, ′ indicates the transposed matrix. Here, in order to identify B(k) in equation (6) by applying a Kalman filter, it is transformed as follows. h′(k)=[b 11 (k)OOb 21 (k)b 22 (k)b 23
(k) b 31 (k) b 32 (k) b 33 (k)] ...(6e) Then, equation (6) becomes y(k)=M(k)h(k)+ω(k)...(7). Here, it is known that h, that is, G, contains noise, so the relationship between h(k) and h(k+1) is as follows, where v(k) is white Gaussian additive noise, h(k+1)=Ψ( k)h(k)+v(k)
...(8) becomes. If the sampling period (time between time k and time k+1) is set sufficiently long, equation (8) needs to express a steady state. In order to express the steady state, it is sufficient to make the transition matrix Ψ(k) a unit matrix, so h(k+1)=h(k)+v(k)...(9). B(k) in equation (6) can be identified using the basic equations of the Kalman filter according to equations (7) and (9). In order to identify the transfer matrix B(k) in equation (6), the observed value y(k) and the input value u(k) must be known. Observed value (change in exhaust gas oxygen concentration)
y(k) can be calculated from the measured value of the oxygen concentration meter, and the input value (excess air coefficient change amount) u(k) can be calculated using the measured values of air and fuel flow rates. Furthermore, in order to determine the transfer matrix G(k) from the transfer matrix B(k), the exhaust gas amount Fi(k) must be known. The exhaust gas amount Fi(k) can be calculated using the measured values of the air flow rate and the fuel flow rate, the theoretical exhaust gas amount, the theoretical air amount, and the excess air coefficient. in particular,
The exhaust gas oxygen concentration is measured at intervals of Δt seconds for t 1 seconds (t 1 /
Δt) times, and the average value is adopted. The excess air coefficient is obtained by taking in the measured values of air flow rate and fuel flow rate at intervals of Δt seconds, calculating each time according to equation (2) using the theoretical air amount, and calculating (t 1
t) times and use the average value. The exhaust gas amount is calculated by taking in the measured values of the air flow rate and fuel flow rate at intervals of Δt seconds and using the theoretical exhaust gas amount and theoretical air amount each time according to equations (2) and (3) . /Δt) times and use the average value. The procedure for determining the transfer matrix G(k) in the oxygen concentration control of the present invention explained above is summarized as follows. (1) Measure the oxygen concentration, fuel flow rate, and air flow rate in each zone at intervals of Δt seconds for t 1 seconds (t 1 /Δt) times,
For each measurement, calculate the excess air coefficient and exhaust gas amount according to equations (2) and (3) based on the measured values of fuel and air, and calculate the average of the oxygen concentration, excess air coefficient, and exhaust gas amount. The values are Oi (k), μi (k)
and Fi(k). (2) The previous value Oi(k-
1) and μi(k-1), and calculate the difference between
Create an expression. (3) Create equations (7) and (9) and identify the transfer matrix B(k) using a Kalman filter. (4) Determine the transfer matrix G(k) using the transfer matrix B(k) and the exhaust gas amount Fi(k). That is, the oxygen concentration, fuel flow rate, and air flow rate in each zone are measured as described above, and based on these measured values, a Kalman filter is applied to the transfer matrix G in the state description equation (1). to identify and determine. In the present invention, the excess air coefficient for each zone is determined using the transfer matrix G(k) so that the oxygen concentration in each zone reaches the target value, and this procedure is as follows. (1) Determine the deviation between the measured value of oxygen concentration in each zone and the target oxygen concentration. (2) Using the transfer matrix G(k), the exhaust gas amount Fi(k), and the deviation of the target oxygen concentration according to equation (1), calculate the deviation from the excess air coefficient μi(k). demand. (3) From the above air excess coefficient μi(k) and the above deviation, determine the air excess coefficient that sets the oxygen concentration in each zone to the target value. Further, the present invention operates the excess air coefficient of the combustion control system of the furnace based on the excess air coefficient determined as described above. By the way, the equation (9) used to determine the transfer matrix B(k) in the present invention is an equation representing a steady state, so after manipulating the excess air coefficient of the furnace, t 2 Wait a second and sample the oxygen concentration, air flow rate, and fuel flow rate again. Accordingly, the present invention operates the furnace air excess coefficient at intervals of (t 1 +t 2 ) seconds. Note that t 2 seconds is a sufficient time for the furnace to stabilize with the new excess air coefficient and for the oxygen concentration meter to detect exhaust gas based on the new excess air coefficient. FIG. 2 shows a control device that implements the control method of the present invention. In this, 1 is a soaking zone, 2 and 3 are upper and lower heating zones, 6, 7, and 8 are burners for each zone 1, 2, and 3, and 9, 10, and 11 are each zone 1, 2, and 3. The oxygen concentration meter 12, 13, and 14 are thermocouples for each zone 1, 2, and 3. 15, 16, 17
is the combustion control system for bands 1, 2, and 3, and 18 is an electronic computer. 19a, 19b, 19c are furnace temperature controllers, 20
a, 20b, 20c are furnace temperature controllers 19a, 19
fuel flow rate controllers 21a, 21b, 21c for adjusting the fuel flow rate according to commands from b, 19c;
is a flow control valve, 22a, 22b, 22c are orifices, 23a, 23b, 23c are piping, 24a,
24b, 24c are oscillators, 25a, 25b, 25
Reference numeral c denotes an air-fuel ratio setter, and 26a, 26b, and 26c represent air flow rate controllers for adjusting the air flow rate in accordance with commands from the air-fuel ratio setters 25a, 25b, and 25c. The target temperature in each zone 1, 2, and 3 is now displayed on the computer 18.
In addition, when the target oxygen concentration, theoretical air amount, and theoretical exhaust gas amount in each zone 1, 2, and 3 are set, the furnace temperature controllers 19a, 19b, and 19c are set to the thermocouples 12 and 1.
3 and 14, the fuel flow rate controllers 20a and 20 are adjusted so that the input deviation becomes zero.
Give the fuel flow setting value to b, 20c, and adjust the controller 20.
a, 20b, 20c are orifices 22, respectively.
The control valves 21a, 21b, 21c are adjusted so that the measured fuel flow rate obtained through the transmitters 24a, 24b, 24c that convert the differential pressure signals of a, 22b, 22c into electrical signals matches the above set value. do. On the other hand, air flow rate controllers 26a, 26b, 26c
controls the opening and closing of the control valves 22a, 22b, and 22c so that the measured air flow rate matches the air flow rate set value from the air-fuel ratio setters 25a, 25b, and 25c. The air flow rate settings from the air-fuel ratio setters 25a, 25b, 25c are determined by the fuel flow rate controllers 19a, 19.
b, fuel flow rate setting value from 19c and calculator 18
The air-fuel ratio is calculated and set at predetermined intervals. The computer 18 calculates the oxygen concentration from the concentration meters 9, 10, 11 of each combustion zone 1, 2, 3, and the combustion control system 15, 1 of each zone 1, 2, 3.
6 and 17 to capture fuel flow and air flow measurements. Moreover, the calculator 18 calculates (t 1 +
t2 ) Start capturing the measured values of oxygen concentration, fuel flow rate, and air flow rate for each zone 1, 2, and 3 at second intervals,
Capture is performed for t 1 seconds (t 1 /Δt) times at intervals of Δt seconds.
For the above oxygen concentration measurements, the average value is
On the other hand, for the measured values of fuel flow rate and air flow rate, the excess air coefficient and exhaust gas amount are calculated and stored using the theoretical air amount and theoretical exhaust gas amount each time they are taken in, and the average value is calculated and stored as μi. (k),
Store as Fi(k). Once the oxygen concentration Oi (k), excess air coefficient μi (k) and exhaust gas amount Fi (k) are determined, Calculator 1
8 is the oxygen concentration Oi (k) in each zone 1, 2, and 3 above.
and for the excess air coefficient μi(k), (t 1 +
The previous value Oi(k
-1) and μi(k-1) to create the above equation (6). Next, the calculator 18 creates the above equations (7) and (9),
The optimum value of the transfer matrix B(k) is identified using a Kalman filter. Next, a transfer matrix G(k) is determined from the transfer matrix B(k) and the exhaust gas amount Fi(k) according to equation (6b). Then each belt 1,
The oxygen concentration deviation of each zone 1, 2, and 3 is calculated from the oxygen concentration target value of 2 and 3 and the above oxygen concentration Oi (k) of each zone 1, 2, and 3, and the state description formula of equation (1) is calculated. According to the above transfer matrix G(k) and the exhaust gas amount Fi in each zone
(k) and the above oxygen concentration deviation, the deviation from the excess air coefficient μi(k) of each zone is calculated to make the oxygen concentration of each zone a target value. And the above air excess coefficient μ
By adding i(k) and the above deviation, the optimum value of the excess air coefficient to achieve the target oxygen concentration is obtained. The air-fuel ratio of each zone is calculated from the excess air coefficient and the theoretical air amount. The air-fuel ratio is determined by the combustion control systems 15, 16, 17 of each zone.
air-fuel ratio setters 25a, 25b, and 25c. After 2 seconds have passed after setting the air-fuel ratio, the calculator 18
begins capturing measurements of oxygen concentration, fuel flow rate, and air flow rate for each zone. Therefore, the calculator 18 determines the optimum air excess coefficient for each zone to achieve the target oxygen concentration at intervals of (t 1 +t 2 ) seconds;
The air-fuel ratio of each zone is set by the air-fuel ratio setters 25a, 25b, 2.
Set to 5c. The present invention as described above keeps the oxygen concentration in each combustion zone constant by grasping from time to time how the combustion exhaust gases in each combustion zone interact with each other and propagate to the oxygen concentration meter in each combustion zone. Since the excess air coefficient of each combustion zone is determined so that the target value is reached, the combustion state of each combustion zone can be maintained optimally.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は全て本発明の一実施例説明図であり、第
1図は3帯式加熱炉の各燃焼帯の空気過剰係数を
入力とし各燃焼帯の排ガス中の酸素濃度を出力と
する状態記述式並びにこの記述中の伝達行列の同
定法を説明するための側断面図、第2図は3帯式
加熱炉に於て本発明の制御方法を実施する制御装
置の一例を示すブロツク図である。 1:均熱帯、2:上部加熱帯、3:下部加熱
帯、4:煙道、5:スラブ、6,7,8:バーナ
ー、9,10,11:酸素濃度計、12,13,
14:熱電対、15,16,17:燃焼制御系、
18:電子計算機、19a,19b,19c:炉
温調節計、20a,20b,20c:燃料流量調
節計、21a,21b,21c:流量調節弁、2
2a,22b,22c:オリフイス、23a,2
3b,23c:配管、24a,24b,24c:
発信器、25a,25b,25c:空燃比設定
器、26a,26b,26c:空気流量調節計。
The drawings are all explanatory diagrams of one embodiment of the present invention, and FIG. 1 shows a state description formula in which the air excess coefficient of each combustion zone of a three-zone heating furnace is input and the oxygen concentration in the exhaust gas of each combustion zone is output. FIG. 2 is a side cross-sectional view for explaining the transfer matrix identification method in this description, and FIG. 2 is a block diagram showing an example of a control device for implementing the control method of the present invention in a three-zone heating furnace. 1: Soaking zone, 2: Upper heating zone, 3: Lower heating zone, 4: Flue, 5: Slab, 6, 7, 8: Burner, 9, 10, 11: Oxygen concentration meter, 12, 13,
14: Thermocouple, 15, 16, 17: Combustion control system,
18: Electronic computer, 19a, 19b, 19c: Furnace temperature controller, 20a, 20b, 20c: Fuel flow rate controller, 21a, 21b, 21c: Flow rate adjustment valve, 2
2a, 22b, 22c: Orifice, 23a, 2
3b, 23c: Piping, 24a, 24b, 24c:
Transmitter, 25a, 25b, 25c: Air-fuel ratio setter, 26a, 26b, 26c: Air flow rate controller.

Claims (1)

【特許請求の範囲】 1 複数個の燃焼帯を有する加熱炉の各燃焼帯へ
供給される燃料流量及び空気流量を所望の炉温に
従つて制御する多帯式加熱炉の燃焼制御方法にお
いて: 各燃焼帯の空気過剰係数変化量を入力とし各燃
焼帯の排ガス中の酸素濃度変化量を出力する下記
の状態記述式及び各燃焼帯の目標酸素濃度を予じ
め定めておき;所定周期で各燃焼帯の、排ガス中
の酸素濃度、燃料流量および空気流量を測定し;
これらの測定値にもとづき該状態記述式の中の伝
達行列をカルマンフイルターを適用して同定し;
各燃焼帯の目標酸素濃度及び該状態記述式より各
燃焼帯の空気過剰係数変化量を求めて;求めた空
気過剰係数変化量より、各燃焼帯へ供給する燃料
流量と空気流量の空燃比を定める;ことを特徴と
する、多帯式加熱炉の酸素濃度による燃焼制御方
法; y(k)=B(k)u(k)+ω(k), y(k):酸素濃度変化量, B(k):伝達行列(各燃焼帯の排ガス中の
酸素濃度相互干渉係数行列), u(k):空気過剰係数変化量, ω(k):白色ガウス性雑音,および、 k:時刻。
[Claims] 1. In a combustion control method for a multi-zone heating furnace, which controls the fuel flow rate and air flow rate supplied to each combustion zone of a heating furnace having a plurality of combustion zones according to a desired furnace temperature: The following state description formula that inputs the amount of change in the excess air coefficient of each combustion zone and outputs the amount of change in oxygen concentration in the exhaust gas of each combustion zone and the target oxygen concentration for each combustion zone are determined in advance; Measure the oxygen concentration in the exhaust gas, fuel flow rate, and air flow rate in each combustion zone;
Based on these measured values, identify the transfer matrix in the state description equation by applying a Kalman filter;
Determine the amount of change in the excess air coefficient for each combustion zone from the target oxygen concentration of each combustion zone and the state description equation; From the amount of change in the excess air coefficient determined, calculate the air-fuel ratio of the fuel flow rate and air flow rate supplied to each combustion zone. A combustion control method using oxygen concentration in a multi-zone heating furnace, characterized by: y(k)=B(k)u(k)+ω(k), y(k): amount of change in oxygen concentration, B (k): transfer matrix (oxygen concentration mutual interference coefficient matrix in exhaust gas in each combustion zone), u(k): amount of change in air excess coefficient, ω(k): white Gaussian noise, and k: time.
JP10875278A 1978-09-05 1978-09-05 Combustion control method by oxygen concentration in polyzone system heating furnace Granted JPS5535837A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10875278A JPS5535837A (en) 1978-09-05 1978-09-05 Combustion control method by oxygen concentration in polyzone system heating furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10875278A JPS5535837A (en) 1978-09-05 1978-09-05 Combustion control method by oxygen concentration in polyzone system heating furnace

Publications (2)

Publication Number Publication Date
JPS5535837A JPS5535837A (en) 1980-03-13
JPS6130168B2 true JPS6130168B2 (en) 1986-07-11

Family

ID=14492600

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10875278A Granted JPS5535837A (en) 1978-09-05 1978-09-05 Combustion control method by oxygen concentration in polyzone system heating furnace

Country Status (1)

Country Link
JP (1) JPS5535837A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6270251U (en) * 1985-10-14 1987-05-02
JP4653689B2 (en) * 2006-04-14 2011-03-16 新日本製鐵株式会社 Continuous steel heating furnace and method of heating steel using the same

Also Published As

Publication number Publication date
JPS5535837A (en) 1980-03-13

Similar Documents

Publication Publication Date Title
CN106766883B (en) Optimal combustion control system and method for regenerative heating furnace
RU2553783C2 (en) Method and device of pressure control in continuous annealing furnace
CN101876449B (en) Method of controlling oxygen air-flowing environment in heating furnace
JP7057172B2 (en) Combustion air flow rate control method and continuous multi-band heating furnace
CN102686946B (en) The method regulated for the burning correcting one group of combustion chamber and the equipment implementing the method
JPS6130168B2 (en)
CN109613059B (en) Metallurgical gas calorific value online measuring and calculating method based on combustion system operation parameters
JP5849612B2 (en) Combustion control method and combustion control apparatus for hot stove
CN206891162U (en) A kind of recuperative heater optimum combustion control system
JPH0826988B2 (en) Combustion control method and combustion control device using the method
RU73668U1 (en) SYSTEM OF TWO-LEVEL REGULATION BY THE HEAT PROCESS OF THE HEATING FURNACE
JPS60259823A (en) Optimum burning control of induction type radiant tube burner furnace
KR100689153B1 (en) Method for estimating temperature of slab in heating furnace
RU2553147C2 (en) System of automatic control of metal heating in heating furnaces of discontinuous operation
CN114489185B (en) Control method and control system for torpedo ladle baking
JPS6051606B2 (en) Air-fuel ratio control device for heating furnace for exhaust gas denitrification
CN107092187A (en) A kind of temperature control equipment and temprature control method
JP2947677B2 (en) Exhaust gas concentration control device
JPS5817373B2 (en) Combustion control method using oxygen concentration control in combustion furnace
JP2002060850A (en) Temperature control method for heating furnace
JPH06180116A (en) Exhaust gas concentration controller
JPS6149928A (en) Combustion controlling method for combustion device and apparatus thereof
RU2496070C1 (en) Method to control gas tightness of working area in energy technology units
JPH03157483A (en) Process for controlling combustion of coke oven
CN112050657A (en) Control method for pressure in component and coating fire-proof test furnace