JPS61292413A - Semiconductor integrated circuit - Google Patents

Semiconductor integrated circuit

Info

Publication number
JPS61292413A
JPS61292413A JP60133834A JP13383485A JPS61292413A JP S61292413 A JPS61292413 A JP S61292413A JP 60133834 A JP60133834 A JP 60133834A JP 13383485 A JP13383485 A JP 13383485A JP S61292413 A JPS61292413 A JP S61292413A
Authority
JP
Japan
Prior art keywords
fet
load
gate
diode
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60133834A
Other languages
Japanese (ja)
Other versions
JPH06103840B2 (en
Inventor
Yu Watanabe
祐 渡邊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP60133834A priority Critical patent/JPH06103840B2/en
Publication of JPS61292413A publication Critical patent/JPS61292413A/en
Publication of JPH06103840B2 publication Critical patent/JPH06103840B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K19/00Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits
    • H03K19/02Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits using specified components
    • H03K19/08Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits using specified components using semiconductor devices
    • H03K19/094Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits using specified components using semiconductor devices using field-effect transistors
    • H03K19/0952Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits using specified components using semiconductor devices using field-effect transistors using Schottky type FET MESFET
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K19/00Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits
    • H03K19/003Modifications for increasing the reliability for protection
    • H03K19/00369Modifications for compensating variations of temperature, supply voltage or other physical parameters
    • H03K19/00384Modifications for compensating variations of temperature, supply voltage or other physical parameters in field effect transistor circuits

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Computing Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Power Engineering (AREA)
  • Logic Circuits (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)

Abstract

PURPOSE:To obtain a semiconductor integrated circuit with logic circuit constitution having high speed operation, stable transmission characteristic, ease of manufacture process and high circuit integration by adopting an enhancement FET for both a load FET and a drive FET and inserting a Schottky barrier diode between the power supply and a gate of a load FET. CONSTITUTION:The enhancement FET is adopted for both the load FETQ1 and the drive FETQ2 and the Schottky barrier diode D is inserted between the power supply VDD and the gate of the load FETQ2. Thus, the inserted diode and a diode constituting a gate itself are connected in series, and two Schottky barrier diodes connected just in series are connected between the drain and source of the load FETQ1, then the gate-source voltage Vgs and the drain-source voltage Vds of the load FETQ1 are expressed in the relation of Vgs=(1/2).Vds and the FET operation is attained at the stable saturation region.

Description

【発明の詳細な説明】 〔概要〕 半導体装置による論理回路形式において、ゲート・ドレ
イン間をダイオードで短絡したエンハンスメント型のF
ET  (電界効果トランジスタ)を負荷に、同じくエ
ンハンスメント型のFETを駆動に用いることにより、
動作速度が速く、動作電源電圧の範囲を広く、安定な伝
達特性が得られる十分なマージンを持ち、1種類のしき
い値電圧■いを持つFETのみで構成できるため製造プ
ロセスを単純化して製造歩留りを向上できる半導体集積
回路を提供する。
[Detailed Description of the Invention] [Summary] In a logic circuit format using a semiconductor device, an enhancement type F in which the gate and drain are short-circuited with a diode is used.
By using an ET (field effect transistor) as a load and an enhancement type FET as a drive,
It has fast operating speed, a wide range of operating power supply voltages, sufficient margin for stable transfer characteristics, and can be configured with only FETs with one type of threshold voltage, simplifying the manufacturing process. Provided is a semiconductor integrated circuit that can improve yield.

C産業上の利用分野〕 本発明は高速で、動作マージンが大きく、製造歩留りを
向上できる論理回路構成を含む半導体集積回路に関する
C. Field of Industrial Application] The present invention relates to a semiconductor integrated circuit including a logic circuit configuration that is high-speed, has a large operating margin, and can improve manufacturing yield.

近年、高速論理回路にガリウム砒素(GaAs)が実用
化され始めたが、現在GaAsによる論理回路の多くは
しきい値電圧Vthの異なるMESFET (MEta
l−5emiconductor構造のFET)を用い
たDCFL(DirectCoupled FET L
ogic)によるものか、しきい値電圧Vthが1種類
のデプレション型PETを用いたノーマリオン(Nor
mally ON)系のBFL(Buffered F
ETLogic)や、5DFL(Schottky D
iode PET Logic)等の論理回路となって
いる。
In recent years, gallium arsenide (GaAs) has begun to be put to practical use in high-speed logic circuits, but many of the current GaAs logic circuits use MESFETs (MESFETs) with different threshold voltages Vth.
DCFL (Direct Coupled FET L
gic), or normally-on (Normal) using depletion type PET with one type of threshold voltage Vth.
mally ON) type BFL (Buffered F
ETLogic) and 5DFL (Schottky D
It is a logic circuit such as iode PET Logic).

前者は製造プロセス制御が困難で、後者は消費電力、占
有面積が大きく、集積化に適さないため、改善が要望さ
れている。
The former is difficult to control the manufacturing process, and the latter consumes a large amount of power and occupies a large area, making it unsuitable for integration, so improvements are desired.

〔従来の技術〕[Conventional technology]

第2図(1)〜(4)はそれぞれ従来例によるインバー
タの回路図である。
FIGS. 2(1) to 2(4) are circuit diagrams of conventional inverters, respectively.

ここでは、論理回路の基本的な構成単位としてインバー
タについて説明スる。
Here, an inverter will be explained as a basic structural unit of a logic circuit.

Qlは負荷Fil!T 、 Qtは駆動PET 、 V
an、vssは電at圧、■、は入力端子、V out
は出力電圧、INは入力端子、OUTは出力端子である
Ql is the load Fil! T, Qt is the driving PET, V
an, vss are voltage at, ■, input terminal, V out
is the output voltage, IN is the input terminal, and OUT is the output terminal.

第2図(1)はDCFLの回路図である。FIG. 2(1) is a circuit diagram of the DCFL.

図において、負荷F[!T Qlの2重線を用いたトラ
ンジスタ記号はノーマリオンのデプレション型FETを
、駆動FHT Qzの通常のトランジスタ記号はゲート
にしきい値電圧Vい以上の電圧を印加したときにオン状
態になるエンハンスメント型のPETをあられす。
In the figure, load F[! The transistor symbol using the double line T Ql indicates a normally-on depletion type FET, and the normal transistor symbol for the drive FHT Qz indicates an enhancement transistor that turns on when a voltage higher than the threshold voltage V is applied to the gate. Hail mold PET.

MESPET )論理振幅は0.7〜0.8Vと小さく
、動作マージンも0.2〜0.25Vと小さいため、し
きい値電圧Vthを精度よく制御する必要があり、その
バラツキは小さく抑えなければならない。
MESPET) Since the logic amplitude is small at 0.7 to 0.8V and the operating margin is small at 0.2 to 0.25V, it is necessary to control the threshold voltage Vth with high precision, and its variation must be kept small. No.

その制御精度はノーマリオン系の回路より厳しい。Its control accuracy is stricter than that of normally-on circuits.

第2図(2)は負荷FET Qい駆動FET Qtをと
もにエンハンスメント型のFETのみで構成した例であ
る。
FIG. 2 (2) is an example in which both the load FET and the drive FET Qt are configured only with enhancement type FETs.

この場合は、負荷PET Qlのゲートは電源■、にプ
ルアップされているため、ゲート・ソース間電圧■g、
とドレイン・ソース間電圧Vdsは“  ”J 、 、
−V 、、。
In this case, the gate of the load PET Ql is pulled up to the power supply ■, so the gate-source voltage g,
and the drain-source voltage Vds is “ ”J, ,
-V,,.

となり、FET動作は不安定な領域で行われ、また論理
動作時に流れる電流の変化が大きく、伝達特性が安定し
ない。従ってこの回路の実用化は困難である。
Therefore, the FET operation is performed in an unstable region, and the current flowing during logic operation changes greatly, making the transfer characteristics unstable. Therefore, it is difficult to put this circuit into practical use.

第2図(3)はノーマリオン系回路で、BFLの回路図
である。
FIG. 2(3) is a normally-on circuit, which is a BFL circuit diagram.

図の左側はインバータくスイッチング)段、右側はレベ
ルシフト段(バッファ)である。
The left side of the figure is an inverter (switching) stage, and the right side is a level shift stage (buffer).

Q、はレベルシフト段の入力FET 1Q4はゲート・
ソース間を短絡した定電流用FET 、 otsはレベ
ルシフト用ショットキバリアダイオードである。
Q is the input FET of the level shift stage 1Q4 is the gate
The constant current FET and ots whose sources are short-circuited are Schottky barrier diodes for level shifting.

この場合、FETはすべてデプレション型に形成する。In this case, all FETs are formed into depletion type.

電源電圧は、 Voo=1.2〜1.5V、V ss = −1,0〜
1.5V。
The power supply voltage is Voo=1.2~1.5V, Vss=-1,0~
1.5V.

とする。shall be.

レベルシフト段においては、ダイオードDLsのビルト
イン電圧だけレベルがシフトして出力される。
In the level shift stage, the level is shifted by the built-in voltage of the diode DLs and output.

第2図(4)はノーマリオン系回路で、5DFLの回路
図である。
FIG. 2 (4) is a normally-on circuit, which is a circuit diagram of 5DFL.

この場合も、FETはすべてデプレション型に形成する
Also in this case, all FETs are formed into depletion type.

図において、人力された信号はダイオードOtSにより
レベルシフトされて、次段のインバータに入る。
In the figure, the input signal is level-shifted by a diode OtS and then input to the next stage inverter.

第2図(3)、(4)のノーマリオン系回路では、FE
Tのしきい値電圧Vいは1種類であるので、DCPLよ
り特性を制御しやすいが、前記のように集積化には不適
である。
In the normally-on circuits shown in Figure 2 (3) and (4), the FE
Since there is only one threshold voltage V of T, it is easier to control the characteristics than DCPL, but as mentioned above, it is unsuitable for integration.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

以上の従来の諸例は、 (1)  高速動作が可能、 (2)伝達特性が安定、 (3)  製造プロセス制御が容易、 (4)消費電力、占有面積を小さくして高集積化が可能 以上の諸条件のすべてを充たすことはできなかった。 The above conventional examples are (1) High-speed operation possible, (2) Stable transfer characteristics; (3) Easy to control manufacturing process; (4) High integration is possible by reducing power consumption and occupying area It was not possible to satisfy all of the above conditions.

〔問題点を解決するための手段〕[Means for solving problems]

上記問題点の解決は、ゲートとドレイン間にダイオード
(D)を接続したエンハンスメント型の負荷FET(Q
1) と、 該FET(Q1)のソースにドレインを接続し、信号を
ゲートより入力し、ドレインに出力するエンハンスメン
ト型の駆動FET(Qz)  とを有する論理回路構成
を含む本発明による半導体集積回路により達成される。
The solution to the above problem is to use an enhancement type load FET (Q) with a diode (D) connected between the gate and drain.
1) A semiconductor integrated circuit according to the present invention including a logic circuit configuration having a drain connected to the source of the FET (Q1), and an enhancement type drive FET (Qz) that inputs a signal from the gate and outputs it to the drain. This is achieved by

〔作用〕[Effect]

本発明による論理回路では、負荷FET Qい駆動FE
T QZはともにエンハンスメント型のFETを用い、
ショットキバリアダイオードDを電源Vfltlと負荷
FET Qtのゲートとの間に挿入する。
In the logic circuit according to the present invention, the load FET is
Both T and QZ use enhancement type FETs,
A Schottky barrier diode D is inserted between the power supply Vfltl and the gate of the load FET Qt.

このようにすると、挿入されたダイオードとゲート自身
を構成するダイオードが直列に接続され、ちょうど直列
に接続された2個のショットキバリアダイオードが負荷
PET Q、のドレイン・ソース間に接続されたことに
なるため、負荷FET Q、のゲート・ソース間電圧v
、、とドレイン・ソース間電圧Voは vs−=(1/2) V as。
In this way, the inserted diode and the diode that constitutes the gate itself are connected in series, and the two Schottky barrier diodes connected in series are connected between the drain and source of the load PET Q. Therefore, the gate-source voltage v of the load FET Q,
,, and the drain-source voltage Vo is vs-=(1/2) Vas.

となり、FET動作は安定な飽和領域で行われることに
なる。
Therefore, the FET operation is performed in a stable saturation region.

また、1種類のFETを用いるため製造は容易であり、
かつショットキバリアダイオードDは負荷FET Q+
に対して十分小さくしても論理動作に大きく影響しない
ため、占有面積の影響は少ないため、高集積化を阻害す
ることはない。
In addition, manufacturing is easy because one type of FET is used,
And Schottky barrier diode D is load FET Q+
Even if it is made sufficiently small, it does not greatly affect the logic operation, so the occupied area has little effect, so it does not impede high integration.

さらに、論理動作に応じて負荷FET Q、のゲートに
かかる電圧が変化し、そのため電源電圧VDDの変動に
対して論理しきい値も変動するため、伝達特性の安定性
はDCFLの場合に比べてあまりかわらない。
Furthermore, the voltage applied to the gate of the load FET Q changes depending on the logic operation, and the logic threshold also changes with changes in the power supply voltage VDD, so the stability of the transfer characteristics is lower than that of a DCFL. Not much different.

このために、電源電圧■。、を調整して、回路の動作速
度の制御も可能となる。
For this, the supply voltage ■. , it is also possible to control the operating speed of the circuit.

また、DCFLに比べて出力電圧V outは負荷FE
Tg、のゲートに結線されないため、負荷容量は小さく
高速動作に有利で、かつ信号径路を単純化できるという
利点がある。
Also, compared to DCFL, the output voltage V out is
Since it is not connected to the gate of Tg, the load capacity is small, which is advantageous for high-speed operation, and the signal path can be simplified.

〔実施例〕〔Example〕

第1図は本発明によるインバータの回路図である。 FIG. 1 is a circuit diagram of an inverter according to the present invention.

図において、Q+は負荷FET 、 Qzは駆動PET
 、 Dはショットキバリアダイオード、MDIllは
電源電圧、Viは入力電圧、V oulLは出力電圧、
INは入力端子、OUTは出力端子である。
In the figure, Q+ is the load FET, Qz is the drive PET
, D is a Schottky barrier diode, MDIll is a power supply voltage, Vi is an input voltage, V oulL is an output voltage,
IN is an input terminal, and OUT is an output terminal.

負荷FET Qい駆動FET (hはともにエンハンス
メント型のFETを用い、ショットキバリアダイオード
Dを電源■。と負荷FET Q2のゲートとの間に挿入
する。
Load FET Q and drive FET (h are both enhancement type FETs, and a Schottky barrier diode D is inserted between the power supply (2) and the gate of the load FET Q2.

以上の回路構成を用いたインバータによるゲート回路を
つぎに示す。
A gate circuit using an inverter using the above circuit configuration will be shown below.

第3図(11、(2)はそれぞれ本発明による論理回路
の回路図である。
FIGS. 3(11 and 2) are circuit diagrams of logic circuits according to the present invention, respectively.

第3図(1)は3人力のNOR回路、第3図(2)は2
人力のNAND回路である。
Figure 3 (1) is a 3-person NOR circuit, Figure 3 (2) is a 2-person NOR circuit.
It is a human-powered NAND circuit.

動作が可能、伝達特性が安定、製造プロセスが容易、高
集積化が可能な論理回路構成を有する半導体集積回路が
得られる。
A semiconductor integrated circuit having a logic circuit configuration that is operable, has stable transfer characteristics, is easy to manufacture, and can be highly integrated can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明によるインバータの回路図、第2図(1
1〜(4)はそれぞれ従来例によるインバータの回路図
、 第3図(1)、(2)はそれぞれ本発明による論理回路
の回路図である。 図において、 口、はインバータの負荷FET、 Dはショットキバリアダイオード、 Q2はインバータの駆動FET 。 Q3はレベルシフト回路の人力FET、Q4はレベルシ
フト回路の定電流用FET、OLSはレベルシフト用ダ
イオード、 INは入力端子、 OUTは出力端子、 ■0、■5.は電源電圧、 V inは入力電圧、 ■。□は出力電圧 男べ光朝タイシバ′−2 第1 困 (1’) DCFL        (2)察2 図 (t)NOR口路 C2)NAND口各 木用にゴふ°;紮后ンヨ¥FEJ”EhglJ早3 口
FIG. 1 is a circuit diagram of an inverter according to the present invention, and FIG.
1 to (4) are circuit diagrams of inverters according to conventional examples, and FIGS. 3 (1) and (2) are circuit diagrams of logic circuits according to the present invention, respectively. In the figure, ``gate'' is the inverter's load FET, D is the Schottky barrier diode, and Q2 is the inverter's drive FET. Q3 is the manual FET of the level shift circuit, Q4 is the constant current FET of the level shift circuit, OLS is the level shift diode, IN is the input terminal, OUT is the output terminal, ■0, ■5. is the power supply voltage, V in is the input voltage, ■. □ is the output voltage for each tree; EhglJ early 3rd mouth

Claims (1)

【特許請求の範囲】  ゲートとドレイン間にダイオード(D)を接続したエ
ンハンスメント型の負荷トランジスタ(Q_1)と、該
負荷トランジスタ(Q_1)のソースにドレインを接続
し、信号をゲートより入力し、ドレインに出力するエン
ハンスメント型の駆動トランジスタ(Q_2)とを有す
る 論理回路構成を含むことを特徴とする半導体集積回路。
[Claims] An enhancement type load transistor (Q_1) with a diode (D) connected between the gate and drain, the drain connected to the source of the load transistor (Q_1), a signal inputted from the gate, and the drain connected to the source of the load transistor (Q_1). 1. A semiconductor integrated circuit comprising a logic circuit configuration having an enhancement type drive transistor (Q_2) that outputs an output signal.
JP60133834A 1985-06-19 1985-06-19 Semiconductor integrated circuit Expired - Fee Related JPH06103840B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60133834A JPH06103840B2 (en) 1985-06-19 1985-06-19 Semiconductor integrated circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60133834A JPH06103840B2 (en) 1985-06-19 1985-06-19 Semiconductor integrated circuit

Publications (2)

Publication Number Publication Date
JPS61292413A true JPS61292413A (en) 1986-12-23
JPH06103840B2 JPH06103840B2 (en) 1994-12-14

Family

ID=15114128

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60133834A Expired - Fee Related JPH06103840B2 (en) 1985-06-19 1985-06-19 Semiconductor integrated circuit

Country Status (1)

Country Link
JP (1) JPH06103840B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7589386B2 (en) 2001-01-23 2009-09-15 Sony Corporation Semiconductor device and manufacturing method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5710978A (en) * 1980-06-24 1982-01-20 Nec Corp Logic circuit using gaas schottky barrier gate type field effect transistor
JPS5726927A (en) * 1980-07-24 1982-02-13 Nec Corp Logical circuit using junction gate type field effect transistor
JPS5762632A (en) * 1980-10-02 1982-04-15 Nec Corp Logical circuit using gate junction type field effect transistor
JPS61251228A (en) * 1985-04-29 1986-11-08 ハネウエル・インコーポレーテッド Multi-input logical integrated circuit

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5710978A (en) * 1980-06-24 1982-01-20 Nec Corp Logic circuit using gaas schottky barrier gate type field effect transistor
JPS5726927A (en) * 1980-07-24 1982-02-13 Nec Corp Logical circuit using junction gate type field effect transistor
JPS5762632A (en) * 1980-10-02 1982-04-15 Nec Corp Logical circuit using gate junction type field effect transistor
JPS61251228A (en) * 1985-04-29 1986-11-08 ハネウエル・インコーポレーテッド Multi-input logical integrated circuit

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7589386B2 (en) 2001-01-23 2009-09-15 Sony Corporation Semiconductor device and manufacturing method thereof

Also Published As

Publication number Publication date
JPH06103840B2 (en) 1994-12-14

Similar Documents

Publication Publication Date Title
JP2559032B2 (en) Differential amplifier circuit
JPH0528007B2 (en)
US4924116A (en) Feedback source coupled FET logic
JPS61292413A (en) Semiconductor integrated circuit
JP2542022B2 (en) Field effect transistor load circuit
US5343093A (en) Self referencing MOS to ECL level conversion circuit
JP3249293B2 (en) Semiconductor integrated circuit
JPS60194614A (en) Interface circuit
JP2637773B2 (en) Complementary MOS integrated circuit
JPH0311129B2 (en)
US5343091A (en) Semiconductor logic integrated circuit having improved noise margin over DCFL circuits
JP2545712B2 (en) Gallium arsenide semiconductor integrated circuit
JPS60136417A (en) Buffer circuit
JPH04105420A (en) Semiconductor integrated circuit
JPS6019321A (en) Fet logic circuit
KR900000465B1 (en) Gas high-speed low-power inverter
JPH01101022A (en) Semiconductor integrated circuit device
JPS60160217A (en) Fet source coupling logic circuit
JPH01205309A (en) Constant current power circuit
JP2800562B2 (en) Compound semiconductor logic circuits
JPH0472914A (en) Field effect transistor circuit
JPH04123616A (en) Bi-coms circuit
JPH02166827A (en) Semiconductor circuit
JPH04304025A (en) Logic circuit of chemical compound semiconductor
JPS5925417A (en) Switching circuit

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees