JPS60160217A - Fet source coupling logic circuit - Google Patents

Fet source coupling logic circuit

Info

Publication number
JPS60160217A
JPS60160217A JP59015632A JP1563284A JPS60160217A JP S60160217 A JPS60160217 A JP S60160217A JP 59015632 A JP59015632 A JP 59015632A JP 1563284 A JP1563284 A JP 1563284A JP S60160217 A JPS60160217 A JP S60160217A
Authority
JP
Japan
Prior art keywords
fet
voltage
source
logic circuit
differential switch
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59015632A
Other languages
Japanese (ja)
Inventor
Tomoyuki Otsuka
友行 大塚
Shunichi Kasahara
俊一 笠原
Kazuo Iguchi
一雄 井口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP59015632A priority Critical patent/JPS60160217A/en
Publication of JPS60160217A publication Critical patent/JPS60160217A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K19/00Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits
    • H03K19/02Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits using specified components
    • H03K19/08Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits using specified components using semiconductor devices
    • H03K19/094Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits using specified components using semiconductor devices using field-effect transistors
    • H03K19/09432Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits using specified components using semiconductor devices using field-effect transistors with coupled sources or source coupled logic
    • H03K19/09436Source coupled field-effect logic [SCFL]

Abstract

PURPOSE:To realize an FET source coupling logic circuit with less DC level fluctuation attended with changes in mark rate in an output signal by attaining the reduction of voltage to a drain supply voltage to a differential switch part by means of a Schottky barrier diode or a junction diode and setting the FET of a source follower to a degree where its gm is not decreased extremely. CONSTITUTION:Since any of FETQ1 or Q2 is turned on, a current flowing to the differential switch part is a constant current VD at steady-state because of the function of an FETQ5 and a foward voltage drop of diodes Di1-im constituted by Schottky diodes is constant. A voltage drop of ID.RS is produced by a Q3 or Q4 with a forward resistances RD of the Q3 and Q4, and its output voltage value V is VDD-(mVbi+IDRS) when the Q1 or Q2 is turned off. Thus, the current flowing to the Q6/Q7 is constant and a defect that the pulse width is changed because of the fluctuation of the DC level having been generated in a conventional system attended with the mark rate of the output signal.

Description

【発明の詳細な説明】 (a) 発明の技術分野 本発明はメタルセミコンダクタFETにヨリ構成する論
理回路に係り、特にソース結合PETロジック(SCF
L)の改良に関する。
DETAILED DESCRIPTION OF THE INVENTION (a) Technical Field of the Invention The present invention relates to a logic circuit configured in addition to a metal semiconductor FET, and in particular to a source-coupled PET logic (SCF).
Regarding improvement of L).

(b) 技術の背景 第1図に従来における5CFLの構成側図を示す。図の
構成はオア/ノア回路である。図においてQ1〜9はF
ET素子、D1〜nはダイオードである。Q 1+ Q
 2は差動スイッチ用、Q31Q4はそれぞれQl、Q
2のアクティブ負荷抵抗用、Q5はQl、Qzの定電流
アクティブ抵抗用、Q61Q7 はソースフォロワ用、
Q8.Q9はQ6.Q7の定電流アクティブ抵抗用およ
びDl−0はレベルシフト用である。5CFLにおいて
も第1図に示すようにバイポーラトランジスタによるエ
ミッタ結合ロジック(ECL)と同様に1対のFET素
子Q1. Q2のソースを結合して動作せしめ、信号入
力(IN)側例えばQlのゲート電圧Vcs1が基準電
圧(Vref)側のV (Na 2より高い場合はV 
6s lが与えられたQlが導通(オン)すると共に基
準側のQlが非導通(オフ)となり、逆にVGBI (
VGB2 =Vrefの場合はQiがオフ、Qlがオン
となり、定常状態では対となるQl、Qlの何れか一方
のF’ETに電流が流れている。
(b) Background of the Technology Figure 1 shows a side view of the configuration of a conventional 5CFL. The configuration shown in the figure is an OR/NOR circuit. In the diagram, Q1-9 are F
The ET elements D1-n are diodes. Q 1+ Q
2 is for differential switch, Q31Q4 are Ql and Q respectively
2 for active load resistance, Q5 for constant current active resistance for Ql and Qz, Q61Q7 for source follower,
Q8. Q9 is Q6. Q7 is for constant current active resistance and Dl-0 is for level shift. 5CFL as well, as shown in FIG. 1, a pair of FET elements Q1. The sources of Q2 are connected to operate, and the signal input (IN) side, for example, when the gate voltage Vcs1 of Ql is higher than the reference voltage (Vref) side V (Na 2), V
Ql given 6s l becomes conductive (turned on) and Ql on the reference side becomes non-conductive (off), conversely VGBI (
When VGB2 = Vref, Qi is off and Ql is on, and in a steady state, current flows through either F'ET of the pair Ql or Ql.

こ\で比較動作の基準電圧Vrefけ例えば正論理とす
れば高論理レベル閾値Vすhh ならびに低論理レベル
V+hlの中間値に設定される。また通常はQl、Ql
によるスイッチング出力の負荷能力を高めると共に入力
信号における高低論理レベルに戻して後続回路ユニット
との整合をとるためのQ6.Q7およびレベルシフト用
のDI−nによるソースフォロワ部が付加される。
If the reference voltage Vref for the comparison operation is set to positive logic, for example, it is set to an intermediate value between the high logic level threshold Vshh and the low logic level V+hl. Also, usually Ql, Ql
Q6. to increase the load capacity of the switching output by the input signal and to return the input signal to a high or low logic level for matching with subsequent circuit units. A source follower section including Q7 and DI-n for level shifting is added.

しかしECLにおける構成素子のすべてがオフか活性領
域かの非飽和領域で動作させるのと異なり、5CFLで
はオフか飽和領域をスイッチング動作させる点が異なる
However, unlike the ECL in which all the constituent elements are operated in a non-saturation region of off or active regions, the 5CFL is different in that switching operations are performed in an off or saturated region.

(e) 従来技術と問題点 第1図の構成による5CFLではQ 1 + Q 2に
よる差動スイッチ部の出力例えばQlがオフとなってQ
6への入力が高レベルの時は、勿論Q6はオンとなるが
Qlの出力筒、圧即ちQ6への入力電圧VGS6がドレ
イン供給電圧Vnnに近接しQ6が未飽和状態になるの
でQ6の相互コンダクタンス8m6 が低下しQ6の入
力容1ctn6が無信号時の入力容量の例えば4倍程に
増加するので入力信号パルスに応答する出力信号の立上
9時間が増大する欠点がある。
(e) Prior art and problems In the 5CFL with the configuration shown in Figure 1, the output of the differential switch section due to Q 1 + Q 2, for example, Ql is turned off and Q
When the input to Q6 is at a high level, Q6 is of course turned on, but the output voltage of Ql, that is, the input voltage VGS6 to Q6 is close to the drain supply voltage Vnn, and Q6 is in an unsaturated state. Since the conductance 8m6 decreases and the input capacitance 1ctn6 of Q6 increases to, for example, four times the input capacitance when there is no signal, there is a drawback that the rise time of the output signal in response to the input signal pulse increases.

Ci n= Ccso4m+Cao (Vns ) ・
・・・・・・・・ (1)式またQ8.Q9による定電
流機能が完全であればQ6に流ねる電流は一定でOUT
 1 に得られる信号は電圧変化のみで理想の動作とな
るが、過剰駆動の状態ではQ6のオン/オフに対応して
増/減を伴うので、入力信号の高/低レベルによって出
力信号に直流レベルの変動が発生しパルス幅がマーク率
に伴って変化する欠点があ75fc。
Ci n= Ccso4m+Cao (Vns) ・
・・・・・・・・・ Equation (1) and Q8. If the constant current function by Q9 is perfect, the current flowing to Q6 will be constant and OUT
The signal obtained at 1 has ideal operation with only a voltage change, but in an overdriven state, it increases/decreases in response to the on/off of Q6, so the output signal changes to DC depending on the high/low level of the input signal. 75fc has the disadvantage that level fluctuations occur and the pulse width changes with the mark rate.

以上の欠点はVDDを分岐供給する差動スイッチ部(h
 +Q2への電圧をソースフォロワs Qe + Q7
への供給電圧よシ低下することで解決出来るので従来よ
りQ3.Q4 とVpp間に定抵抗を挿入する方法が提
案されているがガリウム砒素(GaA8)半導体基板に
よる集積回路の場合基板および処理工程の都合から定抵
抗を精度良く実現するに至っていないので抵抗値のバラ
ツキが大きく安定性に乏しい欠点があった。
The above drawback is the differential switch section (h
+Q2 voltage to source follower s Qe + Q7
This can be solved by lowering the supply voltage to Q3. A method of inserting a constant resistance between Q4 and Vpp has been proposed, but in the case of integrated circuits using gallium arsenide (GaA8) semiconductor substrates, it has not been possible to realize a constant resistance with high precision due to the substrate and processing process, so the resistance value It had the disadvantage of large variations and poor stability.

(d) 発明の目的 本発明の目的は上記の欠点を除去するため従来における
抵抗値バラツキの大きい定抵抗による電圧低減に代えて
差動スイッチ部へのドレイン供給電圧をソースフォロワ
部のそれより電圧降下値の安定なシ1ットキーバリャダ
イ−オードあるいは接合ダイオードにより電圧低減を達
成しソースフォロワ部への過剰駆動を抑止してソースフ
ォロワのFETを未飽和領域には近接しても出来るだけ
gmが極端に低下しない程度に設定して、入力容量Ci
nの増加に伴う出力信号の立上り遅延を防止すると共に
フォロワ用FETの電流変動を軽度にとソめで出力信号
におけるマーク率変化に伴う直提供しようとするもので
ある。
(d) Purpose of the Invention The purpose of the present invention is to eliminate the above-mentioned drawbacks by reducing the drain supply voltage to the differential switch section to a voltage lower than that of the source follower section, instead of reducing the voltage by using a constant resistor with large resistance value variations in the conventional method. Achieve voltage reduction using a shut-key barrier diode or junction diode with a stable drop value, suppress overdrive to the source follower section, and keep the source follower FET as close to the unsaturated region as possible. Set the input capacitance Ci to such an extent that gm does not drop excessively.
This is intended to prevent the rise delay of the output signal due to an increase in n, and to provide a direct response to the change in mark rate in the output signal while minimizing the current fluctuation of the follower FET.

(e) 発明の構成 上記目的は、メタルセミコンダクタFETにより構成し
差動スイッチ部およびそのソースフォロワ部よりなる論
理回路にあって、入力信号レベルを基準電、圧と比較し
て差動スイッチを形成する第1、第2FET素子、該第
1.第2FET素子のアクティブ負荷抵抗となる第3.
第4 F’ E T素子および第1.第2FET素子の
両ソース端子を結合してソース供給電源に接続する定電
流アクティブ負荷抵抗とhる第5FET素子からなる差
動スイッチ部へのドレイン供給電源を単数または複数個
直列接続したダイオードを介1..供給する手段を具備
し、第1または第2 F ETT素子おける出力電圧を
該ダイオードによる順方向電圧降下分だけソース供給電
源側に低下せしめて、差動スイッチ部に従属動作するソ
ースフォロワ部の第6.第7FET素子の駆動電圧とす
るよう構成したことを特徴とするPETンース結合論理
回路を提供することによって達成することが出来る。
(e) Structure of the Invention The above object is to provide a logic circuit composed of metal semiconductor FETs and consisting of a differential switch section and its source follower section, which compares an input signal level with a reference voltage or voltage to form a differential switch. a first and a second FET element; The third element serves as the active load resistance of the second FET element.
The fourth F'ET element and the first. A constant current active load resistor connects both source terminals of the second FET element to the source supply power supply, and a drain supply power supply to the differential switch section consisting of the fifth FET element is connected via a diode in which one or more of them are connected in series. 1. .. The output voltage of the first or second FETT element is lowered by the forward voltage drop caused by the diode toward the source supply power source, and 6. This can be achieved by providing a PET connection logic circuit characterized in that it is configured to be the driving voltage of the seventh FET element.

(f) 発明の実施例 以下図面を参照し本発明の一実施例について説明する。(f) Examples of the invention An embodiment of the present invention will be described below with reference to the drawings.

第2図は本発明の一実施例におけるFETソース結合論
理回路(SCEL)の構成側図を示す。
FIG. 2 shows a side view of the configuration of a FET source coupled logic circuit (SCEL) in one embodiment of the present invention.

図においてQl〜9はF”ET素子、D1〜nおよびD
i+〜imはダイオードである。図の構成を示す構成部
材で従来のそれと共通の符号を有するものは従来の構成
部材と共通の機能および特性を有するものとする。従っ
て第2図の本実施例における構成はDi+〜im を除
き従来の第1図の構成に等しい。差動スイッチ部に流れ
る電流は定常状態ではQlまたはQlの倒れかがオンで
あり且Q5の機能によって一定の電流I5+が流れ、且
例えばショソトキーダイナードで構成されるDit〜1
mの順方向電圧降下値は一定である。従ってvI′1+
′1が一定なればDil−im によってmIIvbi
、GaASであれば例えばビルトイン電圧Vb i 〜
0.76Vの電圧降下を発生する。Q3およびQ4の順
方向抵抗をRDとすればQ3またはQ4によってIb1
・R,4の電圧降下を生じ、Q+tたはQlがオフ−の
場合はその出力電圧値V=VDD −(mVbi +I
a+Rs )(!: fiシ従来のDi1〜imが無い
場合に比較してmVb iだけ低減するからmを適切に
設定してVllS6 >Vp≧VDD−(mVb i+
I DR8)にすれば、Q6のVo3’i低減して過剰
駆動を伴わない飽和領域で動作されることが出来るので
Q6の相互コンダクタン9mを低下されるようなことの
かいVDS6 ==mVbi+IoRsを印加すること
が出来、前述の(1)式による入力零1cinは増加す
ることなく従って出力信号は高速の立上りが得られる。
In the figure, Ql~9 are F''ET elements, D1~n and D
i+ to im are diodes. Components showing the configuration in the figures having the same reference numerals as those of the conventional components have functions and characteristics common to those of the conventional components. Therefore, the configuration of this embodiment shown in FIG. 2 is the same as the conventional configuration shown in FIG. 1 except for Di+ to im. In the steady state, the current flowing through the differential switch section is such that Ql or the tip of Ql is on, and a constant current I5+ flows due to the function of Q5, and Dit~1 composed of, for example, a Shosotky dynard.
The forward voltage drop value of m is constant. Therefore vI′1+
If '1 is constant, mIIvbi by Dil-im
, in the case of GaAS, for example, the built-in voltage Vb i ~
A voltage drop of 0.76V is generated. If the forward resistance of Q3 and Q4 is RD, then Ib1 is increased by Q3 or Q4.
- A voltage drop of R, 4 occurs, and when Q+t or Ql is off-, the output voltage value V = VDD - (mVbi +I
a+Rs )(!: fishi) Compared to the conventional case without Di1~im, it is reduced by mVb i, so m is set appropriately and VllS6 >Vp≧VDD-(mVb i+
If IDR8), the Vo3'i of Q6 can be reduced and it can be operated in the saturation region without over-driving, so VDS6 ==mVbi+IoRs can be reduced without reducing the transconductance of Q6 (9m). According to the above-mentioned equation (1), the input zero 1 cin does not increase, and therefore the output signal can have a high-speed rise.

こ\でVpはピンチオフ電圧であり、尚V+hは高レベ
ル論別閾値である。
Here, Vp is the pinch-off voltage, and V+h is the high-level logic threshold.

従ってQ6/Qrに流れる電流は一定と々り出力信号に
おけるマーク高の変化に伴って従来発生した直流レベル
の変動によるパルス幅が変化するような欠点を除去する
ことが出来る安定し月高速動作を実現する5CFLが得
ることが出来る。
Therefore, the current flowing through Q6/Qr is constant, and stable and high-speed operation can be achieved, which eliminates the drawback that the pulse width changes due to fluctuations in the DC level that conventionally occur due to changes in the mark height in the output signal. 5 CFL can be obtained.

尚以上はDi1〜imとm個のショットキーダイオード
の使用としたがGaAsにおけるvBiの選択および’
VDD、 Vssの設定によってはm個は最小1個で実
現する場合も存在するものである。
Although the above example uses Di1 to im and m Schottky diodes, the selection of vBi in GaAs and '
Depending on the settings of VDD and Vss, there are cases where the number m can be realized with a minimum of one.

[株])発明の詳細 な説明したように本発明によればメタルセミコンダクタ
FET例えばG a A Bによる材料とQ、〜9゜D
I−nおよびDi1〜imに共通する接合処理によって
得られる一定のVbiを利用して安定且高速動作を実現
する5CFLが得らねるのでこれ等を集積して得る論理
回路素子の構成において極めて有用である。
DETAILED DESCRIPTION OF THE INVENTION According to the present invention, a metal semiconductor FET is manufactured using materials such as Ga AB and Q, ~9°D.
Since it is not possible to obtain a 5CFL that achieves stable and high-speed operation using a constant Vbi obtained by the bonding process common to In and Di1 to im, it is extremely useful in the configuration of logic circuit elements obtained by integrating these. It is.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来におけるメタル・セミコンダクタFETに
よるワース結合FET論理回路(5CFL )の構成側
図、第2図は本発明の一実施例におけるメタル拳セミコ
ンダクタF”ETによる5CFLの構成側図である。 図においてQ1〜9はFET素子、Dl−1およびDi
r−imはダイオードでおる。 」 ss Vss 0σγI θllrz
FIG. 1 is a side view of the configuration of a Worth coupled FET logic circuit (5CFL) using a conventional metal semiconductor FET, and FIG. 2 is a side view of the configuration of a 5CFL using a metal fist semiconductor F''ET according to an embodiment of the present invention. In the figure, Q1 to Q9 are FET elements, Dl-1 and Di
r-im is a diode. ” ss Vss 0σγI θllrz

Claims (1)

【特許請求の範囲】[Claims] メタルセミコンダクタFETにより構成し差動スイッチ
部およびそのソースフォロワ部よりなる論理回路にあっ
て、入力信号レベルを基準電圧と比較して差動スイッチ
を形成する第1.第2 FET素子、該第1.第2FE
T素子のアクティブ負荷抵抗となる第3.第4FET累
子および第1.第2FET素子の両ソース端子を結合し
てソース供給電源に接続する定電流アクティブ負荷抵抗
となる第5FET素子からなる差動スイッチ部へのドレ
イン供給筒、源を単数または複数個直列接続したダイオ
ードを介し供給する手段を具備し、第1または第2FE
T素子における出力電圧を該ダイオードによる順方向電
圧降下分だけソース供給電源側に低下せしめて、差動ス
イッチ部に従属動作するソースフォロワ部の第6.第7
 F E T素子の駆動電圧とするよう構成したことを
特徴とするFETソース結合論理回路。
In a logic circuit composed of metal semiconductor FETs and consisting of a differential switch section and its source follower section, the first section compares the input signal level with a reference voltage to form a differential switch. a second FET element, the first. 2nd FE
The third element is the active load resistance of the T element. The fourth FET cue and the first FET. The drain supply tube to the differential switch section consisting of the fifth FET element, which serves as a constant current active load resistance that connects both source terminals of the second FET element to the source supply power source, is connected to a diode in which one or more sources are connected in series. the first or second FE.
The output voltage at the T element is lowered by the forward voltage drop caused by the diode toward the source power supply side, and the sixth. 7th
A FET source coupling logic circuit characterized in that it is configured to use a driving voltage of an FET element.
JP59015632A 1984-01-31 1984-01-31 Fet source coupling logic circuit Pending JPS60160217A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59015632A JPS60160217A (en) 1984-01-31 1984-01-31 Fet source coupling logic circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59015632A JPS60160217A (en) 1984-01-31 1984-01-31 Fet source coupling logic circuit

Publications (1)

Publication Number Publication Date
JPS60160217A true JPS60160217A (en) 1985-08-21

Family

ID=11894093

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59015632A Pending JPS60160217A (en) 1984-01-31 1984-01-31 Fet source coupling logic circuit

Country Status (1)

Country Link
JP (1) JPS60160217A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62176328A (en) * 1986-01-30 1987-08-03 Nec Corp Level shift circuit

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56156026A (en) * 1980-05-02 1981-12-02 Hitachi Ltd Composite logical circuit

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56156026A (en) * 1980-05-02 1981-12-02 Hitachi Ltd Composite logical circuit

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62176328A (en) * 1986-01-30 1987-08-03 Nec Corp Level shift circuit

Similar Documents

Publication Publication Date Title
US5892382A (en) Current mode logic circuit, source follower circuit and flip flop circuit
KR950005023B1 (en) Device for changing power loss of ecl gate and method of operating ecl circuit
US4274014A (en) Switched current source for current limiting complementary symmetry inverter
JP2559032B2 (en) Differential amplifier circuit
JPH0531850B2 (en)
JPS62194729A (en) Digital switching circuit
EP0501085B1 (en) Level-shifter circuit for high-speed low-power biCMOS ECL to CMOS input buffers
US6433611B1 (en) Voltage level shifting circuit
US6255857B1 (en) Signal level shifting circuits
US4924116A (en) Feedback source coupled FET logic
JP2001358547A (en) Buffer circuit
JPS60160217A (en) Fet source coupling logic circuit
US5572152A (en) Logic circuit with the function of controlling discharge current on pull-down and emitter coupled logic circuit
US4803442A (en) Low power buffer amplifier
US5173622A (en) Source coupled logic circuit with reduced power consumption
US4585959A (en) Tri-state logic gate having reduced Miller capacitance
US4675554A (en) NPN transient driver circuit
US20050231258A1 (en) Static flip-flop circuit
JPH08107317A (en) Voltage buffer circuit and circuit using it
JPH04278719A (en) Source electrode coupled logic circuit
US4409561A (en) Operational amplifier output stage driven by a single ended gain stage
JPH0625063Y2 (en) Current switching type logic circuit
JPS63158904A (en) Integrated circuit device
JP2534353B2 (en) Logical system
US7119618B2 (en) Method of forming a wide bandwidth differential amplifier and structure therefor