JPS61291097A - Ozone treatment apparatus - Google Patents

Ozone treatment apparatus

Info

Publication number
JPS61291097A
JPS61291097A JP13373885A JP13373885A JPS61291097A JP S61291097 A JPS61291097 A JP S61291097A JP 13373885 A JP13373885 A JP 13373885A JP 13373885 A JP13373885 A JP 13373885A JP S61291097 A JPS61291097 A JP S61291097A
Authority
JP
Japan
Prior art keywords
ozone
reaction tank
water
treated
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP13373885A
Other languages
Japanese (ja)
Other versions
JPH0329477B2 (en
Inventor
Satoshi Nishikata
西方 聡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP13373885A priority Critical patent/JPS61291097A/en
Publication of JPS61291097A publication Critical patent/JPS61291097A/en
Publication of JPH0329477B2 publication Critical patent/JPH0329477B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Treatment Of Water By Oxidation Or Reduction (AREA)

Abstract

PURPOSE:To efficiently remove an ozone reactive substance within a short time, by enhancing the concn. of dissolved ozone of a water to be treated by providing a pressure adjusting means to the piping of a reaction tank and an exhaust ozone treatment part. CONSTITUTION:A pressure control valve 8 is provided on the way of the piping reaching an ozone decomposition furnace 9 from a reaction tank 6 so as to be present outside the reaction tank 6. A part of the piping communicating the reaction tank and the ozone decomposition furnace 9 is formed of a pipe of which the flow passage cross-sectional area is small to increase pressure loss and the pressure in the reaction tank 6 is enhanced and the dissolved ozone of water to be treated comes to high concn. to perform gas-liquid contact. By this method, strong oxidizing force possessed by ozone can be sufficiently developed and high treatment efficiency can be obtained within a short time.

Description

【発明の詳細な説明】 〔発明の属する技術分野〕 本発明はオゾンのもつ強力な酸化作用を利用j。[Detailed description of the invention] [Technical field to which the invention pertains] The present invention utilizes the powerful oxidizing effect of ozone.

て水中の殺菌、脱臭、有機物などの酸化を行なうオゾン
処理装置に関する。
This invention relates to ozone treatment equipment that sterilizes, deodorizes, and oxidizes organic substances in water.

〔従来技術とその問題点〕[Prior art and its problems]

オゾンが弗素についで強力な酸化力をもっているという
特徴を利用して、オゾンを水中に散気することにより殺
菌、脱臭、脱色、有機物もしくは無機物の酸化除去など
を行なう水処理が広く行なわれている。
Taking advantage of the fact that ozone has the second strongest oxidizing power after fluorine, water treatment is widely used to perform sterilization, deodorization, decolorization, and oxidation removal of organic and inorganic substances by diffusing ozone into water. .

このようなオゾンとオゾンによって処理される水(以下
被処理水と称する)とを反応させるオゾン処理装置は例
えば次のものが知られている。すなわち、オゾンをエジ
ェクタによって反応槽に吹き込むエジェクタ方式もしく
は反応槽下部からオゾンを気泡として吹き出させる気泡
塔方式があり、いずれもオゾンを被処理水中に溶解させ
て、被処理水中の有機物質などのオゾン反応物質と反応
させるとともに被処理水中に溶解することなく排出され
た装置である。
The following ozone treatment apparatuses are known, for example, for causing a reaction between such ozone and water to be treated by ozone (hereinafter referred to as water to be treated). In other words, there is an ejector method in which ozone is blown into the reaction tank using an ejector, or a bubble column method in which ozone is blown out as bubbles from the bottom of the reaction tank.In both cases, ozone is dissolved in the water to be treated, and ozone such as organic substances in the water to be treated is removed. This is a device that reacts with the reactant and discharges it without dissolving into the water to be treated.

第3図は気泡塔方式により被処理水を回分式でオゾン処
理する装置の構成の概要とともl・こ作用を説明するた
めの概念図を示したものである。第3図においてオゾン
処理装置は送風ポンプ1.除湿器2.オゾナイザ−3を
備えたオゾン反生部、送液ポンプ4.逆止弁5を備えた
被処理水送液部。
FIG. 3 shows an overview of the configuration of an apparatus for batchwise ozonation of water to be treated using a bubble column method, as well as a conceptual diagram for explaining the l-co effect. In Fig. 3, the ozone treatment device includes a blower pump 1. Dehumidifier 2. Ozone regeneration unit equipped with ozonizer 3, liquid feeding pump 4. A treated water supply section equipped with a check valve 5.

散気板7を有する反応槽6.オゾン分解炉9および液排
出弁10から構成され、これらが配管により気体と液体
の流路を形成している。この装置におけるオゾン処理は
次のように行なわわる。まず一定量の被処理水を送液ポ
ンプ4を用いて反応槽6内に送る。ついで反応槽6内の
被処理水中にオゾンを通気するが、オゾンの原料は空気
を用いて送風ポンプ1により除湿器2に送り、オゾン発
生効率を低下させる原因となる空気中の水分を除去した
後、オゾナイザ−3を通してオゾン化空気さし、さらに
このオゾン化空気を反応槽6内の下部に設けられた散気
管7まで送り、散気管7から被処理水中に散気させるこ
とにより、オゾンと被処理水が接触し両者が反応する。
Reaction tank 6 with a diffuser plate 7. It consists of an ozone decomposition furnace 9 and a liquid discharge valve 10, which form a gas and liquid flow path through piping. Ozone treatment in this device is performed as follows. First, a certain amount of water to be treated is sent into the reaction tank 6 using the liquid sending pump 4. Next, ozone was aerated into the water to be treated in the reaction tank 6, and the ozone raw material was sent to the dehumidifier 2 by the blower pump 1 using air to remove moisture in the air that would cause a decrease in ozone generation efficiency. After that, ozonized air is passed through the ozonizer 3, and further this ozonized air is sent to the aeration pipe 7 provided at the lower part of the reaction tank 6, and the aeration is diffused from the aeration pipe 7 into the water to be treated. The water to be treated comes into contact and both react.

この際被処理水中に溶解しなかったオゾンは反応槽6の
上方からオゾン分解炉91こ達し、ここで酸素に分解し
た後大気中に放出される。なおオゾンの原料は普通空気
を使用するが、より高い濃度のオゾンを得たいときは空
気の代りに酸素を用いてもよい。また第3図では油体の
流通方向を実線の矢印、気の流通方向を点線の矢印で示
しである。かくしてオゾンと被処理水とを所定の時間気
液接触させた後、液排出弁10を開いて反応槽6の底部
から処理水を取り出すことができる。
At this time, ozone that is not dissolved in the water to be treated reaches the ozone decomposition furnace 91 from above the reaction tank 6, where it is decomposed into oxygen and then released into the atmosphere. Note that air is normally used as the raw material for ozone, but when it is desired to obtain ozone at a higher concentration, oxygen may be used instead of air. Further, in FIG. 3, the direction of flow of the oil body is shown by solid line arrows, and the direction of flow of air is shown by dotted line arrows. After the ozone and the water to be treated are brought into gas-liquid contact for a predetermined period of time, the liquid discharge valve 10 can be opened to take out the treated water from the bottom of the reaction tank 6.

次にこの水処理過程における問題点について述べる。被
処理水中のオゾン反応物質が除去される速度は、被処理
水中に溶存しているオゾン濃度によって異なり、溶存オ
ゾン濃度が高い方がオゾン反応物質の除去速度が太きい
。一方オシン処理装置の反応槽6内における圧力は、排
オゾン処理のための熱分解炉9およびこれに至るまでの
配管による圧力損失分だけ大気圧より高いとしても、こ
の圧力損失は微々たるものであってほぼ大気圧に等しい
。オゾンが被処理水中に溶解する濃度は、通常の気体が
液体中に溶解する場合となんら変ることなく、オゾンの
分圧に比例するものであり、したがって反応槽6内の溶
存オゾン磁度はオゾン発生部から送入さ11るオゾン濃
度に比例する。
Next, we will discuss the problems in this water treatment process. The rate at which the ozone-reactive substances in the water to be treated are removed varies depending on the concentration of ozone dissolved in the water to be treated, and the higher the dissolved ozone concentration, the faster the removal rate of the ozone-reactive substances. On the other hand, even if the pressure in the reaction tank 6 of the ozone treatment equipment is higher than atmospheric pressure by the pressure loss due to the pyrolysis furnace 9 for exhaust ozone treatment and the piping leading to it, this pressure loss is insignificant. It is almost equal to atmospheric pressure. The concentration of ozone dissolved in the water to be treated is the same as when a normal gas is dissolved in a liquid, and is proportional to the partial pressure of ozone. Therefore, the dissolved ozone magnetism in the reaction tank 6 is It is proportional to the ozone concentration sent in from the generator.

しかしながら、通常のオゾナイザ−で発生可能なオゾン
の濃度は酸素を原料とした場合でも約加mg/lと非常
に希薄である。実際に水処理するに肖っては酸素を原料
に用いるには輸送や貯蔵などの点で問題があるため、オ
ゾン発生の原料として空気を用いることが多い。一般に
オゾナイザ−から得られる気体のオゾン濃度は原料の酸
素濃度の平方根にほぼ比例することから、空気を原料と
したときは、酸素を原料としたときの約半分のオゾン濃
度しか得られない。オゾナイザ−3から発生するオゾン
化空気のオゾン濃度が低いと、反応槽6内の被処理水中
に溶存するオゾン濃度も低く、したがって被処理水中の
オゾン反応物質を除去する速度も遅くなり、処理時間が
長く、効率が悪いという問題があり、結果的にオゾンの
強力な酸化能力を十分に活用したものとは言えない。
However, the concentration of ozone that can be generated by a normal ozonizer is very dilute, about 1.0 mg/l, even when oxygen is used as a raw material. In actual water treatment, using oxygen as a raw material poses problems in terms of transportation, storage, etc., so air is often used as the raw material for ozone generation. Generally, the ozone concentration of the gas obtained from an ozonizer is approximately proportional to the square root of the oxygen concentration of the raw material, so when air is used as the raw material, the ozone concentration is only about half that when oxygen is used as the raw material. When the ozone concentration of the ozonized air generated from the ozonizer 3 is low, the ozone concentration dissolved in the water to be treated in the reaction tank 6 is also low, and therefore the speed at which ozone reactants in the water to be treated is removed is slow, and the treatment time is reduced. There is a problem that the process takes a long time and is inefficient, and as a result, it cannot be said that ozone's strong oxidizing ability is fully utilized.

〔発明の目的〕[Purpose of the invention]

本発明は上述の点に鑑みてなされたものであり、その目
的は被処理水中に散気させるオゾン化された空気または
酸素中のオゾンが低濃度であっても被処理水中のオゾン
反応物質を短時間に効率よく除去することができるオゾ
ン処理装置を提供することにある。
The present invention has been made in view of the above points, and its purpose is to eliminate ozone-reactive substances in the water to be treated even if the concentration of ozone in the ozonized air or oxygen diffused into the water to be treated is low. An object of the present invention is to provide an ozone treatment device that can remove ozone efficiently in a short time.

〔発明の要点〕[Key points of the invention]

本発明は、上述のオゾン処理装置の反応槽と刊オゾン処
理部に連通ずる配管に圧力調整手段を設けることにより
反応槽内の圧力を大気圧以上に保つことを可能とし、被
処理水の溶存オゾン濃度を高めるようにしたものである
The present invention makes it possible to maintain the pressure inside the reaction tank above atmospheric pressure by providing a pressure adjustment means in the piping that communicates with the reaction tank of the ozone treatment equipment and the ozone treatment section, and to prevent the dissolution of the water to be treated. This is designed to increase the ozone concentration.

〔発明の実施例〕 以下本発明を実施例に基づき説明する。[Embodiments of the invention] The present invention will be explained below based on examples.

第1図は本発明による水処理装置の構成とともに処理系
統を表わした概念図であり、第3図と共通部分は同一符
号を用いである。第1図が第3図と異なる所は反応槽6
からオゾン分解炉9に至る配管途中で反応槽6の外部に
圧力調整弁8を設けた点にある。本装置のオゾン処理を
行なうための作用は原理的に第3図のものと同じである
から説明を省略し要点のみ述べる。第1図では反応槽6
内の被処理水中に溶解しなかったオゾンは圧力調整弁8
を経てオゾン分解炉9に至りrV累に分解される。圧力
調整弁8は反応槽6内の圧力を大気圧以上の設置圧力に
保ち、被処理水中の溶存オゾン濃度を高める役割を果す
ものであり、例えはスプリング式の安全弁などが適して
いる。
FIG. 1 is a conceptual diagram showing the structure and treatment system of a water treatment apparatus according to the present invention, and parts common to those in FIG. 3 are given the same reference numerals. The difference between Figure 1 and Figure 3 is the reaction tank 6.
A pressure regulating valve 8 is provided outside the reaction tank 6 in the middle of the piping from the ozone decomposition furnace 9 to the ozone decomposition furnace 9. Since the operation of this apparatus for ozone treatment is basically the same as that shown in FIG. 3, the explanation will be omitted and only the main points will be described. In Figure 1, reaction tank 6
The ozone that is not dissolved in the water to be treated is removed from the pressure regulating valve 8.
The ozone gas passes through the ozone decomposition furnace 9 and is decomposed into rV. The pressure regulating valve 8 serves to maintain the pressure inside the reaction tank 6 at a set pressure higher than atmospheric pressure and to increase the dissolved ozone concentration in the water to be treated, and a spring-type safety valve is suitable, for example.

才だ本発明では、圧力調整弁8の代りに他の圧力調整手
段、例えば反応槽6とオゾン分解炉9とに連通する配管
の一部を流路断面積の小さな管として、圧力損失を増大
させることにより反応槽6内の圧力を高めるなどの方法
を用いてもよい。したがって本発明ではこのような圧力
調整手段により、反応槽6内の圧力を大気圧以上に保持
することができるから被処理水中の溶存オゾンが筒磯度
となって気液接触が行なわれる。以上のことから本発明
の装置を用いてオゾン処理を行うときはオゾン処理時間
が短縮されるのである。
In the present invention, instead of the pressure regulating valve 8, other pressure regulating means are used, for example, a part of the piping communicating with the reaction tank 6 and the ozone decomposition furnace 9 is made into a pipe with a small flow passage cross-sectional area to increase the pressure loss. Alternatively, a method may be used in which the pressure inside the reaction tank 6 is increased by increasing the pressure in the reaction tank 6. Accordingly, in the present invention, the pressure within the reaction tank 6 can be maintained at a level higher than atmospheric pressure by such a pressure regulating means, so that dissolved ozone in the water to be treated becomes uniform and gas-liquid contact is performed. From the above, when ozone treatment is performed using the apparatus of the present invention, the ozone treatment time is shortened.

次に反応槽6内の圧力を高めることによって、薔処理水
中のオゾン反応物質の処理時間がどのように短縮される
かについて、本発明の装置を用いた実験結果を説明する
Next, experimental results using the apparatus of the present invention will be explained as to how the processing time for the ozone reactant in the rose-treated water is shortened by increasing the pressure inside the reaction tank 6.

被処理水は窒素として3Q mg/IJのアンモニウム
イオン(NH4+)標準液をPH約12に調整したもの
を用いた。Mvはオゾン酸化により硝酸イオン(NO,
−)に酸化されるが、この反応はPHが高い程速く進行
するためPHを約12に調整して被処理水としたもので
ある。この彼処理水300 mlを反応槽6に投入し、
圧力調整弁8を調整することにより反応槽6内の圧力を
変化させ、被処理水へのオゾンの通気を開始してから、
10分間毎に被処理水をサンプリングしてNH4+の減
少を測定した。この実験ではオゾンの原料として酸累を
用い、オゾナイザ−3の電圧を一定とした。オゾン酸度
は23 mg/l(大気圧基準)9通気量はo、41(
大気圧基準)10である。実験結果を第2図に示した。
For the water to be treated, a standard solution of 3Q mg/IJ of ammonium ions (NH4+) adjusted to have a pH of about 12 was used as nitrogen. Mv is nitrate ion (NO,
-), but since this reaction progresses faster as the pH is higher, the pH was adjusted to about 12 and the water to be treated was used. Pour 300 ml of this treated water into reaction tank 6,
After changing the pressure inside the reaction tank 6 by adjusting the pressure regulating valve 8 and starting the aeration of ozone into the water to be treated,
The treated water was sampled every 10 minutes to measure the decrease in NH4+. In this experiment, acid accumulation was used as the raw material for ozone, and the voltage of the ozonizer 3 was kept constant. Ozone acidity is 23 mg/l (atmospheric pressure standard)9 ventilation rate is o, 41 (
(atmospheric pressure standard) 10. The experimental results are shown in Figure 2.

第2図は反応槽内の圧力をいずれもゲージ圧で0.65
即7crt 、 1.90 KP/dとしたときのオゾ
ン通気時間とN1℃残存率との関係を示した線図であり
、比較のために反応槽内の圧力が大気圧の場合も併記し
た。第2図において、曲線イが0.654/d 1曲績
口が1.90 Kv/c’ *曲線ハが大気圧の状態を
表わしている。第2図の三つの曲線を比救すればわかる
ように反応槽内を加圧状態に保った曲綜イ。
Figure 2 shows the pressure inside the reaction tank at 0.65 gauge pressure.
This is a diagram showing the relationship between the ozone ventilation time and the N1° C. residual rate when the pressure is 7 crt and 1.90 KP/d, and for comparison, the case where the pressure inside the reaction tank is atmospheric pressure is also shown. In Fig. 2, curve A is 0.654/d, and one curve is 1.90 Kv/c' *Curve C represents the state of atmospheric pressure. As you can see by comparing the three curves in Figure 2, this is a curved helix that keeps the inside of the reaction tank under pressure.

口の場合はMvの残存率の低下がはやく、大気圧状態の
曲綜ハではオゾンを60分間通気してもMI4+は被処
理水中にまだ42″″loも残留しているのに対し、僅
かo、65Y4/7に加圧することにより、曲想イのご
と< Nu、+はほぼ完全にN0j−に酸化されている
In the case of the mouth, the residual rate of Mv decreases rapidly, and in the case of the tube under atmospheric pressure, even if ozone is aerated for 60 minutes, 42"lo of MI4+ still remains in the water to be treated, whereas only a small amount of MI4+ remains in the water to be treated. By applying pressure to 65Y4/7, Nu,+ is almost completely oxidized to N0j-.

さらに1.90Kp/cdの加圧状態に保った場合は曲
線口のように一層NH4+の酸化速度は犬となる。
Furthermore, when the pressure is maintained at 1.90 Kp/cd, the oxidation rate of NH4+ becomes even steeper as shown in the curved line.

以上のことから、反応構内を加圧状態に保ち、被処理水
のオゾン溶存濃度を高めることにより、本来オゾンのも
っている強力な酸化力を十分発揮させることができ、短
時間に極めて高い処理効率が得られる。
From the above, by keeping the reaction chamber under pressure and increasing the dissolved ozone concentration in the water to be treated, the strong oxidizing power of ozone can be fully utilized, resulting in extremely high treatment efficiency in a short period of time. is obtained.

なお本発明は排オゾン処理部に熱分解炉の代りに活性炭
吸着塔を用いても圧力調整手段を備えて同様の効果を得
ることができ、また回分式の代りに処理水の増り出し部
をレベル計、流量調整弁などから構成した連続式の装置
としでも圧力調整手段を備えることにより、同様の効果
を生ずるこ吉は可能である。
In addition, the present invention can obtain the same effect even if an activated carbon adsorption tower is used instead of a pyrolysis furnace in the exhaust ozone treatment section, and the same effect can be obtained by providing a pressure adjustment means. It is possible to produce the same effect by using a continuous type device consisting of a level meter, a flow rate regulating valve, etc., and providing pressure regulating means.

また本発明による溶存オゾン濃度を高めるための圧力調
整手段は有害なオゾンに対して密閉構造としである反応
槽と排オゾン処理部との配管に設けるだけでよいから、
特別の考慮を払う必要もなく蘭学に付設することができ
るということや、その信奉発明の装置を用いて大気圧状
態でオゾン処理したときの処理レベルで済ませることが
できる場合にはオゾナイザ−の規模を小さくしてもよい
などの利点もある。
In addition, the pressure regulating means for increasing the dissolved ozone concentration according to the present invention only needs to be provided in the piping between the reaction tank and the exhaust ozone treatment section, which has a sealed structure against harmful ozone.
The scale of the ozonizer is such that it can be attached to a Dutch school without any special considerations, and that the ozonizer can be treated at the level of ozone treatment at atmospheric pressure using the device invented by the believer. It also has the advantage that it can be made smaller.

〔発明の効果〕〔Effect of the invention〕

オゾンを用いた水処理装fiffiは、従来オゾナイザ
−から発生する気体のオゾン濃度が低く、したがって大
気圧にある反応槽内の被処理水中に散気したとき、被処
理水の溶存オゾン濃度も低いので、オゾン反応物質を酸
化除去する速度が遅くなり、処理効率が悪いという問題
があったのlこ対し、本発明では実施例で説明したよう
に反応槽と枡オゾン処理部との配管に圧力調整手段を設
けるごとにより反応槽内の圧力を大気圧以上に保持でき
るようにして彼処理水の治存オゾン濃度を昼めたために
、本来オゾンの有する強力な酸化力を十分活用すること
ができ、短時間で極めて高いオゾン処理効率が得らねる
ものである。
Fiffi, a water treatment system that uses ozone, has a low ozone concentration in the gas generated from conventional ozonizers, so when aeration is diffused into the water to be treated in the reaction tank at atmospheric pressure, the concentration of dissolved ozone in the water to be treated is also low. Therefore, there was a problem that the rate of oxidation and removal of the ozone reactant was slow and the treatment efficiency was poor.In contrast, in the present invention, as explained in the embodiment, pressure is applied to the piping between the reaction tank and the square ozone treatment section. By providing adjustment means, the pressure inside the reaction tank could be maintained above atmospheric pressure, lowering the curable ozone concentration in the treated water, making it impossible to fully utilize the strong oxidizing power of ozone. However, extremely high ozone treatment efficiency cannot be obtained in a short period of time.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の装置構成と処理系統を表わす概念図、
詔2図は本装置を用いてオゾン処理したオゾン通気時間
とN■v残存率の関係を表わす線図、第3図は従来装置
の構成と処理系統を表わす概念図である。 1・・・送風ポンプ、2・・・除湿器、3・・・オゾナ
イザ−14・・・送液ポンプ、5・・・逆止弁、6・・
・反応槽、7・・・散器板、8・・・圧力調整弁、9・
オゾン分肩炉、(if )
FIG. 1 is a conceptual diagram showing the device configuration and processing system of the present invention.
Figure 2 is a diagram showing the relationship between the ozone ventilation time and the N■V residual rate in ozone treatment using this apparatus, and Figure 3 is a conceptual diagram showing the configuration and treatment system of the conventional apparatus. 1...Blower pump, 2...Dehumidifier, 3...Ozonizer-14...Liquid feed pump, 5...Check valve, 6...
・Reaction tank, 7...Scatter plate, 8...Pressure adjustment valve, 9.
Ozone splitting furnace, (if)

Claims (1)

【特許請求の範囲】 1)散気板を有し被処理水を一定量収容する反応槽、反
応槽に注入するオゾンを発生するオゾナイザを有するオ
ゾン発生部、反応槽に送る被処理水の注送部、反応槽内
の未反応オゾンを無害化して外部へ放出する排オゾン処
理部および反応槽と排オゾン処理部とに連通する配管の
一部に設けた圧力調整手段を備えたことを特徴とするオ
ゾン処理装置。 2)特許請求の範囲第1項記載の装置において、圧力調
整手段はスプリング式安全弁を用いることを特徴とする
オゾン処理装置。 3)特許請求の範囲第1項記載の装置において、圧力調
整手段は前記配管より流路断面積の小さな管を用いるこ
とを特徴とするオゾン処理装置。
[Claims] 1) A reaction tank having a diffuser plate and containing a certain amount of water to be treated, an ozone generation section having an ozonizer that generates ozone to be injected into the reaction tank, and an injection of water to be treated to be sent to the reaction tank. It is characterized by being equipped with a sending section, an exhaust ozone treatment section that detoxifies unreacted ozone in the reaction tank and releases it to the outside, and a pressure adjustment means provided in a part of the piping that communicates with the reaction tank and the exhaust ozone treatment section. ozone treatment equipment. 2) An ozone treatment apparatus according to claim 1, wherein the pressure regulating means uses a spring-type safety valve. 3) An ozone treatment apparatus according to claim 1, wherein the pressure regulating means uses a pipe having a smaller cross-sectional area than the pipe.
JP13373885A 1985-06-19 1985-06-19 Ozone treatment apparatus Granted JPS61291097A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13373885A JPS61291097A (en) 1985-06-19 1985-06-19 Ozone treatment apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13373885A JPS61291097A (en) 1985-06-19 1985-06-19 Ozone treatment apparatus

Publications (2)

Publication Number Publication Date
JPS61291097A true JPS61291097A (en) 1986-12-20
JPH0329477B2 JPH0329477B2 (en) 1991-04-24

Family

ID=15111761

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13373885A Granted JPS61291097A (en) 1985-06-19 1985-06-19 Ozone treatment apparatus

Country Status (1)

Country Link
JP (1) JPS61291097A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03157193A (en) * 1989-11-14 1991-07-05 Isomura Housui Kiko Kk Method and plant for treating high-degree purified water
FR2715395A1 (en) * 1994-01-26 1995-07-28 Anjou Rech Ozone water treatment unit, and corresponding ozonated water production installation.
JP2005288257A (en) * 2004-03-31 2005-10-20 Toyoshima Denki Kk Method and apparatus for treating sewage containing oil and fat

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03157193A (en) * 1989-11-14 1991-07-05 Isomura Housui Kiko Kk Method and plant for treating high-degree purified water
FR2715395A1 (en) * 1994-01-26 1995-07-28 Anjou Rech Ozone water treatment unit, and corresponding ozonated water production installation.
WO1995020543A1 (en) * 1994-01-26 1995-08-03 Gie Anjou Recherche Unit for treating water by ozonation, and corresponding ozonised water production apparatus
US5843307A (en) * 1994-01-26 1998-12-01 Gie Anjou Recherche Unit for the treatment of water by ozonization, and a corresponding installation for the production of ozonized water
JP2005288257A (en) * 2004-03-31 2005-10-20 Toyoshima Denki Kk Method and apparatus for treating sewage containing oil and fat

Also Published As

Publication number Publication date
JPH0329477B2 (en) 1991-04-24

Similar Documents

Publication Publication Date Title
US5364537A (en) Process for the oxidation of organic micropollutants in water using the O3 /H2 O2 combination
US6962654B2 (en) Methods and apparatus for supplying high concentrations of dissolved oxygen and ozone for chemical and biological processes
Barr et al. Hydrogen atoms in the radiolysis of water
US5498347A (en) Reactor for the ozonization of water
US3920547A (en) Method of destroying cyanides
US20080220533A1 (en) Measuring Method for Total Organic Carbon, Measuring Method for Total Nitrogen and Measuring Apparatus for the Methods
KR910007840A (en) Method and apparatus for manufacturing fertilizer, fermented fertilizer and wastewater containing Kjeldahl-N
WO2015186590A1 (en) Method for treating liquid containing organic amine compound
JPH02164490A (en) Water treatment method and apparatus
JPS61291097A (en) Ozone treatment apparatus
EP3943454A1 (en) Method and device for treatment of water using ozone
JP2000279977A (en) Fluid treatment and fluid treatment apparatus
JP3591023B2 (en) Biological sludge ozonation equipment
CN111547878A (en) High-efficiency low-consumption formaldehyde wastewater treatment method
JPH11128958A (en) Water denitrification treatment apparatus
GB1452961A (en) Sewage treatment
CA1162665A (en) Ozonization system for drinking water disinfection
US1413153A (en) Method of sterilizing water and sewage
JPH06285331A (en) Wet denitrification method for no containing gas of low concentration
JPH01275402A (en) Oxygen recycling ozonizer system
JP3495904B2 (en) Supercritical water oxidation treatment of TMAH waste liquid
JP2019126758A (en) Liquid treatment apparatus
JPH08294694A (en) Ozone diffuser for water treatment
JPH0232960B2 (en)
Al-Enezi et al. Total organic carbon reduction of phenol-containing wastewaters by oxidation techniques