JPH0329477B2 - - Google Patents

Info

Publication number
JPH0329477B2
JPH0329477B2 JP13373885A JP13373885A JPH0329477B2 JP H0329477 B2 JPH0329477 B2 JP H0329477B2 JP 13373885 A JP13373885 A JP 13373885A JP 13373885 A JP13373885 A JP 13373885A JP H0329477 B2 JPH0329477 B2 JP H0329477B2
Authority
JP
Japan
Prior art keywords
ozone
reaction tank
water
treated
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP13373885A
Other languages
Japanese (ja)
Other versions
JPS61291097A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP13373885A priority Critical patent/JPS61291097A/en
Publication of JPS61291097A publication Critical patent/JPS61291097A/en
Publication of JPH0329477B2 publication Critical patent/JPH0329477B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Treatment Of Water By Oxidation Or Reduction (AREA)

Description

【発明の詳細な説明】 〔発明の属する技術分野〕 本発明はオゾンのもつ強力な酸化作用を利用し
て水中の殺菌、脱臭、有機物などの酸化を行なう
オゾン処理装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field to which the Invention Pertains] The present invention relates to an ozone treatment device that utilizes the strong oxidizing effect of ozone to sterilize, deodorize, and oxidize organic substances in water.

〔従来技術とその問題点〕[Prior art and its problems]

オゾンが弗素についで強力な酸化力をもつてい
るという特徴を利用して、オゾンを水中に散気す
ることにより殺菌、脱臭、脱色、有機物もしくは
無機物の酸化除去などを行なう水処理が広く行な
われている。
Taking advantage of the fact that ozone has the strongest oxidizing power next to fluorine, water treatment is widely used to perform sterilization, deodorization, decolorization, and oxidation removal of organic and inorganic substances by diffusing ozone into water. ing.

このようなオゾンとオゾンによつて処理される
水(以下被処理水と称する)とを反応させるオゾ
ン処理装置は例えば次のものが知られている。す
なわち、オゾンをエジエクタによつて反応槽に吹
き込むエジエクタ方式もしくは反応槽下部からオ
ゾンを気泡として吹き出させる気泡塔方式があ
り、いずれもオゾンを被処理水中に溶解させて、
被処理水中の有機物質などのオゾン反応物質と反
応させるとともに被処理水中に溶解することなく
排出される未反応オゾンは活性炭吹着または熱分
解によつて無害化した後、大気中に放出するよう
に構成された装置である。
The following ozone treatment apparatuses are known, for example, for causing a reaction between such ozone and water to be treated by ozone (hereinafter referred to as water to be treated). Specifically, there is an ejector method in which ozone is blown into the reaction tank using an ejector, and a bubble column method in which ozone is blown out as bubbles from the bottom of the reaction tank.In both cases, ozone is dissolved in the water to be treated.
Unreacted ozone is reacted with ozone-reactive substances such as organic substances in the water to be treated, and the unreacted ozone that is discharged without being dissolved in the water to be treated is rendered harmless through activated carbon spraying or thermal decomposition, and then released into the atmosphere. It is a device configured with

第3図は気泡塔方式により被処理水を回分式で
オゾン処理する装置の構成の概要とともに作用を
説明するための概念図を示したものである。第3
図においてオゾン処理装置は送風ポンプ1、除湿
器2、オゾナイザー3を備えたオゾン反生部、送
液ポンプ4、逆止弁5を備えた被処理水送液部、
散気板7を有する反応槽6、オゾン分解炉9およ
び液排出弁10から構成され、これらが配管によ
り気体と液体の流路を形成している。この装置に
おけるオゾン処理は次のように行なわれる。まず
一定量の被処理水を送液ポンプ4を用いて反応槽
6内に送る。ついで反応槽6内の被処理水中にオ
ゾンを通気するが、オゾンの原料は空気を用いて
送風ポンプ1により除湿器2に送り、オゾン発生
効率を低下させる原因となる空気中の水分を除去
した後、オゾナイザー3を通してオゾン化空気と
し、さらにこのオゾン化空気を反応槽6内の下部
に設けられた散気管7まで送り、散気管7から被
処理水中に散気させることにより、オゾンと被処
理水が接触し両者が反応する。この際被処理水中
に溶解しなかつたオゾンは反応槽6の上方からオ
ゾン分解炉9に達し、ここで酸素に分解した後大
気中に放出される。なおオゾンの原料は普通空気
を使用するが、より高い濃度のオゾンを得たいと
きは空気の代りに酸素を用いてもよい。また第3
図では液体の流通方向の実線の矢印、気の流通方
向を点線の矢印で示してある。かくしてオゾンと
被処理水とを所定の時間気液接触させた後、液排
出弁10を開いて反応槽6の底部から処理水を取
り出すことができる。
FIG. 3 shows an overview of the configuration of an apparatus for ozonating water to be treated in a batch manner using a bubble column method, as well as a conceptual diagram for explaining the operation. Third
In the figure, the ozone treatment device includes an ozone regeneration unit equipped with a blower pump 1, a dehumidifier 2, and an ozonizer 3, a water supply unit equipped with a liquid supply pump 4, and a check valve 5;
It consists of a reaction tank 6 having a diffuser plate 7, an ozone decomposition furnace 9, and a liquid discharge valve 10, which form a gas and liquid flow path through piping. Ozone treatment in this device is performed as follows. First, a certain amount of water to be treated is sent into the reaction tank 6 using the liquid sending pump 4. Next, ozone was aerated into the water to be treated in the reaction tank 6, and the ozone raw material was sent to the dehumidifier 2 by the blower pump 1 using air to remove moisture in the air that would cause a decrease in ozone generation efficiency. After that, the ozonized air is made into ozonized air through the ozonizer 3, and further this ozonized air is sent to the aeration pipe 7 provided at the lower part of the reaction tank 6, and the aeration is diffused into the water to be treated from the aeration pipe 7, thereby separating ozone and the water to be treated. When the water comes into contact, both react. At this time, ozone that is not dissolved in the water to be treated reaches the ozone decomposition furnace 9 from above the reaction tank 6, where it is decomposed into oxygen and then released into the atmosphere. Note that air is normally used as the raw material for ozone, but when it is desired to obtain ozone at a higher concentration, oxygen may be used instead of air. Also the third
In the figure, solid line arrows indicate the direction of liquid flow, and dotted line arrows indicate the air flow direction. After the ozone and the water to be treated are brought into gas-liquid contact for a predetermined period of time, the liquid discharge valve 10 can be opened to take out the treated water from the bottom of the reaction tank 6.

次にこの水処理過程における問題点について述
べる。被処理水中のオゾン反応物質が除去される
速度は、被処理水中に溶存しているオゾン濃度に
よつて異なり、溶存オゾン濃度が高い方がオゾン
反応物質の除去速度が大きい。一方オゾン処理装
置の反応槽6内における圧力は、排オゾン処理の
ための熱分解炉9およびこれに至るまでの配管に
よる圧力損失分だけ大気圧より高いとしても、こ
の圧力損失は微々たるものであつてほぼ大気圧に
等しい。オゾンが被処理水中に溶解する濃度は、
通常の気体が液体中に溶解する場合となんら変る
ことなく、オゾンの分圧に比例するものであり、
したがつて反応槽6内の溶存オゾン濃度はオゾン
発生部から送入されるオゾン濃度に比例する。
Next, we will discuss the problems in this water treatment process. The speed at which ozone reactants are removed from the water to be treated varies depending on the concentration of ozone dissolved in the water to be treated, and the higher the dissolved ozone concentration, the faster the removal speed of the ozone reactants. On the other hand, even if the pressure in the reaction tank 6 of the ozone treatment equipment is higher than atmospheric pressure by the pressure loss due to the pyrolysis furnace 9 for exhaust ozone treatment and the piping leading to it, this pressure loss is insignificant. It is almost equal to atmospheric pressure. The concentration of ozone dissolved in the water to be treated is
This is no different from when a normal gas dissolves in a liquid, and is proportional to the partial pressure of ozone.
Therefore, the concentration of dissolved ozone in the reaction tank 6 is proportional to the concentration of ozone fed from the ozone generator.

しかしながら、通常のオゾナイザーで発生可能
なオゾンの濃度は酸素を原料とした場合でも約30
mg/と非常に希薄である。実際に水処理するに
当つては酸素を原料に用いるには輸送や貯蔵など
の点で問題があるため、オゾン発生の原料として
空気を用いることが多い。一般にオゾナイザーか
ら得られる気体のオゾン濃度は原料の酸素濃度の
平方根にほぼ比例することから、空気を原料とし
たときは、酸素を原料としたときの約半分のオゾ
ン濃度しか得られない。オゾナイザー3から発生
するオゾン化空気のオゾン濃度が低いと、反応槽
6内の被処理水中に溶存するオゾン濃度も低く、
したがつて被処理水中のオゾン反応物質を除去す
る速度も遅くなり、処理時間が長く、効率が悪い
という問題があり、結果的にオゾンの強力な酸化
能力を十分に活用したものとは言えない。
However, the concentration of ozone that can be generated with a normal ozonizer is approximately 30% even when oxygen is used as the raw material.
It is very dilute at mg/mg. In actual water treatment, using oxygen as a raw material poses problems in terms of transportation, storage, etc., so air is often used as a raw material for ozone generation. Generally, the ozone concentration of the gas obtained from an ozonizer is approximately proportional to the square root of the oxygen concentration of the raw material, so when air is used as the raw material, the ozone concentration is only about half that of when oxygen is used as the raw material. When the ozone concentration of the ozonized air generated from the ozonizer 3 is low, the ozone concentration dissolved in the water to be treated in the reaction tank 6 is also low.
Therefore, the speed of removing ozone-reactive substances from the water to be treated is slow, and there are problems with long treatment times and low efficiency, and as a result, it cannot be said that the powerful oxidizing ability of ozone is fully utilized. .

〔発明の目的〕[Purpose of the invention]

本発明は上述の点に鑑みてなされたものであ
り、その目的は被処理水中に散気させるオゾン化
された空気または酸素中のオゾンが低濃度であつ
ても被処理水中のオゾン反応物質を短時間に効率
よく除去することができるオゾン処理装置を提供
することにある。
The present invention has been made in view of the above-mentioned points, and its purpose is to eliminate ozone-reactive substances in the water to be treated even if the concentration of ozone in the ozonized air or oxygen diffused into the water to be treated is low. An object of the present invention is to provide an ozone treatment device that can remove ozone efficiently in a short time.

〔発明の要点〕[Key points of the invention]

本発明は、上述のオゾン処理装置の反応槽と排
オゾン処理部に連通する配管に圧力調整手段を設
けることにより反応槽内の圧力を大気圧以上に保
つことを可能とし、被処理水の溶存オゾン濃度を
高めるようにしたものである。
The present invention makes it possible to maintain the pressure inside the reaction tank above atmospheric pressure by providing a pressure regulating means in the piping that communicates with the reaction tank and the exhaust ozone treatment section of the ozone treatment equipment described above. This is designed to increase the ozone concentration.

〔発明の実施例〕[Embodiments of the invention]

以下本発明を実施例に基づき説明する。 The present invention will be explained below based on examples.

第1図は本発明による水処理装置の構成ととも
に処理系統を表わした概念図であり、第3図と共
通部分は同一符号を用いてある。第1図が第3図
と異なる所は反応槽6からオゾン分解炉9に至る
配管途中で反応槽6の外部に圧力調整弁8を設け
た点にある。本装置のオゾン処理を行なうための
作用は原理的に第3図のものと同じであるから説
明を省略し要点のみ述べる。第1図では反応槽6
内の被処理水中に溶解しなかつたオゾンは圧力調
整弁8を経てオゾン分解炉9に至り酸素に分解さ
れる。圧力調整弁8は反応槽6内の圧力を大気圧
以上の設定圧力に保ち、被処理水中の溶存オゾン
濃度を高める役割を果すものであり、例えばスプ
リング式の安全弁などが適している。
FIG. 1 is a conceptual diagram showing the construction and treatment system of a water treatment apparatus according to the present invention, and parts common to those in FIG. 3 are given the same reference numerals. 1 differs from FIG. 3 in that a pressure regulating valve 8 is provided outside the reaction tank 6 in the middle of the piping from the reaction tank 6 to the ozone decomposition furnace 9. Since the operation of this apparatus for ozone treatment is basically the same as that shown in FIG. 3, the explanation will be omitted and only the main points will be described. In Figure 1, reaction tank 6
Ozone that is not dissolved in the water to be treated passes through the pressure regulating valve 8 and reaches the ozone decomposition furnace 9, where it is decomposed into oxygen. The pressure regulating valve 8 serves to maintain the pressure inside the reaction tank 6 at a set pressure higher than atmospheric pressure and to increase the dissolved ozone concentration in the water to be treated, and is preferably a spring-type safety valve, for example.

また本発明では、圧力調整弁8の代りに他の圧
力調整手段、例えば反応槽6とオゾン分解炉9と
に連通する配管の一部を流路断面積の小さな管と
して、圧力損失を増大させることにより反応槽6
内の圧力を高めるなどの方法を用いてもよい。し
たがつて本発明ではこのような圧力調整手段によ
り、反応槽6内の圧力を大気圧以上に保持するこ
とができるから被処理水中の溶存オゾンが高濃度
となつて気液接触が行なわれる。以上のことから
本発明の装置を用いてオゾン処理を行うときはオ
ゾン処理時間が短縮されるのである。
Further, in the present invention, instead of the pressure regulating valve 8, other pressure regulating means are used, for example, a part of the piping communicating with the reaction tank 6 and the ozone decomposition furnace 9 is made into a pipe with a small flow passage cross-sectional area to increase the pressure loss. Possibly reaction tank 6
Methods such as increasing the internal pressure may also be used. Accordingly, in the present invention, the pressure within the reaction tank 6 can be maintained at a level higher than atmospheric pressure using such a pressure regulating means, so that dissolved ozone in the water to be treated becomes highly concentrated and gas-liquid contact is performed. From the above, when ozone treatment is performed using the apparatus of the present invention, the ozone treatment time is shortened.

次に反応槽6内の圧力を高めることによつて、
被処理水中のオゾン反応物質の処理時間がどのよ
うに短縮されるかについて、本発明の装置を用い
た実験結果を説明する。
Next, by increasing the pressure inside the reaction tank 6,
Experimental results using the apparatus of the present invention will be explained as to how the treatment time for ozone reactants in water to be treated is shortened.

被処理水は窒素として30mg/のアンモニウム
イオン(NH4 +)標準液をPH約12に調整したもの
を用いた。NH4 +はオゾン酸化により硝酸イオン
(NO3 -)に酸化されるが、この反応はPHが高い
程速く進行するためPHを約12に調整して被処理水
としたものである。この被処理水300mlを反応槽
6に投入し、圧力調整弁8を調整することにより
反応槽6内の圧力を変化させ、被処理水へのオゾ
ンの通気を開始してから、10分間毎に被処理水を
サンプリングしてNH4 +の減少を測定した。この
実験ではオゾンの原料として酸素を用い、オゾナ
イザー3の電圧を一定とした。オゾン濃度は23
mg/(大気圧基準)、通気量は0.4(大気圧基
準)/分である。実験結果を第2図に示した。
As the water to be treated, a standard solution containing 30 mg/ammonium ion (NH 4 + ) as nitrogen and adjusted to a pH of approximately 12 was used. NH 4 + is oxidized to nitrate ions (NO 3 - ) by ozone oxidation, but this reaction progresses faster as the pH is higher, so the pH was adjusted to about 12 and the water to be treated was used. Pour 300ml of this water to be treated into the reaction tank 6, change the pressure inside the reaction tank 6 by adjusting the pressure regulating valve 8, and start aeration of ozone into the water to be treated, every 10 minutes. The treated water was sampled to measure the reduction in NH 4 + . In this experiment, oxygen was used as the raw material for ozone, and the voltage of the ozonizer 3 was kept constant. Ozone concentration is 23
mg/(atmospheric pressure standard), and the ventilation rate is 0.4 (atmospheric pressure standard)/min. The experimental results are shown in Figure 2.

第2図は反応槽内の圧力をいずれもゲージ圧で
0.65Kg/cm2、1.90Kg/cm2としたときのオゾン通気
時間とNH4 +の残存率との関係を示した線図であ
り、比較のために反応槽内の圧力が大気圧の場合
も併記した。第2図において、曲線イが0.65Kg/
cm2、曲線ロが1.90Kg/cm2、曲線ハが大気圧の状態
を表わしている。第2図の三つの曲線を比較すれ
ばわかるように反応槽内を加圧状態に保つた曲線
イ,ロの場合はNH4 +の残存率の低下がはやく、
大気圧状態の曲線ハではオゾンを60分間通気して
もNH4 +は被処理水中にまだ42%も残留している
のに対し、僅か0.65Kg/cm2に加圧することによ
り、曲線イのごとくNH4 +はほぼ完全にNO3 -
酸化されている。さらに1.90Kg/cm2の加圧状態に
保つた場合は曲線ロのように一層NH4 +の酸化速
度は大となる。
Figure 2 shows the pressure inside the reaction tank in gauge pressure.
This is a diagram showing the relationship between the ozone ventilation time and the residual rate of NH 4 + when the pressure is 0.65Kg/cm 2 and 1.90Kg/cm 2 .For comparison, the pressure in the reaction tank is atmospheric pressure. Also listed. In Figure 2, curve A is 0.65Kg/
cm 2 , curve B represents 1.90Kg/cm 2 , and curve C represents atmospheric pressure. As can be seen by comparing the three curves in Figure 2, in the case of curves A and B, in which the inside of the reaction tank was kept under pressure, the residual rate of NH 4 + decreased quickly.
In curve C under atmospheric pressure condition, even if ozone is aerated for 60 minutes, 42% of NH 4 + still remains in the water to be treated. As shown, NH 4 + is almost completely oxidized to NO 3 - . Furthermore, when the pressure is maintained at 1.90 Kg/cm 2 , the oxidation rate of NH 4 + becomes even higher as shown in curve B.

以上のことから、反応槽内を加圧状態に保ち、
被処理水のオゾン溶存濃度を高めることにより、
本来オゾンのもつている強力な酸化力を十分発揮
させることができ、短時間に極めて高い処理効率
が得られる。
From the above, keeping the inside of the reaction tank in a pressurized state,
By increasing the dissolved ozone concentration in the water to be treated,
Ozone's inherently strong oxidizing power can be fully utilized, and extremely high treatment efficiency can be achieved in a short period of time.

なお本発明は排オゾン処理部に熱分解炉の代り
に活性炭吸着塔を用いても圧力調整手段を備えて
同様の効果を得ることができ、また回分式の代り
に処理水の取り出し部をレベル計、流量調整弁な
どから構成した連続式の装置としても圧力調整手
段を備えることにより、同様の効果を生ずること
は可能である。
In addition, the present invention can obtain the same effect by using an activated carbon adsorption tower instead of a pyrolysis furnace in the exhaust ozone treatment section by equipping it with a pressure adjustment means, and also by using a level system for taking out the treated water instead of a batch system. It is possible to produce the same effect as a continuous type device composed of a meter, a flow rate regulating valve, etc. by providing pressure regulating means.

また本発明による溶存オゾン濃度を高めるため
の圧力調整手段は有害なオゾンに対して密閉構造
としてある反応槽と排オゾン処理部との配管に設
けるだけでよいから、特別の考慮を払う必要もな
く簡単に付設することができるということや、そ
の他本発明の装置を用いて大気圧状態でオゾン処
理したときの処理レベルで済ませることができる
場合にはオゾナイザーの規模を小さくしてもよい
などの利点もある。
In addition, the pressure regulating means for increasing the dissolved ozone concentration according to the present invention need only be installed in the piping between the reaction tank and the exhaust ozone treatment section, which has a sealed structure against harmful ozone, so there is no need to take any special considerations. Other advantages include that the ozonizer can be easily installed and that the scale of the ozonizer can be reduced if the ozonizer can be treated at the level of ozone treatment at atmospheric pressure using the device of the present invention. There is also.

〔発明の効果〕〔Effect of the invention〕

オゾンを用いた水処理装置は、従来オゾナイザ
ーから発生する気体のオゾン濃度が低く、したが
つて大気圧にある反応槽内の被処理水中に散気し
たとき、被処理水の溶存オゾン濃度も低いので、
オゾン反応物質を酸化除去する速度が遅くなり、
処理効率が悪いという問題があつたのに対し、本
発明では実施例で説明したように反応槽と排オゾ
ン処理部との配管に圧力調整手段を設けることに
より反応槽内の圧力を大気圧以上に保持できるよ
うにして被処理水の溶存オゾン濃度を高めたため
に、本来オゾンの有する強力な酸化力を十分活用
することができ、短時間で極めて高いオゾン処理
効率が得られるものである。
In conventional water treatment equipment that uses ozone, the ozone concentration of the gas generated from the ozonizer is low, so when aeration is diffused into the water to be treated in the reaction tank at atmospheric pressure, the concentration of dissolved ozone in the water to be treated is also low. So,
The rate of oxidation removal of ozone reactants is reduced,
In contrast to the problem of poor treatment efficiency, in the present invention, as explained in the embodiment, by providing a pressure adjustment means in the piping between the reaction tank and the exhaust ozone treatment section, the pressure inside the reaction tank can be raised to above atmospheric pressure. Since the concentration of dissolved ozone in the water to be treated is increased by maintaining the ozone in the water, the strong oxidizing power that ozone originally has can be fully utilized, and extremely high ozone treatment efficiency can be obtained in a short period of time.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の装置構成と処理系統を表わす
概念図、第2図は本装置を用いてオゾン処理した
オゾン通気時間とNH4 +残存率の関係を表わす線
図、第3図は従来装置の構成と処理系統を表わす
概念図である。 1……送風ポンプ、2……除湿器、3……オゾ
ナイザー、4……送液ポンプ、5……逆止弁、6
……反応槽、7……散器板、8……圧力調整弁、
9…オゾン分解炉、10……液排出弁。
Fig. 1 is a conceptual diagram showing the equipment configuration and treatment system of the present invention, Fig. 2 is a diagram showing the relationship between ozone ventilation time and NH 4 + residual rate in ozone treatment using this equipment, and Fig. 3 is a conventional FIG. 2 is a conceptual diagram showing the configuration and processing system of the device. 1...Blower pump, 2...Dehumidifier, 3...Ozonizer, 4...Liquid pump, 5...Check valve, 6
...Reaction tank, 7...Scatter plate, 8...Pressure adjustment valve,
9...Ozone decomposition furnace, 10...Liquid discharge valve.

Claims (1)

【特許請求の範囲】 1 散気板を有し被処理水を一定量収容する反応
槽、反応槽に注入するオゾンを発生するオゾナイ
ザを有するオゾン発生部、反応槽に送る被処理水
の注送部、反応槽内の未反応オゾンを無害化して
外部へ放出する排オゾン処理部および反応槽と排
オゾン処理部とに連通する配管の一部に設けた圧
力調整手段を備えたことを特徴とするオゾン処理
装置。 2 特許請求の範囲第1項記載の装置において、
圧力調整手段はスプリング式安全弁を用いること
を特徴とするオゾン処理装置。 3 特許請求の範囲第1項記載の装置において、
圧力調整手段は前記配管より流路断面積の小さな
管を用いることを特徴とするオゾン処理装置。
[Claims] 1. A reaction tank having a diffuser plate and containing a certain amount of water to be treated, an ozone generation section having an ozonizer that generates ozone to be injected into the reaction tank, and injection of water to be treated to be sent to the reaction tank. a part, an exhaust ozone treatment part that renders unreacted ozone in the reaction tank harmless and releases it to the outside; and a pressure adjustment means provided in a part of the piping that communicates with the reaction tank and the exhaust ozone treatment part. ozone treatment equipment. 2. In the device according to claim 1,
An ozone treatment device characterized in that the pressure adjustment means uses a spring type safety valve. 3. In the device according to claim 1,
An ozone treatment apparatus characterized in that the pressure adjustment means uses a pipe having a flow passage cross-sectional area smaller than that of the pipe.
JP13373885A 1985-06-19 1985-06-19 Ozone treatment apparatus Granted JPS61291097A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13373885A JPS61291097A (en) 1985-06-19 1985-06-19 Ozone treatment apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13373885A JPS61291097A (en) 1985-06-19 1985-06-19 Ozone treatment apparatus

Publications (2)

Publication Number Publication Date
JPS61291097A JPS61291097A (en) 1986-12-20
JPH0329477B2 true JPH0329477B2 (en) 1991-04-24

Family

ID=15111761

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13373885A Granted JPS61291097A (en) 1985-06-19 1985-06-19 Ozone treatment apparatus

Country Status (1)

Country Link
JP (1) JPS61291097A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03157193A (en) * 1989-11-14 1991-07-05 Isomura Housui Kiko Kk Method and plant for treating high-degree purified water
FR2715395B1 (en) * 1994-01-26 1997-02-07 Anjou Rech OZONATION WATER TREATMENT UNIT, AND CORRESPONDING OZONATED WATER PRODUCTION FACILITY
JP2005288257A (en) * 2004-03-31 2005-10-20 Toyoshima Denki Kk Method and apparatus for treating sewage containing oil and fat

Also Published As

Publication number Publication date
JPS61291097A (en) 1986-12-20

Similar Documents

Publication Publication Date Title
JP4347908B2 (en) Method and apparatus for the oxidation of water pollutants
US6391272B1 (en) Method for exhaust gas decontamination
JPS5924672B2 (en) water treatment method
EP0495707A1 (en) Method and device for the oxidation of organic micropollutants in water by O3/H2O2 coupling
CA2300222A1 (en) Ozone purification process
JPH11290878A (en) Control method for removing toc component
JPH1157752A (en) Controlling method and device of toc component removal
JPH0329477B2 (en)
JP3506171B2 (en) Method and apparatus for removing TOC component
Ghaly et al. Aromatic compounds degradation in water by using ozone and AOPS. A comparative study. O-Nitrotoluene as a model substrate
CN100413787C (en) Process for efficient removing organic pollutant in water by catalysis and ozonization
JP3537995B2 (en) Wastewater treatment method
JP2000279977A (en) Fluid treatment and fluid treatment apparatus
JPH06285331A (en) Wet denitrification method for no containing gas of low concentration
JPH01275402A (en) Oxygen recycling ozonizer system
JPH11347576A (en) Method and apparatus for treating water
JPS63205194A (en) Treatment of hydrazine-containing waste water
JPH06154792A (en) Biomembrane filter
JPS55147191A (en) Treatment process for waste water
JP3769093B2 (en) Advanced wastewater treatment device and advanced treatment method
JPH0558795B2 (en)
JPH02211290A (en) Ozonizing purification system for liquid
JPH09285793A (en) Removing method for nitrate nitrogen in water and removing system
JPS632149Y2 (en)
JPS61245899A (en) Treatment of organic waste water