JPH02164490A - Water treatment method and apparatus - Google Patents

Water treatment method and apparatus

Info

Publication number
JPH02164490A
JPH02164490A JP31847488A JP31847488A JPH02164490A JP H02164490 A JPH02164490 A JP H02164490A JP 31847488 A JP31847488 A JP 31847488A JP 31847488 A JP31847488 A JP 31847488A JP H02164490 A JPH02164490 A JP H02164490A
Authority
JP
Japan
Prior art keywords
water
treated
electron beam
oxygen
ozone
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP31847488A
Other languages
Japanese (ja)
Inventor
Hidehiko Arai
新井 英彦
Masakazu Hosono
細野 雅一
Akira Sugiyama
杉山 昌
Ichiro Yamamoto
一郎 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Kankyo Engineering Co Ltd
Japan Atomic Energy Agency
Original Assignee
Furukawa Electric Co Ltd
Japan Atomic Energy Research Institute
Kankyo Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd, Japan Atomic Energy Research Institute, Kankyo Engineering Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP31847488A priority Critical patent/JPH02164490A/en
Publication of JPH02164490A publication Critical patent/JPH02164490A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • C02F1/305Treatment of water, waste water, or sewage by irradiation with electrons
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/78Treatment of water, waste water, or sewage by oxidation with ozone

Landscapes

  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Physical Water Treatments (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)

Abstract

PURPOSE:To enhance the utilization efficiency of electron beam by dissolving ozone or oxygen-containing gas in water to be treated under pressure and irradiating water to be treated with electron beam. CONSTITUTION:Water A to be treated is pressurized by a pump to be met with ozone or oxygen-containing gas in an ejector 1 and enters a pressure tank 3 through a line mixer 3. By the stagnation in the pressure tank 3, the dissolution of the gas is accelerated and the separation of excessive gas or the dissolved gas such as nitrogen gas in the water A to be treated is performed. Thereafter, the water A to be treated having ozone or oxygen dissolved therein is sent to a reactor 7 to be sprayed from a nozzle 6 herein in a filmy state and irradiated with electron beam from an electron beam accelerator 8 to subject the org. substance dissolved in the water A to be treated to decomposition treatment while the treated water is discharged from a pipe 17. By this method, the utilization efficiency of electron beam can be enhanced.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は有機物を含有する水の処理方法及び処理装置に
関し、更に詳しくはオゾン及び/又は酸素を加圧下に溶
解した被処理水に電子線を照射することによつて行う水
処理方法及び該方法を実施するための装置に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method and apparatus for treating water containing organic matter, and more specifically to a method and apparatus for treating water containing organic matter, and more specifically, a method for applying electron beams to water to be treated in which ozone and/or oxygen are dissolved under pressure. The present invention relates to a water treatment method carried out by irradiating water and an apparatus for carrying out the method.

(従来の技術及びその問題点) 従来、用水或いは排水中に含まれる有機物、特に生物難
分解性の有機物を処理する方法として、活性炭吸着法、
オゾン酸化法、逆浸透法等が知られている。
(Prior art and its problems) Conventionally, activated carbon adsorption methods,
Ozone oxidation method, reverse osmosis method, etc. are known.

しかしながら、これらの従来の方法は、いずれも満足出
来る水質を得るためには複雑且つ膨大な設備を必要とし
、設備のみならず運転費も高く、工業的には必ずしも満
足出来る状態ではない。
However, all of these conventional methods require complicated and enormous equipment in order to obtain satisfactory water quality, and the equipment and operating costs are high, so they are not necessarily in an industrially satisfactory state.

一方、近年電子加速器から発生する電子線に着目し、そ
の強力なエネルギーで水中の有機物を分解除去する方法
が提案されている。
On the other hand, in recent years, attention has been focused on electron beams generated from electron accelerators, and methods have been proposed to use the powerful energy of electron beams to decompose and remove organic matter in water.

一般に有機物を含む水溶液に電子線を始めとする電離放
射線が照射された場合には、水が分解され、OHラジカ
ルを始めとする極めて反応性に富む活性種を生成し、更
に水溶液中に溶存オゾン或いは溶存酸素が存在するとこ
れらが有機物を酸化し、最終的には炭酸ガスと水に迄酸
化分解する。
In general, when an aqueous solution containing organic matter is irradiated with ionizing radiation such as an electron beam, the water decomposes and generates highly reactive active species such as OH radicals, and furthermore, ozone dissolved in the aqueous solution is generated. Alternatively, if dissolved oxygen is present, these will oxidize the organic matter and eventually oxidize and decompose it to carbon dioxide gas and water.

ところが、従来の電子線照射による水処理方法において
、有機汚濁成分が高い場合に十分な処理効果を得るべく
、単位時間当りの照射エネルギーを増加させる、すなわ
ち、照射線量率を増すことによって処理効果はある程度
向上するものの、線量率の増加量に比例した処理効果の
向上はなく、線量率を増すにつれてエネルギーの利用効
率が低下するという問題があり、又、大量の排水を処理
対象とした場合には適当な処理装置が開発されていない
という問題があり実用化が阻まれていた。
However, in the conventional water treatment method using electron beam irradiation, in order to obtain a sufficient treatment effect when organic pollutant components are high, the treatment effect is reduced by increasing the irradiation energy per unit time, that is, by increasing the irradiation dose rate. Although it improves to some extent, the treatment effect does not improve in proportion to the increase in the dose rate, and there is a problem that the energy use efficiency decreases as the dose rate increases, and when a large amount of wastewater is treated. The problem was that no suitable processing equipment had been developed, which hindered its practical application.

従って本発明の目的は、上記従来技術の問題点を解決し
、電子線の利用効率に優れた水処理方法及び処理装置を
提供することである。
SUMMARY OF THE INVENTION Therefore, an object of the present invention is to solve the problems of the prior art described above and to provide a water treatment method and a treatment apparatus that have excellent electron beam utilization efficiency.

(問題点を解決するための手段) 上記目的は以下の本発明によって達成される。(Means for solving problems) The above objects are achieved by the present invention as described below.

すなわち、本発明は2発明からなり、第一の発明は、オ
ゾン及び/又は酸素を加圧下に溶解した被処理水を、ノ
ズルから膜状に放出させ、該放出水に電子線照射を行う
ことを特徴とする水処理方法であり、第二の発明は、被
処理水にオゾン及び/又は酸素を加圧下に溶解する装置
、オゾン及び/又は酸素を溶解した被処理水を膜状に放
出するノズル及び該ノズルから放出された膜状被処理水
に電子線を照射する装置を含むことを特徴とする電子線
水処理装置である。
That is, the present invention consists of two inventions, and the first invention is to discharge to-be-treated water in which ozone and/or oxygen is dissolved under pressure from a nozzle in the form of a film, and to irradiate the discharged water with an electron beam. A second invention is a water treatment method characterized by: an apparatus for dissolving ozone and/or oxygen in water to be treated under pressure; This is an electron beam water treatment apparatus characterized by including a nozzle and a device for irradiating an electron beam onto a film of water to be treated discharged from the nozzle.

(作  用) オゾン及び/又は酸素を加圧下に溶解した被処理水をノ
ズルから電子線の飛程に応じた厚みの膜状に放出させ、
該放出水に電子線照射を行うことによって電子線の利用
効率が著しく向上する。
(Function) Water to be treated in which ozone and/or oxygen are dissolved under pressure is discharged from the nozzle in the form of a film with a thickness corresponding to the range of the electron beam,
By irradiating the discharged water with an electron beam, the efficiency of using the electron beam is significantly improved.

又、水中の有機物を酸化分解して除去するためには、酸
化反応が化学量論的に進行するものとすると、酸化剤の
必要量は有効酸素換算で除去される有機物の全酸素要求
量と等しい量となる。このため、除去すべき有機物濃度
が高い場合にはこれに対応した溶存オゾン及び/又は酸
素濃度を確保してやる必要があり、本発明の方法及び装
置では溶解圧力を選ぶことによって酸化処理に必要な溶
存オゾン及び/又は酸素濃度を容易に維持することが可
能となる。
In addition, in order to remove organic matter from water by oxidative decomposition, assuming that the oxidation reaction proceeds stoichiometrically, the required amount of oxidizing agent is equal to the total oxygen demand of the organic matter to be removed in terms of available oxygen. be equal amounts. For this reason, when the concentration of organic matter to be removed is high, it is necessary to ensure a corresponding dissolved ozone and/or oxygen concentration, and in the method and apparatus of the present invention, the dissolved ozone and/or oxygen concentration necessary for oxidation treatment is determined by selecting the dissolution pressure. It becomes possible to easily maintain ozone and/or oxygen concentration.

(好ましい実施態様) 次に好ましい実施態様を挙げて本発明を更に詳しく説明
する。
(Preferred Embodiments) Next, the present invention will be described in more detail by citing preferred embodiments.

従来、電子線照射によって排水等を処理する方法は公知
であるが、2MeV程度で加速された電子線は水中での
飛程がせいぜい5乃至20mm、10MeVでは最大5
5mm程度と短いため、高線量率の電子線を照射すると
、照射エネルギーが被処理水の上面の浅い部分に局部的
に吸収されることになり、これより深い部分では電子線
が作用しない。
Conventionally, a method of treating wastewater etc. by electron beam irradiation is known, but the range of an electron beam accelerated at about 2 MeV in water is at most 5 to 20 mm, and at 10 MeV, the range is at most 5 mm.
Since it is as short as about 5 mm, when irradiating an electron beam at a high dose rate, the irradiation energy is locally absorbed in a shallow part of the upper surface of the water to be treated, and the electron beam does not act on deeper parts.

その結果、深い部分の水は処理されることなく排出され
ることになり、結果として電子線の利用効率は低下する
ことになる。又、被処理水中に含まれる有機物濃度が高
くなれば、これに相当する大エネルギー量の電子線を照
射することは当然であるが、酸化性ガスの溶在量もこ、
わに比例して増加させない限り処理効率は向上しない。
As a result, water in deep areas is discharged without being treated, and as a result, the efficiency of using electron beams decreases. In addition, as the concentration of organic matter in the water to be treated increases, it is natural to irradiate an electron beam with a correspondingly large amount of energy, but the amount of dissolved oxidizing gas also increases.
Processing efficiency will not improve unless it is increased in proportion to the number of crocodiles.

本発明はこの様な間層を、加圧下でオゾン及び/又は酸
素を溶解した被処理水を電子線の飛程に近い膜状として
そこに電子線を照射することによって解決したものであ
る。
The present invention solves the problem of such an interlayer by forming a film of water in which ozone and/or oxygen are dissolved under pressure into a film close to the range of the electron beam and irradiating the film with the electron beam.

本発明の対象になる被処理水は、一般用水、工場排水、
例えば、凍原の生物処理水、廃糖密の生物処理水、コー
クスガスの凝縮水(安水)、界面活性剤含有排水、化学
工業製品製造排水、家庭排水、例えば、下水汚泥説離液
、浸出水、例えば、廃棄物理立場浸出汚水の生物処理水
等その中に有機物を含有し、且つ該有機物を除去すべき
である総ての水を包含する。
The water to be treated that is the object of the present invention is general water, industrial wastewater,
For example, biologically treated water from frozen plains, biologically treated water from waste molasses, coke gas condensed water (ammonium water), surfactant-containing wastewater, chemical industry product manufacturing wastewater, domestic wastewater, such as sewage sludge syneresis liquid, leaching. Water includes all water that contains organic matter therein and from which the organic matter should be removed, such as biologically treated water of waste physical leachate sewage.

本発明では水処理に当り、上記の如き被処理水中にオゾ
ン及び/又は酸素が溶解して存在している必要があり、
これらのオゾン及び/又は酸素の溶解にはそれら自体を
用いてもよいし、空気の様に酸素を含む気体を用いても
よい。
In the present invention, in water treatment, it is necessary that ozone and/or oxygen be dissolved in the water to be treated as described above,
These ozone and/or oxygen may be dissolved by themselves, or by using a gas containing oxygen such as air.

被処理水へのオゾン及び/又は酸素の溶解は電子線照射
時又は照射前のいずれでもよいが、照射時特に加圧下で
溶解することは危険であり、又、耐圧容器内で被処理水
に照射を行うと容器壁での電子線の吸収が避けられない
ため、好ましくは照射前に加圧下に溶解する。
Ozone and/or oxygen may be dissolved in the water to be treated either during or before irradiation with the electron beam, but it is dangerous to dissolve it during irradiation, especially under pressure, and it is dangerous to dissolve ozone and/or oxygen in the water to be treated in a pressure-resistant container. Since absorption of the electron beam by the container wall is unavoidable when irradiation is performed, it is preferably dissolved under pressure before irradiation.

加圧下でオゾン及び/又は酸素又はこれらを含むガスを
被処理水に溶解することによって、常圧下に比較してこ
れら酸化性ガスの分圧が大きくなり、被処理水に対する
オゾン及び/又は酸素の溶解量を増すことが出来る。
By dissolving ozone and/or oxygen or a gas containing them in the water to be treated under pressure, the partial pressure of these oxidizing gases becomes larger than under normal pressure, and the ozone and/or oxygen in the water to be treated increases. The amount of dissolution can be increased.

加圧圧力とこれら酸化性ガスの飽和溶解濃度の関係は次
に示すヘンリーの法則で説明されるP = K x−・
・・・・・・・・・・・・・・・・・・・・−(1)こ
こで P:溶質ガスの分圧(atm)K:ヘンリ一定数 X:水中に溶解した溶質ガスのモ ル分率 溶質ガスの分圧と水中に溶解した溶質ガスのモル分率は
比例関係にあり、溶解圧力を増すことによ7て溶解ガス
濃度を任意に高めることが可能であり、溶存する酸化性
ガス濃度の不足を防止出来る。
The relationship between the applied pressure and the saturated dissolved concentration of these oxidizing gases is explained by Henry's law shown below: P = K x-・
・・・・・・・・・・・・・・・・・・・・・・(1) Where, P: Partial pressure of solute gas (atm) K: Henry constant Mole Fraction The partial pressure of solute gas and the mole fraction of solute gas dissolved in water are in a proportional relationship, and by increasing the dissolution pressure, the concentration of dissolved gas can be increased arbitrarily, and dissolved oxidation It can prevent insufficient concentration of sexual gases.

本発明では上記オゾン及び/又は酸素を溶解させるのに
圧力を使用して、次に被処理水を加圧状態で電子線の照
射反応器透導き、反応器に設けたノズルを用いて圧力を
開放すると共に被処理水を膜状に放出させ、この膜状被
処理水に電子線を照射する。
In the present invention, pressure is used to dissolve the ozone and/or oxygen, and then the water to be treated is passed through an electron beam irradiation reactor under pressure, and the pressure is increased using a nozzle provided in the reactor. When opened, water to be treated is released in a film form, and this film of water to be treated is irradiated with an electron beam.

この際に水膜の厚みは電子線が達する厚さ、例えば、電
子線の加速電圧が2MeV程度では5乃至20mmの厚
みが好ましく、電子線の加速電圧が10MeV程度では
55mm程度迄の厚みが好ましいことを見い出した。水
膜の幅は特に限定されず電子線照射反応部の幅に合せれ
ばよい。この様な厚みの水膜は使用するノズルの孔を狭
い断面とし、且つその幅を変化させることで任意の厚み
とすることが出来る。
In this case, the thickness of the water film is the thickness reached by the electron beam, for example, preferably 5 to 20 mm when the electron beam accelerating voltage is about 2 MeV, and preferably up to about 55 mm when the electron beam accelerating voltage is about 10 MeV. I discovered that. The width of the water film is not particularly limited and may be matched to the width of the electron beam irradiation reaction area. A water film of such thickness can be made to have an arbitrary thickness by making the nozzle hole used have a narrow cross section and changing its width.

放出される水膜は層流又は乱流等いずれの状態でもよい
が、電子線の照射反応部において高速で且つ強い乱流状
態の水流とするのが好ましく、この状態で電子線を照射
することにより、電子線は容易に水膜厚全体に達し、電
子線の飛程の短いことによる電子線エネルギーの偏在化
が防止出来、被処理水の全体に平均化した電子線エネル
ギーが供給出来、被処理水中の有機物を効率的に分解す
ることが出来る。
The released water film may be in any state such as laminar flow or turbulent flow, but it is preferable that the water flow be in a high-speed and strongly turbulent state in the electron beam irradiation reaction part, and the electron beam should not be irradiated in this state. As a result, the electron beam can easily reach the entire water film thickness, prevent uneven distribution of electron beam energy due to the short range of the electron beam, and supply evened electron beam energy to the entire water to be treated. Organic matter in treated water can be efficiently decomposed.

次に第1図に示す好ましい実施態様の一例を用いて本発
明を更に詳細に説明する。
Next, the present invention will be explained in more detail using an example of a preferred embodiment shown in FIG.

被処理水Aはポンプ等によって加圧され、管11を通っ
てエジェクター1に至り、ここで管12から送られるオ
ゾン及び/又は酸素を含むガスと一緒になり、管13を
通り管内混合器2を通って気液混合され、管14から加
圧タンク3に入る。
The water to be treated A is pressurized by a pump or the like, passes through a pipe 11, reaches the ejector 1, where it is combined with gas containing ozone and/or oxygen sent from a pipe 12, and passes through a pipe 13 to an in-pipe mixer 2. The gas and liquid are mixed through the pipe 14 and enter the pressurized tank 3.

加圧タンク3内に被処理水とガスとを加圧下で滞留させ
ることによって、ガスの溶解を促進させるとともに余剰
のガス或いは窒素ガス等の被処理水に溶解しているガス
を被処理水から分離する。
By retaining the water to be treated and the gas under pressure in the pressurized tank 3, dissolution of the gas is promoted and gases dissolved in the water to be treated, such as surplus gas or nitrogen gas, are removed from the water to be treated. To separate.

分離されたガスは加圧タンク3の上部に溜り、加圧タン
ク3内の水位を押し下げることになるので、加圧タンク
3内の水位を水位検出器9にて検出し、所定の水位以下
になったら弁10を開いてガスを加圧タンク3外に排出
し、加圧タンク内の水位をほぼ一定に保つ。
The separated gas accumulates in the upper part of the pressurized tank 3 and pushes down the water level in the pressurized tank 3, so the water level in the pressurized tank 3 is detected by the water level detector 9 and the water level is lowered below a predetermined level. When this happens, the valve 10 is opened to discharge the gas to the outside of the pressurized tank 3, and the water level in the pressurized tank is kept almost constant.

オゾン及び/又は酸素を溶解した被処理水は、管15を
通って遮蔽壁4を隔てて設置されている反応器7に送ら
れる。反応器に入る手前には必要に応じて減圧弁5又は
流ff1jJI整弁を取り付け、被処理水の圧力又は流
量を調節する。
The water to be treated in which ozone and/or oxygen have been dissolved is sent through a pipe 15 to a reactor 7 installed across a shielding wall 4 . Before entering the reactor, a pressure reducing valve 5 or a flow regulating valve ff1jJI is installed as necessary to adjust the pressure or flow rate of the water to be treated.

減圧弁5又は流量調整弁は必要に応じて遮蔽壁4より加
圧タンク3に近い位置に付けることも可能であるが、被
処理水の圧力が下がると溶解しているオゾン及び/又は
酸素が管15内でガス化して気泡を発生し、被処理水中
のオゾン及び/又は酸素濃度が低下するため好ましくな
い。
The pressure reducing valve 5 or the flow rate regulating valve can be installed closer to the pressurizing tank 3 than the shielding wall 4 if necessary, but when the pressure of the water to be treated decreases, dissolved ozone and/or oxygen may This is not preferable because it gasifies in the pipe 15 and generates bubbles, which lowers the ozone and/or oxygen concentration in the water to be treated.

反応器7では被処理水はノズル6から膜状に放出され、
電子線加速器8から電子線の照射を受け、溶存する有機
物が分解処理される。
In the reactor 7, the water to be treated is discharged from the nozzle 6 in the form of a film.
The dissolved organic matter is decomposed by being irradiated with an electron beam from the electron beam accelerator 8.

電子線照射処理を受けた処理水Bは管16から排出され
、又、被処理水に溶解していた過剰のオゾン及び/又は
酸素の一部をガス化し、管17h1ら排出させる。
The treated water B subjected to the electron beam irradiation treatment is discharged from the pipe 16, and a portion of excess ozone and/or oxygen dissolved in the water to be treated is gasified and discharged from the pipe 17h1.

管11から送られる被処理水Aの圧力は、処理に必要と
するオゾン及び/又は酸素の濃度又は反応器内での十分
な流速を得るに必要な圧力によって選定されるものであ
り、特に限定されないが、通常は1乃至10kg/Cm
″・Gの範囲が選ばれる。
The pressure of the water A to be treated sent from the pipe 11 is selected depending on the ozone and/or oxygen concentration required for treatment or the pressure necessary to obtain a sufficient flow rate in the reactor, and there are no particular limitations. Usually 1 to 10kg/Cm
″・G range is selected.

又、管12から送られるオゾン及び/又は酸素又はこれ
らを含むガスの圧力は、被処理水Aの圧力よりも若干高
い圧力を選定することで、エジェクター1での気液混合
を円滑に実施出来るが、エジェクター1にベンチュリー
管方式のものを採用すると、ガスを負圧吸引することが
可能であるため、ガス側の圧力を水側より低くすること
が出来る。
Furthermore, by selecting the pressure of ozone and/or oxygen, or the gas containing them, sent from the pipe 12 to be slightly higher than the pressure of the water to be treated A, gas-liquid mixing can be carried out smoothly in the ejector 1. However, if a Venturi tube type ejector is adopted as the ejector 1, the gas can be sucked under negative pressure, so the pressure on the gas side can be lower than that on the water side.

管内混合器2はガスの溶解効率を向上させることを目的
とするもので、−射的な静止型混合器でよく、又、特に
管内混合器を設置しなくても、被処理水の加圧圧力を上
げることによってガスの溶解量を増やすことは可能であ
り、必ずしも管内混合器の設置の必要はない。
The purpose of the in-pipe mixer 2 is to improve gas dissolution efficiency, and it may be a static type mixer. It is possible to increase the amount of gas dissolved by increasing the pressure, and it is not necessarily necessary to install an in-pipe mixer.

加圧タンク3の滞留時間は特に限定するものではないが
、通常は0.5乃至10分間の滞留時間を設ければ、十
分にその目的を達することが出来る。又、被処理水に対
してガスの送り量を適当に選び、余剰ガスの発生が少な
いか或いは発生しない条件においては加圧タンク3を省
略することも可能である。
The residence time in the pressurized tank 3 is not particularly limited, but normally a residence time of 0.5 to 10 minutes is sufficient to achieve the purpose. It is also possible to appropriately select the amount of gas to be fed to the water to be treated and omit the pressurized tank 3 under conditions where little or no surplus gas is generated.

第1図は本発明方法及び装置による連続処理のフローを
示したが、回分又は半回分操作によって加圧下でオゾン
及び/又は酸素又はこれらのいずれか或いは双方を含む
ガスを溶解した後被処理水に電子線を照射することによ
っても本発明の目的を達することは、出来るものであり
、特に連続処理に限定するものではない。
Figure 1 shows the flow of continuous treatment by the method and apparatus of the present invention, in which ozone and/or oxygen, or gases containing either or both of these are dissolved under pressure by batch or semi-batch operation, and then the water to be treated is The object of the present invention can also be achieved by irradiating electron beams on the substrate, and the process is not particularly limited to continuous processing.

(実施例) 次に実施例及び比較例を挙げて本発明を更に具体的に説
明する。
(Example) Next, the present invention will be explained in more detail by giving examples and comparative examples.

実施例! 第1図に示す本発明の装置を使用して、未精製アシッド
レッド256の濃度500 m g / Itの染料溶
液を被処理水とし、酸化性ガスには酸素を使用し、被処
理水を1042 /min、で供給し、酸素の圧力を変
えて酸素を51/a+in、で連続的に供給した。加圧
タンクの容量は100ILであり、反応器内で被処理水
を流速1m/sec、、水膜厚さ10mmで、−過式で
流下させてこれに2MeVの電子線を照射し、各照射線
量における脱色率を調べたところ第2図の結果を得た。
Example! Using the apparatus of the present invention shown in FIG. 1, a dye solution of unrefined Acid Red 256 at a concentration of 500 mg/It was used as the water to be treated, oxygen was used as the oxidizing gas, and the water to be treated was The oxygen pressure was changed to continuously supply oxygen at 51/a+in. The capacity of the pressurized tank is 100 IL, and the water to be treated is made to flow down in the reactor at a flow rate of 1 m/sec, with a water film thickness of 10 mm, and is irradiated with a 2 MeV electron beam. When we investigated the decolorization rate at different doses, we obtained the results shown in Figure 2.

尚、脱色率は230nmの吸光度で求めた。その結果、
加圧圧力及び照射線量に対応して極めててリニヤ−な脱
色率が得られた。
Incidentally, the decolorization rate was determined by the absorbance at 230 nm. the result,
An extremely linear decolorization rate was obtained depending on the applied pressure and irradiation dose.

実施例2 第1図に示す本発明の装置を使用して、廃棄物理立場浸
出汚水の生物処理水(TOC68mg/ X )を被処
理水とし、酸化性ガスには空気を使用し、8kg/cr
n”・Gの加圧下で被処理水を102/min、、空気
を5IL/min、で連続的に供給した。加圧タンクの
容量は100Itであり、反応器内で被処理水を流速1
m/sec、、水膜厚さ15mmで、−通式で流下させ
て電子線を照射した。この時の吸収線量は20にGMで
あり、処理水のTOCは26mg/JZとなった。
Example 2 Using the apparatus of the present invention shown in Fig. 1, biologically treated waste water (TOC 68 mg/
The water to be treated was continuously supplied at a rate of 102/min and the air at a rate of 5 IL/min under a pressure of
The electron beam was irradiated with a water film of 15 mm thick at a flow rate of 15 mm/sec. The absorbed dose at this time was 20% GM, and the TOC of the treated water was 26mg/JZ.

次に、同じ被処理水と同じ装置を用いて、供給水量を2
01/min、、空気供給量を10 It /1Qin
Next, using the same water to be treated and the same equipment, increase the amount of water supplied by 2.
01/min, air supply amount 10 It/1Qin
.

とし、加圧タンクの容ziooIL、加圧圧力8kg/
 c rn”・Gにて、反応器内の被処理水の流速を倍
の2m/sec、水膜厚さ15mmで一過式で流下させ
てこれに電子線を照射した。電子線加速器の電流は2倍
に増加し、吸収線量は同じ20 KGMとした。この結
果処理水のTOCは前と同じ26mg/2を示した。こ
の結果、電子線ビーム電流を変化させて線量率を2倍に
増加した場合においても、吸収線量が等しければ同等の
処理効果の得られることが確認出来た。
The capacity of the pressurized tank is ziooIL, and the pressurized pressure is 8 kg/
crn''・G, the flow rate of the water to be treated in the reactor was doubled to 2 m/sec, the water film thickness was 15 mm, and the water was made to flow down in a one-shot manner, and the water was irradiated with an electron beam.Electron beam accelerator current was doubled, and the absorbed dose remained the same at 20 KGM.As a result, the TOC of the treated water showed the same 26 mg/2 as before.As a result, the dose rate was doubled by changing the electron beam current. It was confirmed that even if the absorbed dose is increased, the same treatment effect can be obtained if the absorbed dose is the same.

比較例 実施例2で用いた廃棄物理立場浸出汚水の生物処理水(
Too 68mg/ fL )を被処理水とし、酸化性
ガスには空気を使用し、8kg/crn”−Gの加圧下
で被処理水に酸素を溶解させた。この被処理水をバッチ
式反応器(深さ30cm)中で2Me、Vの電子線を2
0にG、y照射した。この処理水のTOCは58mg/
42となった。
Comparative Example Biologically treated water (
Too 68mg/fL) was used as the water to be treated, air was used as the oxidizing gas, and oxygen was dissolved in the water to be treated under a pressure of 8kg/crn''-G.This water was transferred to a batch reactor. (depth of 30cm) 2Me, V electron beam
0 was irradiated with G and Y irradiation. The TOC of this treated water is 58mg/
It became 42.

(効 果) 以上の如き本発明によれば、被処理水にオゾン及び/又
は酸素或いはこれらを含むガスを加圧下で溶解し、被処
理水に電子線を照射することによって、電子線の照射エ
ネルギーを極めて有効に効率良く利用出来、且つ電子線
照射技術を、高濃度に存機物を含む場合或いは大水量の
水処理への適用が可能となり、工業的に益するところは
極めて大きい。
(Effects) According to the present invention as described above, ozone and/or oxygen or a gas containing these is dissolved in the water to be treated under pressure, and the water to be treated is irradiated with an electron beam. Energy can be used extremely effectively and efficiently, and the electron beam irradiation technology can be applied to cases containing highly concentrated organic substances or to water treatment of large amounts of water, which is of great industrial benefit.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の方法及び装置を図解的に示す図であり
、第2図は実施例1の結果を示す図である。 1:エジエクタ−2=管管内台器 3:加圧タンク      4・:遮蔽壁5:減圧弁 
       6:ノズル7:反応容器       
8:電子加速器9:水位検出器     10:弁 11乃至17:管
FIG. 1 is a diagram schematically showing the method and apparatus of the present invention, and FIG. 2 is a diagram showing the results of Example 1. 1: Ejector 2 = pipe internal device 3: Pressurized tank 4: Shielding wall 5: Pressure reducing valve
6: Nozzle 7: Reaction vessel
8: Electron accelerator 9: Water level detector 10: Valves 11 to 17: Pipes

Claims (2)

【特許請求の範囲】[Claims] (1)オゾン及び/又は酸素を加圧下で溶解した被処理
水を、ノズルから膜状に放出させ、該放出水に電子線照
射を行うことを特徴とする水処理方法。
(1) A water treatment method characterized in that water to be treated in which ozone and/or oxygen is dissolved under pressure is discharged from a nozzle in the form of a film, and the discharged water is irradiated with an electron beam.
(2)被処理水にオゾン及び/又は酸素を加圧下に溶解
する装置、オゾン及び/又は酸素を溶解した被処理水を
膜状に放出するノズル及び該ノズルから放出された膜状
被処理水に電子線を照射する装置を含むことを特徴とす
る電子線水処理装置。
(2) A device that dissolves ozone and/or oxygen in the water to be treated under pressure, a nozzle that discharges the water to be treated in which ozone and/or oxygen has been dissolved in the form of a film, and the water to be treated in the form of a film released from the nozzle. An electron beam water treatment device comprising a device for irradiating an electron beam with an electron beam.
JP31847488A 1988-12-19 1988-12-19 Water treatment method and apparatus Pending JPH02164490A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31847488A JPH02164490A (en) 1988-12-19 1988-12-19 Water treatment method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31847488A JPH02164490A (en) 1988-12-19 1988-12-19 Water treatment method and apparatus

Publications (1)

Publication Number Publication Date
JPH02164490A true JPH02164490A (en) 1990-06-25

Family

ID=18099518

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31847488A Pending JPH02164490A (en) 1988-12-19 1988-12-19 Water treatment method and apparatus

Country Status (1)

Country Link
JP (1) JPH02164490A (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5457269A (en) * 1992-09-08 1995-10-10 Zapit Technology, Inc. Oxidizing enhancement electron beam process and apparatus for contaminant treatment
KR970025677A (en) * 1995-11-30 1997-06-24 경주현 Flue gas treatment device with uniform flow rate distribution
US5785866A (en) * 1989-08-08 1998-07-28 Osterreichisches Forschungszentrum Seibersdorf Gmbh Process and apparatus for the treatment, in particular purification of water containing halogenated ethylenes
KR19980057625A (en) * 1996-12-30 1998-09-25 이대원 Wastewater treatment method containing polyvinyl alcohol (PVA) by electron beam irradiation
KR19980065219A (en) * 1997-01-06 1998-10-15 이대원 Leachate Treatment Method of Garbage Landfill by Electron Beam Irradiation
KR19980085025A (en) * 1997-05-27 1998-12-05 이대원 Paper Waste Treatment by Electron Beam Irradiation
KR19980085026A (en) * 1997-05-27 1998-12-05 이대원 Wastewater treatment method by electron beam irradiation and ozone addition
EP1400493A1 (en) * 2002-09-17 2004-03-24 Deutsches Zentrum für Luft- und Raumfahrt e.V. Apparatus and process for cleaning a contaminated liquid
KR100420903B1 (en) * 1996-12-30 2004-04-17 이비테크(주) METHOD FOR REMOVING Cr AND Hg FROM WASTEWATER BY USING ELECTRONIC RAY
KR100431473B1 (en) * 1997-05-27 2004-07-16 이비테크(주) Method for treating dyeing wastewater containing polyvinylalcohol by electron beam irradiation
KR100446438B1 (en) * 2002-05-17 2004-09-01 유토파워주식회사 Sewage/waste water treatment system and method using Electronic radiation apparatus and ionization-gas ganerator apparatus
JP2009039680A (en) * 2007-08-10 2009-02-26 Jfe Engineering Kk Apparatus for treating ballast water
JP4622015B2 (en) * 1998-11-27 2011-02-02 東レ株式会社 Module incorporating a membrane and manufacturing method thereof
EP2554520A3 (en) * 2011-08-02 2013-06-05 Krones AG Thermal sterilisation of water by ionising radiation
CN110372064A (en) * 2019-07-19 2019-10-25 常熟理工学院 A method of medical waste liquid is handled using electronic beam irradiation technology

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5069849A (en) * 1973-10-25 1975-06-10
JPS51146759A (en) * 1975-05-30 1976-12-16 Japan Atom Energy Res Inst Process for treating a solution containing polyvinyl alcohol
JPS52148961A (en) * 1976-06-03 1977-12-10 Nissin Electric Co Ltd Decoloring of colored waste liquor
JPS5584589A (en) * 1978-12-21 1980-06-25 Japan Atom Energy Res Inst Treatment of waste water by combined use of ozone and ionizing radiation treatment

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5069849A (en) * 1973-10-25 1975-06-10
JPS51146759A (en) * 1975-05-30 1976-12-16 Japan Atom Energy Res Inst Process for treating a solution containing polyvinyl alcohol
JPS52148961A (en) * 1976-06-03 1977-12-10 Nissin Electric Co Ltd Decoloring of colored waste liquor
JPS5584589A (en) * 1978-12-21 1980-06-25 Japan Atom Energy Res Inst Treatment of waste water by combined use of ozone and ionizing radiation treatment

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5785866A (en) * 1989-08-08 1998-07-28 Osterreichisches Forschungszentrum Seibersdorf Gmbh Process and apparatus for the treatment, in particular purification of water containing halogenated ethylenes
US5457269A (en) * 1992-09-08 1995-10-10 Zapit Technology, Inc. Oxidizing enhancement electron beam process and apparatus for contaminant treatment
KR970025677A (en) * 1995-11-30 1997-06-24 경주현 Flue gas treatment device with uniform flow rate distribution
KR100420903B1 (en) * 1996-12-30 2004-04-17 이비테크(주) METHOD FOR REMOVING Cr AND Hg FROM WASTEWATER BY USING ELECTRONIC RAY
KR19980057625A (en) * 1996-12-30 1998-09-25 이대원 Wastewater treatment method containing polyvinyl alcohol (PVA) by electron beam irradiation
KR19980065219A (en) * 1997-01-06 1998-10-15 이대원 Leachate Treatment Method of Garbage Landfill by Electron Beam Irradiation
KR19980085026A (en) * 1997-05-27 1998-12-05 이대원 Wastewater treatment method by electron beam irradiation and ozone addition
KR19980085025A (en) * 1997-05-27 1998-12-05 이대원 Paper Waste Treatment by Electron Beam Irradiation
KR100431473B1 (en) * 1997-05-27 2004-07-16 이비테크(주) Method for treating dyeing wastewater containing polyvinylalcohol by electron beam irradiation
JP4622015B2 (en) * 1998-11-27 2011-02-02 東レ株式会社 Module incorporating a membrane and manufacturing method thereof
KR100446438B1 (en) * 2002-05-17 2004-09-01 유토파워주식회사 Sewage/waste water treatment system and method using Electronic radiation apparatus and ionization-gas ganerator apparatus
EP1400493A1 (en) * 2002-09-17 2004-03-24 Deutsches Zentrum für Luft- und Raumfahrt e.V. Apparatus and process for cleaning a contaminated liquid
JP2009039680A (en) * 2007-08-10 2009-02-26 Jfe Engineering Kk Apparatus for treating ballast water
EP2554520A3 (en) * 2011-08-02 2013-06-05 Krones AG Thermal sterilisation of water by ionising radiation
CN110372064A (en) * 2019-07-19 2019-10-25 常熟理工学院 A method of medical waste liquid is handled using electronic beam irradiation technology
CN110372064B (en) * 2019-07-19 2022-01-28 常熟理工学院 Method for treating medical waste liquid by using electron beam irradiation technology

Similar Documents

Publication Publication Date Title
JPH02164490A (en) Water treatment method and apparatus
US5364537A (en) Process for the oxidation of organic micropollutants in water using the O3 /H2 O2 combination
US4341641A (en) Process for treating cyanide and cyanate containing wastewaters
JPH0722753B2 (en) Method and device for treating liquid contaminated with harmful substances
JP3440313B2 (en) Method and apparatus for treating contaminated water
JP2001205277A (en) Method and apparatus for removing hardly decomposable organic compound in water
JPH0788489A (en) Method and apparatus for treating contaminated water
WO1999007642A1 (en) Process and apparatus for water decontamination
JP3731806B2 (en) Organic wastewater treatment method and apparatus
JPS6028883A (en) Process and apparatus for treating waste water
JP4040788B2 (en) Waste water treatment method and apparatus
JP2582550B2 (en) Treatment of water containing organic matter
JPH0671594B2 (en) Method and apparatus for removing dissolved oxygen in water
US9604862B2 (en) Oxidation method, nozzle and system for treating waste water
JPS6125694A (en) Oxidation treatment of organic waste water
JP3506032B2 (en) Equipment for treating DMSO-containing water
JP2000237774A (en) Ozone/ultraviolet ray separated circulation device
KR19980085039A (en) Wastewater treatment method and device by electron beam and ozone
JP2001017995A (en) Treatment of volatile organochlorine compound and device therefor
JPH03143594A (en) Water treatment
JPS6328429A (en) Treatment of waste water containing fluorine and hydrogen peroxide and exhaust gas and its facility
JP2002192176A (en) Liquid oxidizing decomposition method and apparatus
JP3493843B2 (en) Accelerated oxidation treatment equipment in water treatment
JP3859866B2 (en) Water treatment method
JP2004057887A (en) Method and apparatus for treating water by electrolysis and electron beam irradiation