JPS61291040A - Catalyst for purifying exhaust gas - Google Patents

Catalyst for purifying exhaust gas

Info

Publication number
JPS61291040A
JPS61291040A JP60134575A JP13457585A JPS61291040A JP S61291040 A JPS61291040 A JP S61291040A JP 60134575 A JP60134575 A JP 60134575A JP 13457585 A JP13457585 A JP 13457585A JP S61291040 A JPS61291040 A JP S61291040A
Authority
JP
Japan
Prior art keywords
catalyst
exhaust gas
alumina
fused silica
alkali titanate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60134575A
Other languages
Japanese (ja)
Inventor
Yasuhiro Takeuchi
康弘 竹内
Atsushi Nishino
敦 西野
Yukiyoshi Ono
之良 小野
Hironao Numamoto
浩直 沼本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP60134575A priority Critical patent/JPS61291040A/en
Priority to US06/875,082 priority patent/US4769356A/en
Priority to DE8686108290T priority patent/DE3668271D1/en
Priority to EP86108290A priority patent/EP0207367B1/en
Publication of JPS61291040A publication Critical patent/JPS61291040A/en
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To enhance the mechanical strength of a catalyst at low temp., by supporting a catalytic substance by a ceramic carrier obtained by applying heat treatment to a composition consisting of rehydratable alumina, alkali titanate and fused silica. CONSTITUTION:A composition comprising a mixture of rehydratable alumina, alkali titanate and fused silica is heat-treated at 1,100-1,300 deg.C to form a ceramics catalyst carrier. The aforementioned composition pref. consists of 5-20wt% of rehydratable alumina, 1-10wt% of alkali titanate and 70-94wt% of fused silica. As rehydratable alumina, for example, there are pi-Al2O3 and amorphous alumina, etc. As alkali titanate, potassium titanate is designated and pref. fibrous.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は排ガス浄化用触媒に使用される熱膨張係数の小
さい十ラミック成形体で自動車用、産業用、民生用の燃
焼排ガス浄化用触媒に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a decaramic molded body having a small coefficient of thermal expansion used as a catalyst for purifying combustion exhaust gas for automobiles, industrial use, and consumer use.

従来の技術 従来の排ガス浄化用触媒担体で使用されている熱膨張係
数の小さいセラミックとしてはコーディエライト系セラ
ミックが大半である。その他、アルミナ系セラミックス
、ムライト系セラミックスも用いられている。しかし、
これらアルミナ系。
BACKGROUND OF THE INVENTION Most of the ceramics with a small coefficient of thermal expansion used in conventional catalyst carriers for exhaust gas purification are cordierite ceramics. In addition, alumina ceramics and mullite ceramics are also used. but,
These are alumina-based.

ムライト系セラミックスは熱膨張係数がコーディエライ
ト系士うミックスにくらべ3〜5倍も大きな値でその実
用例は少々い。コーディエライトは2 MgO・2A1
203・5 SiO□で示されるセラミックスであり、
これは、タルク(M75(Si 40 、(、)(o′
K)2)とカオリン(A12Si205(OH)4)オ
よびアルミナ(k1203)  を目的とするコーディ
エライト構成の成分比率で調合し、混合、脱水、成形。
The coefficient of thermal expansion of mullite ceramics is 3 to 5 times larger than that of cordierite ceramics, and there are few practical examples of this. Cordierite is 2 MgO・2A1
203.5 is a ceramic represented by SiO□,
This is talc (M75(Si40, (,)(o'
K)2), kaolin (A12Si205(OH)4), and alumina (k1203) are mixed in the desired ratio of cordierite components, mixed, dehydrated, and molded.

31、− 乾燥、焼結して製造される。ちなみに理論組成コーディ
エライトの各成分重量%は、Mg○13.8%。
31, - Manufactured by drying and sintering. By the way, the weight percent of each component in the theoretical composition of cordierite is Mg○13.8%.

A40334.9 % 、 5i0251.3蟹である
。また焼結温度は約1400℃で約I J間通常(d行
なわれている。このものの熱膨張係数は、1.2〜1.
4X 10−6/deg (常温〜100Q°C)であ
る。
A40334.9%, 5i0251.3 crab. The sintering temperature is usually about 1400°C for about IJ (d).The coefficient of thermal expansion of this material is 1.2 to 1.
4X 10-6/deg (room temperature to 100Q°C).

アルミナ系、ムライト系セラミックスにおいても焼結温
度は1300℃以上の高温である(特公昭54−156
4号、特公昭51−20358号公報)。
The sintering temperature for alumina-based and mullite-based ceramics is also high, exceeding 1300°C (Special Publication Publication No. 54-156).
No. 4, Japanese Patent Publication No. 51-20358).

このようにコーディエライト系、アルミナ系。In this way, cordierite type and alumina type.

ムライト系セラミックスからなる従来触媒担体では、高
温焼結処理を行なうことで、熱膨張係数の小さい物質を
生成させ、さらには機械的強度の向上を図っていた。こ
のだめこれら従来法の担体は 。
Conventional catalyst carriers made of mullite-based ceramics were subjected to high-temperature sintering to produce a material with a small coefficient of thermal expansion and further improve mechanical strength. The carriers of these conventional methods are:

焼結時極度にガラス化し、比表面積も極端に小となって
いた(コーディエライト系士うミンクの局舎比表面積は
1m/y 以下である。)。故に、これら従来触媒担体
上に直接触媒物質を担持させることは困難であり、たと
え触媒担持が行なえても排ガス浄化用触媒としては不充
分でWtII足できるものは得られんい。この理由げ相
持σれた貴金属が熱によって担体上を移動拡散しやすく
急激に触媒能が劣化することが考えられる。よって、こ
の種のコーディエライト系、アルミナ系、ムライト系か
らなる従来触媒担体では、ウォッシュコートと呼ばれる
前処理(γ−ke20s  等の粉末を表面コートする
。)を行々う。その後に触媒物質を担持しているのが現
状である。また、従来コーディエライト系セラミックス
からなる触媒担体に、焼結時に三軸方向にそれぞれ約3
0係焼結収縮し、寸法精度の維持も困難で製造工程が煩
雑となったり、製品歩留りが悪くなったり、また焼結温
度が高いことによりコスト高に彦っている。ざらにその
他の欠点の一つとして熱膨張係数が1.2〜1.4×1
 o”” /deg (常温〜10oo°C)では、用
途により実使用時クラックが発生したり、割れる等の問
題があった。特に近年自動車用触媒では、エンジンの高
性能化に伴い要求されるサーマルショック特性がてらに
厳しくなり熱膨張係数の低減が予期5へ−・ なくされている0 発明が解決しようとする問題点 本発明はかかる点に鑑みてなされたもので、熱膨張係数
が従来のものより小さく、熱処理温度も低い温度で機械
的強度が得られ、比表面積も犬で低コストの排ガス浄化
用触媒を得るものである。
During sintering, it became extremely vitrified and its specific surface area was extremely small (the specific surface area of cordierite mink is less than 1 m/y). Therefore, it is difficult to directly support a catalyst substance on these conventional catalyst carriers, and even if the catalyst can be supported, it is insufficient as a catalyst for exhaust gas purification, and a catalyst sufficient for WtII cannot be obtained. It is thought that for this reason, the noble metals that are held together tend to move and diffuse on the carrier due to heat, causing rapid deterioration of the catalytic ability. Therefore, conventional catalyst carriers made of cordierite, alumina, and mullite are subjected to a pretreatment called wash coating (surface coating with powder such as γ-ke20s). The current situation is that a catalyst material is then supported. In addition, when sintering the catalyst carrier made of conventional cordierite ceramics, approximately 3
There is zero-temperature sintering shrinkage, making it difficult to maintain dimensional accuracy, making the manufacturing process complicated, reducing product yield, and increasing costs due to the high sintering temperature. One of the other drawbacks is that the coefficient of thermal expansion is 1.2 to 1.4 x 1.
o''''/deg (room temperature to 100°C), there were problems such as cracking or breaking during actual use depending on the application. Particularly in recent years, the thermal shock properties required for automotive catalysts have become more severe as the performance of engines has improved, and the reduction in the coefficient of thermal expansion has been reduced to the expected level of 5. The invention was made in view of these points, and provides a low-cost exhaust gas purification catalyst that has a smaller coefficient of thermal expansion than conventional catalysts, provides mechanical strength at a lower heat treatment temperature, and has a smaller specific surface area. It is.

問題点を解決するだめの手段 本発明の排ガス浄化用触媒は、上記問題点を解決するた
め、少なくとも再水利性アルミナとチタン酸アルカリ塩
と溶融シリカから々る組成物を比較的低温で熱処理して
、担体として優れた物性を有するセラミックスを得、こ
れを排ガス浄化用触媒担体とし、触媒物質を担持し排ガ
ス浄化用触媒とするものである○ 作用 本発明は上記の構成よりなり、その作用を説明する。捷
ず、本願触媒担体を得るために必須成分である再水和性
アルミナとは、アルミナ水和物を熱分解したα−ke2
03  以外の遷移アルミナ、例えばρ−ke20s 
 および無定形アルミナ等を意味6ヘー・ する○工業的には例えばバイヤ一工程から得られるアル
ミナ三水和物等のアルミナ水和物を約400〜1200
’Cの熱ガスに通常数分の1〜10秒間接触させたり、
あるいはアルミナ水和物を減圧下で約250〜9o○°
Cに通常1分〜4時間加熱保持することにより得ること
ができる約0.5〜15重量係の灼熱減量を有するもの
等が挙げられる。
Means for Solving the Problems In order to solve the above-mentioned problems, the exhaust gas purifying catalyst of the present invention is provided by heat-treating a composition comprising at least rewaterable alumina, an alkali titanate, and fused silica at a relatively low temperature. In this way, a ceramic having excellent physical properties as a carrier is obtained, and this is used as a catalyst carrier for exhaust gas purification, and a catalytic material is supported on the ceramic as a catalyst for exhaust gas purification. explain. Rehydratable alumina, which is an essential component in order to obtain the catalyst carrier of the present invention, is α-ke2, which is obtained by thermally decomposing alumina hydrate.
Transition alumina other than 03, e.g. ρ-ke20s
and amorphous alumina, etc. ○Industrially, for example, alumina hydrate such as alumina trihydrate obtained from the Bayer 1 process is used at a concentration of about 400 to 1200
' C hot gas is usually brought into contact with a fraction of a second to 10 seconds,
Or alumina hydrate under reduced pressure at about 250~9o○°
Examples include those having a loss on ignition of about 0.5 to 15% by weight, which can be obtained by heating and holding C for 1 minute to 4 hours.

次にチタン酸アルカリとは、一般式M20・nTi02
(式中M’  [、リチウム、すトリウム、カリウム。
Next, alkali titanate has the general formula M20・nTi02
(In the formula, M' [, lithium, strium, potassium.

ルビジウム、セシウム、バリウム、ストロンチウム、カ
ルシウムから選ばれるアルカリ金属原子を表わし、n 
td 1以上の整数である。)で示てれる物質である。
Represents an alkali metal atom selected from rubidium, cesium, barium, strontium, and calcium, n
td is an integer greater than or equal to 1. ).

次にもう一つの必須成分である溶融シリカについて記述
する。溶融シリカは、熱膨張係数が0.5X 10−6
/ deg (常温〜1000°C)と物質中もつとも
小さく、熱膨張を低減させる材料として一般的に知られ
ているが、しかし、溶融シリカにガラス形成酸化物でも
あり、他の物質(例えば、ナトリウム、カリウム、カル
シウム等のアルカリ成分およびアルミナ、テタニャ等)
との混合物で1000°C以上の温度で熱処理てれると
、クリストバライト、あるいはトリシマナイト等の結晶
物を生成妊ぜ、熱膨張係数も4〜5×1σ6/deg(
常温〜10oo’(lと激増し、この点から、本発明の
如き耐熱衝撃性に優れたセラミ、ノクスとしては従来使
用されなかったOしかじ庁から上記少なくとも三成分か
らなる組成物を1100〜1300″Cの範囲で熱処理
することにより、その理由は明らかでないが、耐熱衝撃
性に優れ、比表面積も比較的太き々触媒担体が得られた
。排ガス浄化用触媒担体は、前記再水利性アルミナ、チ
タン酸アルカリ塩、溶融シリカの他、成形助剤(たとえ
ば、cMC,Mc)および可塑剤(グリセリン、ワセリ
ン)等を任意に添加することも可能である。
Next, another essential component, fused silica, will be described. Fused silica has a thermal expansion coefficient of 0.5X 10-6
/ deg (room temperature to 1000°C) and is generally known as a material that reduces thermal expansion. , alkaline components such as potassium and calcium, and alumina, tetanya, etc.)
When heat-treated at a temperature of 1,000°C or higher in a mixture with
From this point of view, a composition consisting of at least the above three components from Okajicho, which has not been used conventionally as a ceramic or Nox with excellent thermal shock resistance as in the present invention, was heated at room temperature to 1000 to 1000 liters. By heat-treating in the range of 1300''C, a catalyst carrier with excellent thermal shock resistance and a relatively large specific surface area was obtained, although the reason is not clear. In addition to alumina, alkali titanate, and fused silica, it is also possible to optionally add molding aids (for example, cMC, Mc), plasticizers (glycerin, vaseline), and the like.

次に5以上の成分より製造きれた触媒担体の物性を示す
と、熱膨張係数は、配合比、熱処理温度にヨッテ多少異
なるが、1.2 X 10−6/deg (常温〜10
00”C)以下であった。丑だ耐熱衝撃温度もs o 
O’C以上と熱衝撃に優れていた。比表面例を示す。
Next, the physical properties of the catalyst carrier manufactured from five or more components are shown. The coefficient of thermal expansion is 1.2 x 10-6/deg (from room temperature to 10
00"C) or less. The thermal shock resistance temperature was also so
It had excellent thermal shock resistance, exceeding O'C. An example of specific surface is shown.

〔実施例1〕 壁厚0.3語、−辺1.EJMの正方形セルからなるハ
ニカム成形体を100’C/時間の昇温速度で1200
″C寸で昇温し、更に1200℃で1時間熱処理した。
[Example 1] Wall thickness 0.3 words, − side 1. A honeycomb formed body consisting of EJM square cells was heated to 1200°C at a heating rate of 100'C/hour.
The temperature was raised at ``C'' and further heat treated at 1200°C for 1 hour.

このようにして得られたハニカム状セラばツクスを触媒
担体とし、白金(Pt)およびロジウム(Rh)を触媒
担体1e当り各々1.0gおよび20oJ9担持して触
媒を調製した。なお白金は塩化白金酸(H2PtCd6
)をロジウムは硝酸ロジウム(Rh(NOs ) s 
)を使用し、pt対Rhを5対1で混合し、含浸、乾燥
、活性化(N2雰囲気500’Cで熱処理)して排ガス
浄化用触媒とした0才だ、比較のため市販コーディエラ
イト系触媒担体を使用し上記方法で同様に白金、ロジウ
ム触媒物質を担持し比較例に示した。上記2つの排ガス
浄化用触媒について、下記の2つの評価方法により評価
した。
A catalyst was prepared by using the thus obtained honeycomb-shaped ceramics as a catalyst carrier, and carrying platinum (Pt) and rhodium (Rh) in an amount of 1.0 g and 20oJ9 per catalyst carrier 1e. Note that platinum is chloroplatinic acid (H2PtCd6
) is rhodium nitrate (Rh(NOs) s
), a 5:1 ratio of PT:Rh was mixed, impregnated, dried, and activated (heat treated at 500'C in N2 atmosphere) to make an exhaust gas purification catalyst.For comparison, commercially available cordierite was used. A comparative example in which platinum and rhodium catalyst materials were supported in the same manner as described above using a catalyst carrier based on the above-described method. The above two exhaust gas purification catalysts were evaluated using the following two evaluation methods.

■ 上記排ガス浄化用触媒を用いて、触媒温度200°
CでのCO浄化率を空間速度:20,000[”、Go
入口濃度:600ppm(空気中)の条件下で初期の浄
化性能と電気炉中1.○OO’C6o時間熱処理後の浄
化性能を測定し評価した。
■ Using the above exhaust gas purification catalyst, the catalyst temperature is 200°.
Space velocity: 20,000 [”, Go
1. Initial purification performance and electric furnace under conditions of inlet concentration: 600 ppm (in air). ○OO'C Purification performance after heat treatment for 6o hours was measured and evaluated.

■ 2800CCエンジン搭載自動車の排出ガス経路に
上記各々排ガス浄化用触媒を設置し、空燃比を14.○
〜15.5の範囲内で0.1の幅で変化させ、Go、H
G、NoX ガスの浄化率を初期と6o時間ベンチ耐久
後につき測定し評価した。
■ Each of the above exhaust gas purification catalysts was installed in the exhaust gas path of a car equipped with a 2800CC engine, and the air-fuel ratio was adjusted to 14. ○
~15.5 with a width of 0.1, Go, H
The purification rate of G, NoX gas was measured and evaluated at the initial stage and after 6 hours of bench durability.

評価法■による結果を第1表に示す。評価法■の10ヘ
ーノ 結果を第1図(A)、(B)  に示す。(A)が本発
明の実施例の触媒、(B)がコーディエライト系担体か
ら々る触媒比較例の結果であるO 第1表 第1表より明らかなように比較例触媒は、本発明実施例
触媒に比べ熱劣化が極度に犬であった。
Table 1 shows the results obtained using evaluation method (■). The results of evaluation method (2) are shown in Figures 1 (A) and (B). (A) is the result of the catalyst of the example of the present invention, and (B) is the result of the comparative example of the catalyst made from the cordierite carrier. Thermal deterioration was extremely poor compared to the example catalyst.

同様に第1図(A)、(B)  に示したベンチ耐久試
験結果においても比較例触媒は、Go 、 He 、 
NOX各成分ガスに対して初期からの劣化が犬であった
Similarly, in the bench durability test results shown in FIGS. 1(A) and (B), the comparative example catalyst had Go, He,
Deterioration was observed from the beginning for each component gas of NOx.

〔実施例2〕 再水和性アルξす、チタン酸カリウム、溶融シリカの比
率を種々変化嘔せ実施例1と同様に成形助剤、可塑剤、
水を加え実施例1と同様にハニカム状セラミックスを作
成し耐熱衝撃性を評価するとともに、白金、ロジウム触
媒物質も才だ実施例1と同様に担持し、前記評価法■に
より評価した。
[Example 2] The proportions of rehydrating aluminum, potassium titanate, and fused silica were varied.As in Example 1, the molding aid, plasticizer,
A honeycomb-shaped ceramic was prepared in the same manner as in Example 1 by adding water, and the thermal shock resistance was evaluated. Platinum and rhodium catalyst materials were also supported in the same manner as in Example 1, and evaluated using the evaluation method (2).

その結果耐熱衝撃性に優れていた組成範囲は、第2図中
の斜線部で再水和性アルミナが5〜20重量係、チタン
酸アルカリ塩が1〜1o重量係、溶融シリカが70〜9
4重量係の範囲であった。捷たこの範囲以外での温度に
対する熱膨張収縮率は第3図(a)の如くであった。本
発明の組成物では(b)の如くであった。(a)の曲線
より溶融シリカから一部結晶化しクリストバライト、ト
リシマナイト等の物質が生成したことば容易に考えられ
熱膨張係数が犬で、熱衝撃性が劣っていたことと一致し
た。
As a result, the composition ranges with excellent thermal shock resistance are shown in the shaded area in Figure 2, where rehydratable alumina is 5-20% by weight, alkali titanate is 1-10% by weight, and fused silica is 70-9% by weight.
It was in the range of 4 weight class. The thermal expansion and contraction coefficients at temperatures outside this range were as shown in FIG. 3(a). The composition of the present invention was as shown in (b). From the curve in (a), it is easy to think that substances such as cristobalite and trichimanite were partially crystallized from fused silica, and the coefficient of thermal expansion was 0.1, which coincided with the poor thermal shock resistance.

評価法■による触媒性能結果を第2表に示す。Table 2 shows the catalyst performance results according to evaluation method (■).

第2表 第2表より明らかなように本発明範囲外組成物において
は、熱劣化が犬であった。(しかし、従来コーディエラ
イト系触媒担体から触媒と比較すると熱劣化は小) この理由は明らかでないが、白金、パラジウムの貴金属
が担体中に一部拡散し、その結果触媒能が低下したと考
えられる0 〔実施例3〕 再水和性アルミナ1o重量係、チタン酸アルカリ5重量
係(アルカリ成分として、リチウム、ナトリウム、カリ
ウム、ルビジウム、セシウム、バリウム、ストロンチウ
ム、カルシウムから選ばれ塩)と、溶融シリカ86重量
%0))霞久成形助剤としてメチルセルロース4.○重
量部、可塑剤としてグリセリン2.0重量部、水32重
量部加えた混合物を実施例1と同様にしてハニカム状セ
ラミックスを製造し、白金、ロジウムを実施例1と同様
に担持させ、評価法■により評価した。結果を第3表に
示す。
As is clear from Table 2, the compositions outside the range of the present invention showed poor thermal deterioration. (However, thermal deterioration is small compared to catalysts made from conventional cordierite catalyst carriers.) The reason for this is not clear, but it is thought that some of the precious metals such as platinum and palladium diffuse into the carrier, resulting in a decrease in catalytic performance. [Example 3] Rehydratable alumina 10% by weight, alkali titanate 5% by weight (the alkali component is a salt selected from lithium, sodium, potassium, rubidium, cesium, barium, strontium, and calcium) and fused Silica 86% by weight0)) Methyl cellulose as a molding aid 4. ○ parts by weight, 2.0 parts by weight of glycerin as plasticizers, and 32 parts by weight of water were added to produce honeycomb-shaped ceramics in the same manner as in Example 1, and platinum and rhodium were supported in the same manner as in Example 1, and evaluated. Evaluation was made using method ■. The results are shown in Table 3.

(以下余 白) 13べ−7 第3表 第3表から明らかなように再水利性アルξすと各々のチ
タン酸アルカリ塩および溶融シリカからなる組成物は、
熱処理による劣化が小さく優れていた。々かでもチタン
酸カリウムを使用したものは熱劣化が極めて小であった
(The following is a blank space) 13B-7 As is clear from Table 3, the compositions consisting of each alkali titanate salt and fused silica are
It was excellent with little deterioration due to heat treatment. Among all, those using potassium titanate showed extremely little thermal deterioration.

〔実施例4〕 実施例3における各々のチタン酸アルカリ塩が繊維状で
ある場合の物性を第4表に示す014へ一7゛ 第4表 第4表よりチタン酸アルカリ塩が繊維状である程触媒の
熱劣化率は小さくなる傾向を認めた。
[Example 4] Table 4 shows the physical properties of each alkali titanate salt in Example 3 when it is fibrous. It was observed that the thermal deterioration rate of the catalyst tended to decrease as the temperature increased.

〔実施例6〕 実施例4のNl 3 ノ・ニカム成形体において2熱処
理源度が1000〜1400°Cの範囲での各々触媒性
能を前記評価方法■により測定し評価したO熱処理後の
浄化能結果を第4図に示した015へ− 第4図より熱処理温度1100°C以下では触媒の熱劣
化が犬。丑だ、1300″C以上でも熱劣化は犬であっ
た。この理由は明らかでないが、1100°C以下の熱
処理温度により得られたセラミックス担体は熱に対し不
安定で、担持された白金、ロジウム貴金属と反応を起こ
し触媒性能を低下させると思われる。逆に1000°C
以上の熱処理温度により得られたセラミックス担体は熱
に対し非常に安定であるが1表面は、ガラス化し比表面
積も1.onf/g以下と々す、担持σれた白金。
[Example 6] Purification ability after O heat treatment was evaluated by measuring the catalytic performance of the Nl 3 -Nicum molded product of Example 4 at a heat treatment temperature range of 1000 to 1400°C using the evaluation method (2) above. The results are shown in 015 in Figure 4. From Figure 4, thermal deterioration of the catalyst is significant when the heat treatment temperature is below 1100°C. Unfortunately, thermal deterioration was poor even at temperatures above 1300°C.The reason for this is not clear, but ceramic supports obtained by heat treatment at temperatures below 1100°C are unstable to heat, and the supported platinum and rhodium It seems to cause a reaction with precious metals and reduce the catalyst performance.On the contrary, at 1000°C
The ceramic carrier obtained by the above heat treatment temperature is very stable against heat, but the surface is vitrified and the specific surface area is 1. Onf/g or less, supported platinum.

ロジウム触媒物質は担体表面上を移動拡散し凝集を起こ
し急激に劣化したと思われる。
It is thought that the rhodium catalyst material migrated and diffused on the surface of the carrier, causing aggregation and rapid deterioration.

なお、1000°Cで熱処理して得たハニカム状セラ好
ノクス担体および1400°Cで熱処理して得たハニカ
ム状セラdソクス担体断面の粒子状態等の表面状態を示
す走査型電子顕微鏡写真を第6図に示した。第6図(A
)U1o○○°Cで熱処理して得たハニカム状セラεノ
クス断面の粒子状態等の表面状態を示す3000倍拡大
走査型電子顕微鏡写真であり、第5図CB)は1000
°Cで熱処理して得たハニカム状セラミックス断面の3
000倍拡大走査型電子顕微鏡写真である。前記2つの
走査型電子顕微鏡写真からも熱処理温度によって得られ
るセラミックスの物性(特に触媒担体としての特性)は
大きく異々る。
In addition, scanning electron micrographs showing the surface conditions such as the particle state of the cross section of the honeycomb-shaped Ceraconox carrier obtained by heat-treating at 1000°C and the honeycomb-shaped Ceraconox support obtained by heat-treating at 1400°C are shown below. It is shown in Figure 6. Figure 6 (A
) is a 3000 times magnified scanning electron micrograph showing the surface state such as the particle state of a honeycomb-shaped Cera ε Nox cross section obtained by heat treatment at 10°C;
3. Cross-section of honeycomb-shaped ceramics obtained by heat treatment at °C
This is a scanning electron micrograph with a magnification of 000 times. The above two scanning electron micrographs also show that the physical properties of the ceramics obtained (particularly the properties as a catalyst carrier) differ greatly depending on the heat treatment temperature.

発明の効果 以上述べてきたように、本発明によれば触媒性能に優れ
、さらには熱膨張係数が小さい耐熱衝撃性に優れた触媒
担体セラミックスを比較的低温で低コストに得ることの
できるきわめて有用な発明である。
Effects of the Invention As described above, the present invention is extremely useful in that it is possible to obtain catalyst carrier ceramics with excellent catalytic performance, low coefficient of thermal expansion, and excellent thermal shock resistance at a relatively low temperature and at low cost. This is a great invention.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の排ガス浄化用触媒の空燃比
に対する浄化率の関係図、第2図に同排ガス浄化用触媒
の担体の組成範囲を示す状態図、第3図は同排ガス浄化
用触媒の担体の温度に対する膨張収縮率の関係図、第4
図は同排ガス浄化用触媒の担体を得る熱処理温度と触媒
性能を示す関係図、第5図は同排ガス浄化用触媒の担体
の表面粒子状態を示す走査型電子顕微鏡写真である。 17へ一/ A・・・・・・再水和性アルミナ、B・・・・・チタン
酸アルカリ塩、C・・・・溶融シリカ〇 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第1
図(千り1) (A) 空?:ル 第1図(+す2) (B) 虐f尤 第2図 A−一一丙7に未>&フルξす β−−−サタン改々°ノウ4 G−一〜溶紅ンリ刀 第3図 fLLt’り 第4図 /ρθθ l/ρθ /2ρθ /3θl  /4θρ
熱処理シL戻(°す
Fig. 1 is a diagram showing the relationship between the purification rate and the air-fuel ratio of an exhaust gas purifying catalyst according to an embodiment of the present invention, Fig. 2 is a state diagram showing the composition range of the carrier of the exhaust gas purifying catalyst, and Fig. 3 is a state diagram showing the composition range of the carrier of the exhaust gas purifying catalyst. Relationship diagram of expansion/contraction rate with respect to temperature of carrier of purification catalyst, 4th
The figure is a relationship diagram showing the heat treatment temperature for obtaining the carrier of the exhaust gas purifying catalyst and the catalyst performance, and FIG. 5 is a scanning electron micrograph showing the state of surface particles of the carrier of the exhaust gas purifying catalyst. Go to 17 / A: Rehydratable alumina, B: Alkaline titanate, C: Fused silica Name of agent: Patent attorney Toshio Nakao and 1 other person 1
Diagram (1,000 ri) (A) Sky? :Le Figure 1 (+su2) (B) Figure 2 A-11 丙7 に〉&Full ξβ---Satan changes °now 4 G-1~Rokurenri Sword No. Figure 3 fLLt' Figure 4 /ρθθ l/ρθ /2ρθ /3θl /4θρ
Heat treatment

Claims (5)

【特許請求の範囲】[Claims] (1)少なくとも再水和性アルミナとチタン酸アルカリ
塩と溶融シリカからなる組成物を熱処理して得たセラミ
ックスを触媒担体とした排ガス浄化用触媒。
(1) A catalyst for exhaust gas purification in which a catalyst carrier is a ceramic obtained by heat treating a composition consisting of at least rehydratable alumina, an alkali titanate, and fused silica.
(2)再水和性アルミナ5〜20重量%、チタン酸アル
カリ塩1〜10重量%、溶融シリカ70〜94重量%か
らなる特許請求の範囲第1項記載の排ガス浄化用触媒。
(2) The exhaust gas purifying catalyst according to claim 1, comprising 5 to 20% by weight of rehydratable alumina, 1 to 10% by weight of alkali titanate, and 70 to 94% by weight of fused silica.
(3)チタン酸アルカリ塩がチタン酸カリウムからなる
特許請求の範囲第1項または第2項記載の排ガス浄化用
触媒。
(3) The exhaust gas purifying catalyst according to claim 1 or 2, wherein the alkali titanate salt is potassium titanate.
(4)チタン酸アルカリ塩が繊維状である特許請求の範
囲第1項、第2項または第3項記載の排ガス浄化用触媒
(4) The exhaust gas purifying catalyst according to claim 1, 2, or 3, wherein the alkali titanate salt is fibrous.
(5)熱処理温度が1100〜1300℃である特許請
求の範囲第1項、第2項、第3項または第4項記載の排
ガス浄化用触媒。
(5) The exhaust gas purifying catalyst according to claim 1, 2, 3, or 4, wherein the heat treatment temperature is 1100 to 1300°C.
JP60134575A 1985-06-20 1985-06-20 Catalyst for purifying exhaust gas Expired - Lifetime JPS61291040A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP60134575A JPS61291040A (en) 1985-06-20 1985-06-20 Catalyst for purifying exhaust gas
US06/875,082 US4769356A (en) 1985-06-20 1986-06-17 Catalyst for purifying exhaust gas
DE8686108290T DE3668271D1 (en) 1985-06-20 1986-06-18 EXHAUST GAS CLEANER.
EP86108290A EP0207367B1 (en) 1985-06-20 1986-06-18 Catalyst for purifying exhaust gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60134575A JPS61291040A (en) 1985-06-20 1985-06-20 Catalyst for purifying exhaust gas

Publications (1)

Publication Number Publication Date
JPS61291040A true JPS61291040A (en) 1986-12-20

Family

ID=15131557

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60134575A Expired - Lifetime JPS61291040A (en) 1985-06-20 1985-06-20 Catalyst for purifying exhaust gas

Country Status (1)

Country Link
JP (1) JPS61291040A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02198635A (en) * 1989-01-26 1990-08-07 Matsushita Electric Ind Co Ltd Catalyst for cleaning exhaust gas
CN100455353C (en) * 2007-03-09 2009-01-28 湖南泰鑫瓷业有限公司 Production of ceramic carrier for nanometer reinforced catalyst

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02198635A (en) * 1989-01-26 1990-08-07 Matsushita Electric Ind Co Ltd Catalyst for cleaning exhaust gas
CN100455353C (en) * 2007-03-09 2009-01-28 湖南泰鑫瓷业有限公司 Production of ceramic carrier for nanometer reinforced catalyst

Similar Documents

Publication Publication Date Title
JPS62256757A (en) Manufacture of thermal shock resistant ceramics
JP4505046B2 (en) Exhaust gas purification catalyst and method for producing the same
JPS62180751A (en) Heat resistant alumina carrier
CA1131262A (en) Low-expansion ceramics and method of producing the same
JPS61283348A (en) Oxidizing catalyst
JPH0550338B2 (en)
KR100965738B1 (en) Exhaust gas purification catalyst and method for production thereof
KR970020183A (en) Catalyst for purification of exhaust gas from automobiles and method for producing same
EP0207367A1 (en) Catalyst for purifying exhaust gas
JPH0312936B2 (en)
JPS61291040A (en) Catalyst for purifying exhaust gas
JP2001190955A (en) Catalyst molding for exhaust gas cleaning
JPS5820307B2 (en) Catalyst for vehicle exhaust gas purification
JPH02119939A (en) Exhaust gas purification catalyst
JPH0427433A (en) High-temperature combustion catalyst and its production
JPS62171960A (en) Manufacture of thermal shock-resistant ceramics
JPS61291039A (en) Catalyst for purifying exhaust gas
JPS62254843A (en) Catalyst carrier
JPH0644997B2 (en) Method for manufacturing exhaust gas purifying catalyst carrier
JPS62171749A (en) Production of carrier of catalyst for purifying exhaust gas
JP2005169168A (en) Method for manufacturing exhaust gas cleaning catalyst
JP3298115B2 (en) Method for producing exhaust gas purifying catalyst
JPH0350578B2 (en)
JPH02214541A (en) Production of catalyst for purification of exhaust gas
JPH07328442A (en) Filter for purifying waste gas and its production

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term